code-stubs-arm.h 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_ARM_CODE_STUBS_ARM_H_
#define V8_ARM_CODE_STUBS_ARM_H_

#include "ic-inl.h"

namespace v8 {
namespace internal {


// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
 public:
  explicit TranscendentalCacheStub(TranscendentalCache::Type type)
      : type_(type) {}
  void Generate(MacroAssembler* masm);
 private:
  TranscendentalCache::Type type_;
  Major MajorKey() { return TranscendentalCache; }
  int MinorKey() { return type_; }
  Runtime::FunctionId RuntimeFunction();
};


class ToBooleanStub: public CodeStub {
 public:
  explicit ToBooleanStub(Register tos) : tos_(tos) { }

  void Generate(MacroAssembler* masm);

 private:
  Register tos_;
  Major MajorKey() { return ToBoolean; }
  int MinorKey() { return tos_.code(); }
};


class GenericBinaryOpStub : public CodeStub {
 public:
67 68
  static const int kUnknownIntValue = -1;

69 70 71 72
  GenericBinaryOpStub(Token::Value op,
                      OverwriteMode mode,
                      Register lhs,
                      Register rhs,
73
                      int constant_rhs = kUnknownIntValue)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
      : op_(op),
        mode_(mode),
        lhs_(lhs),
        rhs_(rhs),
        constant_rhs_(constant_rhs),
        specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op, constant_rhs)),
        runtime_operands_type_(BinaryOpIC::DEFAULT),
        name_(NULL) { }

  GenericBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info)
      : op_(OpBits::decode(key)),
        mode_(ModeBits::decode(key)),
        lhs_(LhsRegister(RegisterBits::decode(key))),
        rhs_(RhsRegister(RegisterBits::decode(key))),
        constant_rhs_(KnownBitsForMinorKey(KnownIntBits::decode(key))),
        specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op_, constant_rhs_)),
        runtime_operands_type_(type_info),
        name_(NULL) { }

 private:
  Token::Value op_;
  OverwriteMode mode_;
  Register lhs_;
  Register rhs_;
  int constant_rhs_;
  bool specialized_on_rhs_;
  BinaryOpIC::TypeInfo runtime_operands_type_;
  char* name_;

  static const int kMaxKnownRhs = 0x40000000;
  static const int kKnownRhsKeyBits = 6;

  // Minor key encoding in 17 bits.
  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
  class OpBits: public BitField<Token::Value, 2, 6> {};
  class TypeInfoBits: public BitField<int, 8, 2> {};
  class RegisterBits: public BitField<bool, 10, 1> {};
  class KnownIntBits: public BitField<int, 11, kKnownRhsKeyBits> {};

  Major MajorKey() { return GenericBinaryOp; }
  int MinorKey() {
    ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
           (lhs_.is(r1) && rhs_.is(r0)));
    // Encode the parameters in a unique 18 bit value.
    return OpBits::encode(op_)
           | ModeBits::encode(mode_)
           | KnownIntBits::encode(MinorKeyForKnownInt())
           | TypeInfoBits::encode(runtime_operands_type_)
           | RegisterBits::encode(lhs_.is(r0));
  }

  void Generate(MacroAssembler* masm);
  void HandleNonSmiBitwiseOp(MacroAssembler* masm,
                             Register lhs,
                             Register rhs);
  void HandleBinaryOpSlowCases(MacroAssembler* masm,
                               Label* not_smi,
                               Register lhs,
                               Register rhs,
                               const Builtins::JavaScript& builtin);
  void GenerateTypeTransition(MacroAssembler* masm);

  static bool RhsIsOneWeWantToOptimizeFor(Token::Value op, int constant_rhs) {
137
    if (constant_rhs == kUnknownIntValue) return false;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    if (op == Token::DIV) return constant_rhs >= 2 && constant_rhs <= 3;
    if (op == Token::MOD) {
      if (constant_rhs <= 1) return false;
      if (constant_rhs <= 10) return true;
      if (constant_rhs <= kMaxKnownRhs && IsPowerOf2(constant_rhs)) return true;
      return false;
    }
    return false;
  }

  int MinorKeyForKnownInt() {
    if (!specialized_on_rhs_) return 0;
    if (constant_rhs_ <= 10) return constant_rhs_ + 1;
    ASSERT(IsPowerOf2(constant_rhs_));
    int key = 12;
    int d = constant_rhs_;
    while ((d & 1) == 0) {
      key++;
      d >>= 1;
    }
    ASSERT(key >= 0 && key < (1 << kKnownRhsKeyBits));
    return key;
  }

  int KnownBitsForMinorKey(int key) {
    if (!key) return 0;
    if (key <= 11) return key - 1;
    int d = 1;
    while (key != 12) {
      key--;
      d <<= 1;
    }
    return d;
  }

  Register LhsRegister(bool lhs_is_r0) {
    return lhs_is_r0 ? r0 : r1;
  }

  Register RhsRegister(bool lhs_is_r0) {
    return lhs_is_r0 ? r1 : r0;
  }

  bool ShouldGenerateSmiCode() {
    return ((op_ != Token::DIV && op_ != Token::MOD) || specialized_on_rhs_) &&
        runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
        runtime_operands_type_ != BinaryOpIC::STRINGS;
  }

  bool ShouldGenerateFPCode() {
    return runtime_operands_type_ != BinaryOpIC::STRINGS;
  }

  virtual int GetCodeKind() { return Code::BINARY_OP_IC; }

  virtual InlineCacheState GetICState() {
    return BinaryOpIC::ToState(runtime_operands_type_);
  }

  const char* GetName();

#ifdef DEBUG
  void Print() {
    if (!specialized_on_rhs_) {
      PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_));
    } else {
      PrintF("GenericBinaryOpStub (%s by %d)\n",
             Token::String(op_),
             constant_rhs_);
    }
  }
#endif
};


// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
  NO_STRING_ADD_FLAGS = 0,
  NO_STRING_CHECK_IN_STUB = 1 << 0  // Omit string check in stub.
};


class StringAddStub: public CodeStub {
 public:
  explicit StringAddStub(StringAddFlags flags) {
    string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0);
  }

 private:
  Major MajorKey() { return StringAdd; }
  int MinorKey() { return string_check_ ? 0 : 1; }

  void Generate(MacroAssembler* masm);

  // Should the stub check whether arguments are strings?
  bool string_check_;
};


class SubStringStub: public CodeStub {
 public:
  SubStringStub() {}

 private:
  Major MajorKey() { return SubString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};



class StringCompareStub: public CodeStub {
 public:
  StringCompareStub() { }

  // Compare two flat ASCII strings and returns result in r0.
  // Does not use the stack.
  static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
                                              Register left,
                                              Register right,
                                              Register scratch1,
                                              Register scratch2,
                                              Register scratch3,
                                              Register scratch4);

 private:
  Major MajorKey() { return StringCompare; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};


// This stub can do a fast mod operation without using fp.
// It is tail called from the GenericBinaryOpStub and it always
// returns an answer.  It never causes GC so it doesn't need a real frame.
//
// The inputs are always positive Smis.  This is never called
// where the denominator is a power of 2.  We handle that separately.
//
// If we consider the denominator as an odd number multiplied by a power of 2,
// then:
// * The exponent (power of 2) is in the shift_distance register.
// * The odd number is in the odd_number register.  It is always in the range
//   of 3 to 25.
// * The bits from the numerator that are to be copied to the answer (there are
//   shift_distance of them) are in the mask_bits register.
// * The other bits of the numerator have been shifted down and are in the lhs
//   register.
class IntegerModStub : public CodeStub {
 public:
  IntegerModStub(Register result,
                 Register shift_distance,
                 Register odd_number,
                 Register mask_bits,
                 Register lhs,
                 Register scratch)
      : result_(result),
        shift_distance_(shift_distance),
        odd_number_(odd_number),
        mask_bits_(mask_bits),
        lhs_(lhs),
        scratch_(scratch) {
    // We don't code these in the minor key, so they should always be the same.
    // We don't really want to fix that since this stub is rather large and we
    // don't want many copies of it.
    ASSERT(shift_distance_.is(r9));
    ASSERT(odd_number_.is(r4));
    ASSERT(mask_bits_.is(r3));
    ASSERT(scratch_.is(r5));
  }

 private:
  Register result_;
  Register shift_distance_;
  Register odd_number_;
  Register mask_bits_;
  Register lhs_;
  Register scratch_;

  // Minor key encoding in 16 bits.
  class ResultRegisterBits: public BitField<int, 0, 4> {};
  class LhsRegisterBits: public BitField<int, 4, 4> {};

  Major MajorKey() { return IntegerMod; }
  int MinorKey() {
    // Encode the parameters in a unique 16 bit value.
    return ResultRegisterBits::encode(result_.code())
           | LhsRegisterBits::encode(lhs_.code());
  }

  void Generate(MacroAssembler* masm);

  const char* GetName() { return "IntegerModStub"; }

  // Utility functions.
  void DigitSum(MacroAssembler* masm,
                Register lhs,
                int mask,
                int shift,
                Label* entry);
  void DigitSum(MacroAssembler* masm,
                Register lhs,
                Register scratch,
                int mask,
                int shift1,
                int shift2,
                Label* entry);
  void ModGetInRangeBySubtraction(MacroAssembler* masm,
                                  Register lhs,
                                  int shift,
                                  int rhs);
  void ModReduce(MacroAssembler* masm,
                 Register lhs,
                 int max,
                 int denominator);
  void ModAnswer(MacroAssembler* masm,
                 Register result,
                 Register shift_distance,
                 Register mask_bits,
                 Register sum_of_digits);


#ifdef DEBUG
  void Print() { PrintF("IntegerModStub\n"); }
#endif
};


// This stub can convert a signed int32 to a heap number (double).  It does
// not work for int32s that are in Smi range!  No GC occurs during this stub
// so you don't have to set up the frame.
class WriteInt32ToHeapNumberStub : public CodeStub {
 public:
  WriteInt32ToHeapNumberStub(Register the_int,
                             Register the_heap_number,
                             Register scratch)
      : the_int_(the_int),
        the_heap_number_(the_heap_number),
        scratch_(scratch) { }

 private:
  Register the_int_;
  Register the_heap_number_;
  Register scratch_;

  // Minor key encoding in 16 bits.
  class IntRegisterBits: public BitField<int, 0, 4> {};
  class HeapNumberRegisterBits: public BitField<int, 4, 4> {};
  class ScratchRegisterBits: public BitField<int, 8, 4> {};

  Major MajorKey() { return WriteInt32ToHeapNumber; }
  int MinorKey() {
    // Encode the parameters in a unique 16 bit value.
    return IntRegisterBits::encode(the_int_.code())
           | HeapNumberRegisterBits::encode(the_heap_number_.code())
           | ScratchRegisterBits::encode(scratch_.code());
  }

  void Generate(MacroAssembler* masm);

  const char* GetName() { return "WriteInt32ToHeapNumberStub"; }

#ifdef DEBUG
  void Print() { PrintF("WriteInt32ToHeapNumberStub\n"); }
#endif
};


class NumberToStringStub: public CodeStub {
 public:
  NumberToStringStub() { }

  // Generate code to do a lookup in the number string cache. If the number in
  // the register object is found in the cache the generated code falls through
  // with the result in the result register. The object and the result register
  // can be the same. If the number is not found in the cache the code jumps to
  // the label not_found with only the content of register object unchanged.
  static void GenerateLookupNumberStringCache(MacroAssembler* masm,
                                              Register object,
                                              Register result,
                                              Register scratch1,
                                              Register scratch2,
                                              Register scratch3,
                                              bool object_is_smi,
                                              Label* not_found);

 private:
  Major MajorKey() { return NumberToString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);

  const char* GetName() { return "NumberToStringStub"; }
};


class RecordWriteStub : public CodeStub {
 public:
  RecordWriteStub(Register object, Register offset, Register scratch)
      : object_(object), offset_(offset), scratch_(scratch) { }

  void Generate(MacroAssembler* masm);

 private:
  Register object_;
  Register offset_;
  Register scratch_;

  // Minor key encoding in 12 bits. 4 bits for each of the three
  // registers (object, offset and scratch) OOOOAAAASSSS.
  class ScratchBits: public BitField<uint32_t, 0, 4> {};
  class OffsetBits: public BitField<uint32_t, 4, 4> {};
  class ObjectBits: public BitField<uint32_t, 8, 4> {};

  Major MajorKey() { return RecordWrite; }

  int MinorKey() {
    // Encode the registers.
    return ObjectBits::encode(object_.code()) |
           OffsetBits::encode(offset_.code()) |
           ScratchBits::encode(scratch_.code());
  }

#ifdef DEBUG
  void Print() {
    PrintF("RecordWriteStub (object reg %d), (offset reg %d),"
           " (scratch reg %d)\n",
           object_.code(), offset_.code(), scratch_.code());
  }
#endif
};


473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
// Enter C code from generated RegExp code in a way that allows
// the C code to fix the return address in case of a GC.
// Currently only needed on ARM.
class RegExpCEntryStub: public CodeStub {
 public:
  RegExpCEntryStub() {}
  virtual ~RegExpCEntryStub() {}
  void Generate(MacroAssembler* masm);

 private:
  Major MajorKey() { return RegExpCEntry; }
  int MinorKey() { return 0; }
  const char* GetName() { return "RegExpCEntryStub"; }
};


489 490 491
} }  // namespace v8::internal

#endif  // V8_ARM_CODE_STUBS_ARM_H_