test-unwinder.cc 22.7 KB
Newer Older
1 2 3 4 5 6
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "include/v8.h"

7
#include "src/api/api-inl.h"
8
#include "src/builtins/builtins.h"
9
#include "src/execution/isolate.h"
10
#include "src/execution/pointer-authentication.h"
11
#include "src/heap/spaces.h"
12 13 14 15 16 17 18
#include "src/objects/code-inl.h"
#include "test/cctest/cctest.h"

namespace v8 {
namespace internal {
namespace test_unwinder {

19 20 21 22 23 24 25 26 27
static const void* fake_stack_base = nullptr;

// Ignore deprecation warnings so that we can keep the tests for now.
// TODO(petermarshall): Delete all the tests here when the old API is removed to
// reduce the duplication.
#if __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated"
#endif
28 29 30 31 32 33

TEST(Unwind_BadState_Fail) {
  UnwindState unwind_state;  // Fields are intialized to nullptr.
  RegisterState register_state;

  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
34
                                                 fake_stack_base);
35 36 37 38 39 40 41
  CHECK(!unwound);
  // The register state should not change when unwinding fails.
  CHECK_NULL(register_state.fp);
  CHECK_NULL(register_state.sp);
  CHECK_NULL(register_state.pc);
}

42 43 44 45 46
void StorePc(uintptr_t stack[], int index, uintptr_t pc) {
  Address sp = reinterpret_cast<Address>(&stack[index]) + kSystemPointerSize;
  stack[index] = PointerAuthentication::SignPCWithSP(pc, sp);
}

47 48 49 50 51 52 53 54 55 56 57
TEST(Unwind_BuiltinPCInMiddle_Success) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

  UnwindState unwind_state = isolate->GetUnwindState();
  RegisterState register_state;

  uintptr_t stack[3];
  void* stack_base = stack + arraysize(stack);
  stack[0] = reinterpret_cast<uintptr_t>(stack + 2);  // saved FP (rbp).
58
  StorePc(stack, 1, 202);  // Return address into C++ code.
59 60 61 62 63 64 65 66
  stack[2] = 303;  // The SP points here in the caller's frame.

  register_state.sp = stack;
  register_state.fp = stack;

  // Put the current PC inside of a valid builtin.
  Code builtin = i_isolate->builtins()->builtin(Builtins::kStringEqual);
  const uintptr_t offset = 40;
67
  CHECK_LT(offset, builtin.InstructionSize());
68
  register_state.pc =
69
      reinterpret_cast<void*>(builtin.InstructionStart() + offset);
70 71 72 73 74 75 76 77 78 79 80

  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                                 stack_base);
  CHECK(unwound);
  CHECK_EQ(reinterpret_cast<void*>(stack + 2), register_state.fp);
  CHECK_EQ(reinterpret_cast<void*>(stack + 2), register_state.sp);
  CHECK_EQ(reinterpret_cast<void*>(202), register_state.pc);
}

// The unwinder should be able to unwind even if we haven't properly set up the
// current frame, as long as there is another JS frame underneath us (i.e. as
81
// long as the PC isn't in JSEntry). This test puts the PC at the start
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
// of a JS builtin and creates a fake JSEntry frame before it on the stack. The
// unwinder should be able to unwind to the C++ frame before the JSEntry frame.
TEST(Unwind_BuiltinPCAtStart_Success) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

  UnwindState unwind_state = isolate->GetUnwindState();
  RegisterState register_state;

  const size_t code_length = 40;
  uintptr_t code[code_length] = {0};
  unwind_state.code_range.start = code;
  unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t);

  uintptr_t stack[6];
  void* stack_base = stack + arraysize(stack);
  stack[0] = 101;
  // Return address into JS code. It doesn't matter that this is not actually in
101
  // JSEntry, because we only check that for the top frame.
102
  StorePc(stack, 1, reinterpret_cast<uintptr_t>(code + 10));
103
  stack[2] = reinterpret_cast<uintptr_t>(stack + 5);  // saved FP (rbp).
104
  StorePc(stack, 3, 303);  // Return address into C++ code.
105 106 107 108 109 110 111 112 113
  stack[4] = 404;
  stack[5] = 505;

  register_state.sp = stack;
  register_state.fp = stack + 2;  // FP to the JSEntry frame.

  // Put the current PC at the start of a valid builtin, so that we are setting
  // up the frame.
  Code builtin = i_isolate->builtins()->builtin(Builtins::kStringEqual);
114
  register_state.pc = reinterpret_cast<void*>(builtin.InstructionStart());
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                                 stack_base);

  CHECK(unwound);
  CHECK_EQ(reinterpret_cast<void*>(stack + 5), register_state.fp);
  CHECK_EQ(reinterpret_cast<void*>(stack + 4), register_state.sp);
  CHECK_EQ(reinterpret_cast<void*>(303), register_state.pc);
}

const char* foo_source = R"(
  function foo(a, b) {
    let x = a * b;
    let y = x ^ b;
    let z = y / a;
    return x + y - z;
131 132
  };
  %PrepareFunctionForOptimization(foo);
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  foo(1, 2);
  foo(1, 2);
  %OptimizeFunctionOnNextCall(foo);
  foo(1, 2);
)";

// Check that we can unwind when the pc is within an optimized code object on
// the V8 heap.
TEST(Unwind_CodeObjectPCInMiddle_Success) {
  FLAG_allow_natives_syntax = true;
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
  HandleScope scope(i_isolate);

  UnwindState unwind_state = isolate->GetUnwindState();
  RegisterState register_state;

  uintptr_t stack[3];
  void* stack_base = stack + arraysize(stack);
  stack[0] = reinterpret_cast<uintptr_t>(stack + 2);  // saved FP (rbp).
154
  StorePc(stack, 1, 202);  // Return address into C++ code.
155 156 157 158 159 160 161 162 163 164 165 166 167 168
  stack[2] = 303;  // The SP points here in the caller's frame.

  register_state.sp = stack;
  register_state.fp = stack;

  // Create an on-heap code object. Make sure we run the function so that it is
  // compiled and not just marked for lazy compilation.
  CompileRun(foo_source);
  v8::Local<v8::Function> local_foo = v8::Local<v8::Function>::Cast(
      env.local()->Global()->Get(env.local(), v8_str("foo")).ToLocalChecked());
  Handle<JSFunction> foo =
      Handle<JSFunction>::cast(v8::Utils::OpenHandle(*local_foo));

  // Put the current PC inside of the created code object.
169
  AbstractCode abstract_code = foo->abstract_code();
170
  // We don't produce optimized code when run with --no-opt.
171 172
  if (!abstract_code.IsCode() && FLAG_opt == false) return;
  CHECK(abstract_code.IsCode());
173

174
  Code code = abstract_code.GetCode();
175 176 177
  // We don't want the offset too early or it could be the `push rbp`
  // instruction (which is not at the start of generated code, because the lazy
  // deopt check happens before frame setup).
178 179 180
  const uintptr_t offset = code.InstructionSize() - 20;
  CHECK_LT(offset, code.InstructionSize());
  Address pc = code.InstructionStart() + offset;
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  register_state.pc = reinterpret_cast<void*>(pc);

  // Check that the created code is within the code range that we get from the
  // API.
  Address start = reinterpret_cast<Address>(unwind_state.code_range.start);
  CHECK(pc >= start && pc < start + unwind_state.code_range.length_in_bytes);

  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                                 stack_base);
  CHECK(unwound);
  CHECK_EQ(reinterpret_cast<void*>(stack + 2), register_state.fp);
  CHECK_EQ(reinterpret_cast<void*>(stack + 2), register_state.sp);
  CHECK_EQ(reinterpret_cast<void*>(202), register_state.pc);
}

196 197
// If the PC is within JSEntry but we haven't set up the frame yet, then we
// cannot unwind.
198 199 200 201 202 203 204 205 206 207 208 209
TEST(Unwind_JSEntryBeforeFrame_Fail) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  UnwindState unwind_state = isolate->GetUnwindState();
  RegisterState register_state;

  const size_t code_length = 40;
  uintptr_t code[code_length] = {0};
  unwind_state.code_range.start = code;
  unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t);

210
  // Pretend that it takes 5 instructions to set up the frame in JSEntry.
211 212 213 214 215 216 217 218 219 220 221
  unwind_state.js_entry_stub.code.start = code + 10;
  unwind_state.js_entry_stub.code.length_in_bytes = 10 * sizeof(uintptr_t);

  uintptr_t stack[10];
  void* stack_base = stack + arraysize(stack);
  stack[0] = 101;
  stack[1] = 111;
  stack[2] = 121;
  stack[3] = 131;
  stack[4] = 141;
  stack[5] = 151;
222
  StorePc(stack, 6, 100);  // Return address into C++ code.
223 224 225 226 227 228 229
  stack[7] = 303;  // The SP points here in the caller's frame.
  stack[8] = 404;
  stack[9] = 505;

  register_state.sp = stack + 5;
  register_state.fp = stack + 9;

230
  // Put the current PC inside of JSEntry, before the frame is set up.
231 232 233 234 235 236 237 238 239 240 241 242 243
  register_state.pc = code + 12;
  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                                 stack_base);
  CHECK(!unwound);
  // The register state should not change when unwinding fails.
  CHECK_EQ(reinterpret_cast<void*>(stack + 9), register_state.fp);
  CHECK_EQ(reinterpret_cast<void*>(stack + 5), register_state.sp);
  CHECK_EQ(code + 12, register_state.pc);

  // Change the PC to a few instructions later, after the frame is set up.
  register_state.pc = code + 16;
  unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                            stack_base);
244 245
  // TODO(petermarshall): More precisely check position within JSEntry rather
  // than just assuming the frame is unreadable.
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  CHECK(!unwound);
  // The register state should not change when unwinding fails.
  CHECK_EQ(reinterpret_cast<void*>(stack + 9), register_state.fp);
  CHECK_EQ(reinterpret_cast<void*>(stack + 5), register_state.sp);
  CHECK_EQ(code + 16, register_state.pc);
}

TEST(Unwind_OneJSFrame_Success) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  UnwindState unwind_state = isolate->GetUnwindState();
  RegisterState register_state;

  // Use a fake code range so that we can initialize it to 0s.
  const size_t code_length = 40;
  uintptr_t code[code_length] = {0};
  unwind_state.code_range.start = code;
  unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t);

  // Our fake stack has two frames - one C++ frame and one JS frame (on top).
  // The stack grows from high addresses to low addresses.
  uintptr_t stack[10];
  void* stack_base = stack + arraysize(stack);
  stack[0] = 101;
  stack[1] = 111;
  stack[2] = 121;
  stack[3] = 131;
  stack[4] = 141;
  stack[5] = reinterpret_cast<uintptr_t>(stack + 9);  // saved FP (rbp).
276
  StorePc(stack, 6, 100);  // Return address into C++ code.
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
  stack[7] = 303;  // The SP points here in the caller's frame.
  stack[8] = 404;
  stack[9] = 505;

  register_state.sp = stack;
  register_state.fp = stack + 5;

  // Put the current PC inside of the code range so it looks valid.
  register_state.pc = code + 30;

  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                                 stack_base);

  CHECK(unwound);
  CHECK_EQ(reinterpret_cast<void*>(stack + 9), register_state.fp);
  CHECK_EQ(reinterpret_cast<void*>(stack + 7), register_state.sp);
  CHECK_EQ(reinterpret_cast<void*>(100), register_state.pc);
}

// Creates a fake stack with two JS frames on top of a C++ frame and checks that
// the unwinder correctly unwinds past the JS frames and returns the C++ frame's
// details.
TEST(Unwind_TwoJSFrames_Success) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  UnwindState unwind_state = isolate->GetUnwindState();
  RegisterState register_state;

  // Use a fake code range so that we can initialize it to 0s.
  const size_t code_length = 40;
  uintptr_t code[code_length] = {0};
  unwind_state.code_range.start = code;
  unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t);

  // Our fake stack has three frames - one C++ frame and two JS frames (on top).
  // The stack grows from high addresses to low addresses.
  uintptr_t stack[10];
  void* stack_base = stack + arraysize(stack);
  stack[0] = 101;
  stack[1] = 111;
  stack[2] = reinterpret_cast<uintptr_t>(stack + 5);  // saved FP (rbp).
  // The fake return address is in the JS code range.
320
  StorePc(stack, 3, reinterpret_cast<uintptr_t>(code + 10));
321 322
  stack[4] = 141;
  stack[5] = reinterpret_cast<uintptr_t>(stack + 9);  // saved FP (rbp).
323
  StorePc(stack, 6, 100);  // Return address into C++ code.
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  stack[7] = 303;  // The SP points here in the caller's frame.
  stack[8] = 404;
  stack[9] = 505;

  register_state.sp = stack;
  register_state.fp = stack + 2;

  // Put the current PC inside of the code range so it looks valid.
  register_state.pc = code + 30;

  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                                 stack_base);

  CHECK(unwound);
  CHECK_EQ(reinterpret_cast<void*>(stack + 9), register_state.fp);
  CHECK_EQ(reinterpret_cast<void*>(stack + 7), register_state.sp);
  CHECK_EQ(reinterpret_cast<void*>(100), register_state.pc);
}

343 344 345
// If the PC is in JSEntry then the frame might not be set up correctly, meaning
// we can't unwind the stack properly.
TEST(Unwind_JSEntry_Fail) {
346 347 348 349 350 351 352
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

  UnwindState unwind_state = isolate->GetUnwindState();
  RegisterState register_state;

353
  Code js_entry = i_isolate->heap()->builtin(Builtins::kJSEntry);
354
  byte* start = reinterpret_cast<byte*>(js_entry.InstructionStart());
355 356 357
  register_state.pc = start + 10;

  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
358
                                                 fake_stack_base);
359 360 361 362 363 364 365
  CHECK(!unwound);
  // The register state should not change when unwinding fails.
  CHECK_NULL(register_state.fp);
  CHECK_NULL(register_state.sp);
  CHECK_EQ(start + 10, register_state.pc);
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379
TEST(Unwind_StackBounds_Basic) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  UnwindState unwind_state = isolate->GetUnwindState();
  RegisterState register_state;

  const size_t code_length = 10;
  uintptr_t code[code_length] = {0};
  unwind_state.code_range.start = code;
  unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t);

  uintptr_t stack[3];
  stack[0] = reinterpret_cast<uintptr_t>(stack + 2);  // saved FP (rbp).
380
  StorePc(stack, 1, 202);  // Return address into C++ code.
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  stack[2] = 303;  // The SP points here in the caller's frame.

  register_state.sp = stack;
  register_state.fp = stack;
  register_state.pc = code;

  void* wrong_stack_base = reinterpret_cast<void*>(
      reinterpret_cast<uintptr_t>(stack) - sizeof(uintptr_t));
  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                                 wrong_stack_base);
  CHECK(!unwound);

  // Correct the stack base and unwinding should succeed.
  void* correct_stack_base = stack + arraysize(stack);
  unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                            correct_stack_base);
  CHECK(unwound);
}

TEST(Unwind_StackBounds_WithUnwinding) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  UnwindState unwind_state = isolate->GetUnwindState();
  RegisterState register_state;

  // Use a fake code range so that we can initialize it to 0s.
  const size_t code_length = 40;
  uintptr_t code[code_length] = {0};
  unwind_state.code_range.start = code;
  unwind_state.code_range.length_in_bytes = code_length * sizeof(uintptr_t);

  // Our fake stack has two frames - one C++ frame and one JS frame (on top).
  // The stack grows from high addresses to low addresses.
  uintptr_t stack[11];
  void* stack_base = stack + arraysize(stack);
  stack[0] = 101;
  stack[1] = 111;
  stack[2] = 121;
  stack[3] = 131;
  stack[4] = 141;
  stack[5] = reinterpret_cast<uintptr_t>(stack + 9);  // saved FP (rbp).
423
  StorePc(stack, 6, reinterpret_cast<uintptr_t>(code + 20));  // JS code.
424 425 426 427
  stack[7] = 303;  // The SP points here in the caller's frame.
  stack[8] = 404;
  stack[9] = reinterpret_cast<uintptr_t>(stack) +
             (12 * sizeof(uintptr_t));                 // saved FP (OOB).
428
  StorePc(stack, 10, reinterpret_cast<uintptr_t>(code + 20));  // JS code.
429 430 431 432 433 434 435 436 437 438 439 440

  register_state.sp = stack;
  register_state.fp = stack + 5;

  // Put the current PC inside of the code range so it looks valid.
  register_state.pc = code + 30;

  // Unwind will fail because stack[9] FP points outside of the stack.
  bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                                 stack_base);
  CHECK(!unwound);

441 442 443
  // Change the return address so that it is not in range. We will not range
  // check the stack[9] FP value because we have finished unwinding and the
  // contents of rbp does not necessarily have to be the FP in this case.
444
  StorePc(stack, 10, 202);
445 446
  unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state, &register_state,
                                            stack_base);
447
  CHECK(unwound);
448 449
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
TEST(PCIsInV8_BadState_Fail) {
  UnwindState unwind_state;
  void* pc = nullptr;

  CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc));
}

TEST(PCIsInV8_ValidStateNullPC_Fail) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  UnwindState unwind_state = isolate->GetUnwindState();
  void* pc = nullptr;

  CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc));
}

void TestRangeBoundaries(const UnwindState& unwind_state, byte* range_start,
                         size_t range_length) {
  void* pc = range_start - 1;
  CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc));
  pc = range_start;
  CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc));
  pc = range_start + 1;
  CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc));
  pc = range_start + range_length - 1;
  CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc));
  pc = range_start + range_length;
  CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc));
  pc = range_start + range_length + 1;
  CHECK(!v8::Unwinder::PCIsInV8(unwind_state, pc));
}

TEST(PCIsInV8_InCodeOrEmbeddedRange) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();

  UnwindState unwind_state = isolate->GetUnwindState();

  byte* code_range_start = const_cast<byte*>(
      reinterpret_cast<const byte*>(unwind_state.code_range.start));
  size_t code_range_length = unwind_state.code_range.length_in_bytes;
  TestRangeBoundaries(unwind_state, code_range_start, code_range_length);

  byte* embedded_range_start = const_cast<byte*>(
      reinterpret_cast<const byte*>(unwind_state.embedded_code_range.start));
  size_t embedded_range_length =
      unwind_state.embedded_code_range.length_in_bytes;
  TestRangeBoundaries(unwind_state, embedded_range_start,
                      embedded_range_length);
}

502 503
// PCIsInV8 doesn't check if the PC is in JSEntry directly. It's assumed that
// the CodeRange or EmbeddedCodeRange contain JSEntry.
504
TEST(PCIsInV8_InJSEntryRange) {
505 506 507 508 509 510
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);

  UnwindState unwind_state = isolate->GetUnwindState();

511
  Code js_entry = i_isolate->heap()->builtin(Builtins::kJSEntry);
512 513
  byte* start = reinterpret_cast<byte*>(js_entry.InstructionStart());
  size_t length = js_entry.InstructionSize();
514 515 516 517 518 519 520 521 522

  void* pc = start;
  CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc));
  pc = start + 1;
  CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc));
  pc = start + length - 1;
  CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc));
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
// Large code objects can be allocated in large object space. Check that this is
// inside the CodeRange.
TEST(PCIsInV8_LargeCodeObject) {
  FLAG_allow_natives_syntax = true;
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
  HandleScope scope(i_isolate);

  UnwindState unwind_state = isolate->GetUnwindState();

  // Create a big function that ends up in CODE_LO_SPACE.
  const int instruction_size = Page::kPageSize + 1;
  STATIC_ASSERT(instruction_size > kMaxRegularHeapObjectSize);
  std::unique_ptr<byte[]> instructions(new byte[instruction_size]);

  CodeDesc desc;
  desc.buffer = instructions.get();
  desc.buffer_size = instruction_size;
  desc.instr_size = instruction_size;
  desc.reloc_size = 0;
  desc.constant_pool_size = 0;
  desc.unwinding_info = nullptr;
  desc.unwinding_info_size = 0;
  desc.origin = nullptr;
  Handle<Code> foo_code =
549
      Factory::CodeBuilder(i_isolate, desc, Code::WASM_FUNCTION).Build();
550 551 552 553 554 555 556 557

  CHECK(i_isolate->heap()->InSpace(*foo_code, CODE_LO_SPACE));
  byte* start = reinterpret_cast<byte*>(foo_code->InstructionStart());

  void* pc = start;
  CHECK(v8::Unwinder::PCIsInV8(unwind_state, pc));
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
#ifdef USE_SIMULATOR
// TODO(v8:10026): Make this also work without the simulator. The part that
// needs modifications is getting the RegisterState.
class UnwinderTestHelper {
 public:
  explicit UnwinderTestHelper(const std::string& test_function)
      : isolate_(CcTest::isolate()) {
    CHECK(!instance_);
    instance_ = this;
    v8::HandleScope scope(isolate_);
    v8::Local<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate_);
    global->Set(v8_str("TryUnwind"),
                v8::FunctionTemplate::New(isolate_, TryUnwind));
    LocalContext env(isolate_, nullptr, global);
    CompileRun(v8_str(test_function.c_str()));
  }

  ~UnwinderTestHelper() { instance_ = nullptr; }

 private:
  static void TryUnwind(const v8::FunctionCallbackInfo<v8::Value>& args) {
    instance_->DoTryUnwind();
  }

  void DoTryUnwind() {
    // Set up RegisterState.
    v8::RegisterState register_state;
    SimulatorHelper simulator_helper;
    if (!simulator_helper.Init(isolate_)) return;
    simulator_helper.FillRegisters(&register_state);
    // At this point, the PC will point to a Redirection object, which is not
    // in V8 as far as the unwinder is concerned. To make this work, point to
    // the return address, which is in V8, instead.
    register_state.pc = register_state.lr;

    UnwindState unwind_state = isolate_->GetUnwindState();
    void* stack_base = reinterpret_cast<void*>(0xffffffffffffffffL);
    bool unwound = v8::Unwinder::TryUnwindV8Frames(unwind_state,
                                                   &register_state, stack_base);
    // Check that we have successfully unwound past js_entry_sp.
    CHECK(unwound);
    CHECK_GT(register_state.sp,
             reinterpret_cast<void*>(CcTest::i_isolate()->js_entry_sp()));
  }

  v8::Isolate* isolate_;

  static UnwinderTestHelper* instance_;
};

UnwinderTestHelper* UnwinderTestHelper::instance_;

TEST(Unwind_TwoNestedFunctions) {
  i::FLAG_allow_natives_syntax = true;
  const char* test_script =
      "function test_unwinder_api_inner() {"
      "  TryUnwind();"
      "  return 0;"
      "}"
      "function test_unwinder_api_outer() {"
      "  return test_unwinder_api_inner();"
      "}"
      "%NeverOptimizeFunction(test_unwinder_api_inner);"
      "%NeverOptimizeFunction(test_unwinder_api_outer);"
      "test_unwinder_api_outer();";

  UnwinderTestHelper helper(test_script);
}
#endif

628 629 630 631
#if __clang__
#pragma clang diagnostic pop
#endif

632 633 634
}  // namespace test_unwinder
}  // namespace internal
}  // namespace v8