memory-lowering.cc 20.6 KB
Newer Older
1 2 3 4 5 6 7
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/memory-lowering.h"

#include "src/codegen/interface-descriptors.h"
8
#include "src/common/external-pointer.h"
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "src/compiler/js-graph.h"
#include "src/compiler/linkage.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/compiler/simplified-operator.h"
#include "src/roots/roots-inl.h"

namespace v8 {
namespace internal {
namespace compiler {

// An allocation group represents a set of allocations that have been folded
// together.
class MemoryLowering::AllocationGroup final : public ZoneObject {
 public:
  AllocationGroup(Node* node, AllocationType allocation, Zone* zone);
  AllocationGroup(Node* node, AllocationType allocation, Node* size,
                  Zone* zone);
  ~AllocationGroup() = default;

  void Add(Node* object);
  bool Contains(Node* object) const;
  bool IsYoungGenerationAllocation() const {
    return allocation() == AllocationType::kYoung;
  }

  AllocationType allocation() const { return allocation_; }
  Node* size() const { return size_; }

 private:
  ZoneSet<NodeId> node_ids_;
  AllocationType const allocation_;
  Node* const size_;

  DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationGroup);
};

MemoryLowering::MemoryLowering(JSGraph* jsgraph, Zone* zone,
48
                               JSGraphAssembler* graph_assembler,
49 50 51 52
                               PoisoningMitigationLevel poisoning_level,
                               AllocationFolding allocation_folding,
                               WriteBarrierAssertFailedCallback callback,
                               const char* function_debug_name)
53
    : isolate_(jsgraph->isolate()),
54
      zone_(zone),
55
      graph_(jsgraph->graph()),
56 57 58
      common_(jsgraph->common()),
      machine_(jsgraph->machine()),
      graph_assembler_(graph_assembler),
59 60 61 62 63
      allocation_folding_(allocation_folding),
      poisoning_level_(poisoning_level),
      write_barrier_assert_failed_(callback),
      function_debug_name_(function_debug_name) {}

64 65
Zone* MemoryLowering::graph_zone() const { return graph()->zone(); }

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
Reduction MemoryLowering::Reduce(Node* node) {
  switch (node->opcode()) {
    case IrOpcode::kAllocate:
      // Allocate nodes were purged from the graph in effect-control
      // linearization.
      UNREACHABLE();
    case IrOpcode::kAllocateRaw:
      return ReduceAllocateRaw(node);
    case IrOpcode::kLoadFromObject:
      return ReduceLoadFromObject(node);
    case IrOpcode::kLoadElement:
      return ReduceLoadElement(node);
    case IrOpcode::kLoadField:
      return ReduceLoadField(node);
    case IrOpcode::kStoreToObject:
      return ReduceStoreToObject(node);
    case IrOpcode::kStoreElement:
      return ReduceStoreElement(node);
    case IrOpcode::kStoreField:
      return ReduceStoreField(node);
    case IrOpcode::kStore:
      return ReduceStore(node);
    default:
      return NoChange();
  }
}

#define __ gasm()->

Reduction MemoryLowering::ReduceAllocateRaw(
    Node* node, AllocationType allocation_type,
    AllowLargeObjects allow_large_objects, AllocationState const** state_ptr) {
  DCHECK_EQ(IrOpcode::kAllocateRaw, node->opcode());
  DCHECK_IMPLIES(allocation_folding_ == AllocationFolding::kDoAllocationFolding,
                 state_ptr != nullptr);
  Node* value;
  Node* size = node->InputAt(0);
  Node* effect = node->InputAt(1);
  Node* control = node->InputAt(2);

106
  gasm()->InitializeEffectControl(effect, control);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

  Node* allocate_builtin;
  if (allocation_type == AllocationType::kYoung) {
    if (allow_large_objects == AllowLargeObjects::kTrue) {
      allocate_builtin = __ AllocateInYoungGenerationStubConstant();
    } else {
      allocate_builtin = __ AllocateRegularInYoungGenerationStubConstant();
    }
  } else {
    if (allow_large_objects == AllowLargeObjects::kTrue) {
      allocate_builtin = __ AllocateInOldGenerationStubConstant();
    } else {
      allocate_builtin = __ AllocateRegularInOldGenerationStubConstant();
    }
  }

  // Determine the top/limit addresses.
  Node* top_address = __ ExternalConstant(
      allocation_type == AllocationType::kYoung
          ? ExternalReference::new_space_allocation_top_address(isolate())
          : ExternalReference::old_space_allocation_top_address(isolate()));
  Node* limit_address = __ ExternalConstant(
      allocation_type == AllocationType::kYoung
          ? ExternalReference::new_space_allocation_limit_address(isolate())
          : ExternalReference::old_space_allocation_limit_address(isolate()));

  // Check if we can fold this allocation into a previous allocation represented
  // by the incoming {state}.
  IntPtrMatcher m(size);
  if (m.IsInRange(0, kMaxRegularHeapObjectSize) && FLAG_inline_new &&
      allocation_folding_ == AllocationFolding::kDoAllocationFolding) {
    intptr_t const object_size = m.Value();
    AllocationState const* state = *state_ptr;
    if (state->size() <= kMaxRegularHeapObjectSize - object_size &&
        state->group()->allocation() == allocation_type) {
      // We can fold this Allocate {node} into the allocation {group}
      // represented by the given {state}. Compute the upper bound for
      // the new {state}.
      intptr_t const state_size = state->size() + object_size;

      // Update the reservation check to the actual maximum upper bound.
      AllocationGroup* const group = state->group();
      if (machine()->Is64()) {
        if (OpParameter<int64_t>(group->size()->op()) < state_size) {
          NodeProperties::ChangeOp(group->size(),
                                   common()->Int64Constant(state_size));
        }
      } else {
        if (OpParameter<int32_t>(group->size()->op()) < state_size) {
          NodeProperties::ChangeOp(
              group->size(),
              common()->Int32Constant(static_cast<int32_t>(state_size)));
        }
      }

      // Update the allocation top with the new object allocation.
      // TODO(bmeurer): Defer writing back top as much as possible.
      Node* top = __ IntAdd(state->top(), size);
      __ Store(StoreRepresentation(MachineType::PointerRepresentation(),
                                   kNoWriteBarrier),
               top_address, __ IntPtrConstant(0), top);

      // Compute the effective inner allocated address.
      value = __ BitcastWordToTagged(
          __ IntAdd(state->top(), __ IntPtrConstant(kHeapObjectTag)));
172 173
      effect = gasm()->effect();
      control = gasm()->control();
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

      // Extend the allocation {group}.
      group->Add(value);
      *state_ptr =
          AllocationState::Open(group, state_size, top, effect, zone());
    } else {
      auto call_runtime = __ MakeDeferredLabel();
      auto done = __ MakeLabel(MachineType::PointerRepresentation());

      // Setup a mutable reservation size node; will be patched as we fold
      // additional allocations into this new group.
      Node* size = __ UniqueIntPtrConstant(object_size);

      // Load allocation top and limit.
      Node* top =
          __ Load(MachineType::Pointer(), top_address, __ IntPtrConstant(0));
      Node* limit =
          __ Load(MachineType::Pointer(), limit_address, __ IntPtrConstant(0));

      // Check if we need to collect garbage before we can start bump pointer
      // allocation (always done for folded allocations).
      Node* check = __ UintLessThan(__ IntAdd(top, size), limit);

      __ GotoIfNot(check, &call_runtime);
      __ Goto(&done, top);

      __ Bind(&call_runtime);
      {
        if (!allocate_operator_.is_set()) {
          auto descriptor = AllocateDescriptor{};
          auto call_descriptor = Linkage::GetStubCallDescriptor(
205
              graph_zone(), descriptor, descriptor.GetStackParameterCount(),
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
              CallDescriptor::kCanUseRoots, Operator::kNoThrow);
          allocate_operator_.set(common()->Call(call_descriptor));
        }
        Node* vfalse = __ BitcastTaggedToWord(
            __ Call(allocate_operator_.get(), allocate_builtin, size));
        vfalse = __ IntSub(vfalse, __ IntPtrConstant(kHeapObjectTag));
        __ Goto(&done, vfalse);
      }

      __ Bind(&done);

      // Compute the new top and write it back.
      top = __ IntAdd(done.PhiAt(0), __ IntPtrConstant(object_size));
      __ Store(StoreRepresentation(MachineType::PointerRepresentation(),
                                   kNoWriteBarrier),
               top_address, __ IntPtrConstant(0), top);

      // Compute the initial object address.
      value = __ BitcastWordToTagged(
          __ IntAdd(done.PhiAt(0), __ IntPtrConstant(kHeapObjectTag)));
226 227
      effect = gasm()->effect();
      control = gasm()->control();
228 229 230

      // Start a new allocation group.
      AllocationGroup* group =
231
          zone()->New<AllocationGroup>(value, allocation_type, size, zone());
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      *state_ptr =
          AllocationState::Open(group, object_size, top, effect, zone());
    }
  } else {
    auto call_runtime = __ MakeDeferredLabel();
    auto done = __ MakeLabel(MachineRepresentation::kTaggedPointer);

    // Load allocation top and limit.
    Node* top =
        __ Load(MachineType::Pointer(), top_address, __ IntPtrConstant(0));
    Node* limit =
        __ Load(MachineType::Pointer(), limit_address, __ IntPtrConstant(0));

    // Compute the new top.
    Node* new_top = __ IntAdd(top, size);

    // Check if we can do bump pointer allocation here.
    Node* check = __ UintLessThan(new_top, limit);
    __ GotoIfNot(check, &call_runtime);
    if (allow_large_objects == AllowLargeObjects::kTrue) {
      __ GotoIfNot(
          __ UintLessThan(size, __ IntPtrConstant(kMaxRegularHeapObjectSize)),
          &call_runtime);
    }
    __ Store(StoreRepresentation(MachineType::PointerRepresentation(),
                                 kNoWriteBarrier),
             top_address, __ IntPtrConstant(0), new_top);
    __ Goto(&done, __ BitcastWordToTagged(
                       __ IntAdd(top, __ IntPtrConstant(kHeapObjectTag))));

    __ Bind(&call_runtime);
    if (!allocate_operator_.is_set()) {
      auto descriptor = AllocateDescriptor{};
      auto call_descriptor = Linkage::GetStubCallDescriptor(
266
          graph_zone(), descriptor, descriptor.GetStackParameterCount(),
267 268 269 270 271 272 273
          CallDescriptor::kCanUseRoots, Operator::kNoThrow);
      allocate_operator_.set(common()->Call(call_descriptor));
    }
    __ Goto(&done, __ Call(allocate_operator_.get(), allocate_builtin, size));

    __ Bind(&done);
    value = done.PhiAt(0);
274 275
    effect = gasm()->effect();
    control = gasm()->control();
276 277 278 279

    if (state_ptr) {
      // Create an unfoldable allocation group.
      AllocationGroup* group =
280
          zone()->New<AllocationGroup>(value, allocation_type, zone());
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
      *state_ptr = AllocationState::Closed(group, effect, zone());
    }
  }

  return Replace(value);
}

Reduction MemoryLowering::ReduceLoadFromObject(Node* node) {
  DCHECK_EQ(IrOpcode::kLoadFromObject, node->opcode());
  ObjectAccess const& access = ObjectAccessOf(node->op());
  NodeProperties::ChangeOp(node, machine()->Load(access.machine_type));
  return Changed(node);
}

Reduction MemoryLowering::ReduceLoadElement(Node* node) {
  DCHECK_EQ(IrOpcode::kLoadElement, node->opcode());
  ElementAccess const& access = ElementAccessOf(node->op());
  Node* index = node->InputAt(1);
  node->ReplaceInput(1, ComputeIndex(access, index));
  MachineType type = access.machine_type;
  if (NeedsPoisoning(access.load_sensitivity)) {
    NodeProperties::ChangeOp(node, machine()->PoisonedLoad(type));
  } else {
    NodeProperties::ChangeOp(node, machine()->Load(type));
  }
  return Changed(node);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
Node* MemoryLowering::DecodeExternalPointer(Node* node) {
  DCHECK(V8_HEAP_SANDBOX_BOOL);
  DCHECK(node->opcode() == IrOpcode::kLoad ||
         node->opcode() == IrOpcode::kPoisonedLoad);
  Node* effect = NodeProperties::GetEffectInput(node);
  Node* control = NodeProperties::GetControlInput(node);
  __ InitializeEffectControl(effect, control);

  // Clone the load node and put it here.
  // TODO(turbofan): consider adding GraphAssembler::Clone() suitable for
  // cloning nodes from arbitrary locaions in effect/control chains.
  Node* node_copy = __ AddNode(graph()->CloneNode(node));

  // Uncomment this to generate a breakpoint for debugging purposes.
  // __ DebugBreak();

  // Decode loaded enternal pointer.
  STATIC_ASSERT(kExternalPointerSize == kSystemPointerSize);
  Node* salt = __ IntPtrConstant(kExternalPointerSalt);
  Node* decoded_ptr = __ WordXor(node_copy, salt);
  return decoded_ptr;
}

332 333 334
Reduction MemoryLowering::ReduceLoadField(Node* node) {
  DCHECK_EQ(IrOpcode::kLoadField, node->opcode());
  FieldAccess const& access = FieldAccessOf(node->op());
335 336
  Node* offset = __ IntPtrConstant(access.offset - access.tag());
  node->InsertInput(graph_zone(), 1, offset);
337 338 339 340 341 342
  MachineType type = access.machine_type;
  if (NeedsPoisoning(access.load_sensitivity)) {
    NodeProperties::ChangeOp(node, machine()->PoisonedLoad(type));
  } else {
    NodeProperties::ChangeOp(node, machine()->Load(type));
  }
343 344 345 346 347 348 349
  if (V8_HEAP_SANDBOX_BOOL &&
      access.type.Is(Type::SandboxedExternalPointer())) {
    node = DecodeExternalPointer(node);
    return Replace(node);
  } else {
    DCHECK(!access.type.Is(Type::SandboxedExternalPointer()));
  }
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
  return Changed(node);
}

Reduction MemoryLowering::ReduceStoreToObject(Node* node,
                                              AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kStoreToObject, node->opcode());
  ObjectAccess const& access = ObjectAccessOf(node->op());
  Node* object = node->InputAt(0);
  Node* value = node->InputAt(2);
  WriteBarrierKind write_barrier_kind = ComputeWriteBarrierKind(
      node, object, value, state, access.write_barrier_kind);
  NodeProperties::ChangeOp(
      node, machine()->Store(StoreRepresentation(
                access.machine_type.representation(), write_barrier_kind)));
  return Changed(node);
}

Reduction MemoryLowering::ReduceStoreElement(Node* node,
                                             AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kStoreElement, node->opcode());
  ElementAccess const& access = ElementAccessOf(node->op());
  Node* object = node->InputAt(0);
  Node* index = node->InputAt(1);
  Node* value = node->InputAt(2);
  node->ReplaceInput(1, ComputeIndex(access, index));
  WriteBarrierKind write_barrier_kind = ComputeWriteBarrierKind(
      node, object, value, state, access.write_barrier_kind);
  NodeProperties::ChangeOp(
      node, machine()->Store(StoreRepresentation(
                access.machine_type.representation(), write_barrier_kind)));
  return Changed(node);
}

Reduction MemoryLowering::ReduceStoreField(Node* node,
                                           AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kStoreField, node->opcode());
  FieldAccess const& access = FieldAccessOf(node->op());
387 388 389 390
  // External pointer must never be stored by optimized code.
  DCHECK_IMPLIES(V8_HEAP_SANDBOX_BOOL,
                 !access.type.Is(Type::ExternalPointer()) &&
                     !access.type.Is(Type::SandboxedExternalPointer()));
391 392 393 394
  Node* object = node->InputAt(0);
  Node* value = node->InputAt(1);
  WriteBarrierKind write_barrier_kind = ComputeWriteBarrierKind(
      node, object, value, state, access.write_barrier_kind);
395 396
  Node* offset = __ IntPtrConstant(access.offset - access.tag());
  node->InsertInput(graph_zone(), 1, offset);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
  NodeProperties::ChangeOp(
      node, machine()->Store(StoreRepresentation(
                access.machine_type.representation(), write_barrier_kind)));
  return Changed(node);
}

Reduction MemoryLowering::ReduceStore(Node* node,
                                      AllocationState const* state) {
  DCHECK_EQ(IrOpcode::kStore, node->opcode());
  StoreRepresentation representation = StoreRepresentationOf(node->op());
  Node* object = node->InputAt(0);
  Node* value = node->InputAt(2);
  WriteBarrierKind write_barrier_kind = ComputeWriteBarrierKind(
      node, object, value, state, representation.write_barrier_kind());
  if (write_barrier_kind != representation.write_barrier_kind()) {
    NodeProperties::ChangeOp(
        node, machine()->Store(StoreRepresentation(
                  representation.representation(), write_barrier_kind)));
    return Changed(node);
  }
  return NoChange();
}

Node* MemoryLowering::ComputeIndex(ElementAccess const& access, Node* index) {
  int const element_size_shift =
      ElementSizeLog2Of(access.machine_type.representation());
  if (element_size_shift) {
    index = __ WordShl(index, __ IntPtrConstant(element_size_shift));
  }
  int const fixed_offset = access.header_size - access.tag();
  if (fixed_offset) {
    index = __ IntAdd(index, __ IntPtrConstant(fixed_offset));
  }
  return index;
}

#undef __

namespace {

bool ValueNeedsWriteBarrier(Node* value, Isolate* isolate) {
  while (true) {
    switch (value->opcode()) {
      case IrOpcode::kBitcastWordToTaggedSigned:
        return false;
      case IrOpcode::kHeapConstant: {
        RootIndex root_index;
        if (isolate->roots_table().IsRootHandle(HeapConstantOf(value->op()),
                                                &root_index) &&
            RootsTable::IsImmortalImmovable(root_index)) {
          return false;
        }
        break;
      }
      default:
        break;
    }
    return true;
  }
}

}  // namespace

Reduction MemoryLowering::ReduceAllocateRaw(Node* node) {
  DCHECK_EQ(IrOpcode::kAllocateRaw, node->opcode());
  const AllocateParameters& allocation = AllocateParametersOf(node->op());
  return ReduceAllocateRaw(node, allocation.allocation_type(),
                           allocation.allow_large_objects(), nullptr);
}

WriteBarrierKind MemoryLowering::ComputeWriteBarrierKind(
    Node* node, Node* object, Node* value, AllocationState const* state,
    WriteBarrierKind write_barrier_kind) {
  if (state && state->IsYoungGenerationAllocation() &&
      state->group()->Contains(object)) {
    write_barrier_kind = kNoWriteBarrier;
  }
  if (!ValueNeedsWriteBarrier(value, isolate())) {
    write_barrier_kind = kNoWriteBarrier;
  }
  if (write_barrier_kind == WriteBarrierKind::kAssertNoWriteBarrier) {
    write_barrier_assert_failed_(node, object, function_debug_name_, zone());
  }
  return write_barrier_kind;
}

bool MemoryLowering::NeedsPoisoning(LoadSensitivity load_sensitivity) const {
  // Safe loads do not need poisoning.
  if (load_sensitivity == LoadSensitivity::kSafe) return false;

  switch (poisoning_level_) {
    case PoisoningMitigationLevel::kDontPoison:
      return false;
    case PoisoningMitigationLevel::kPoisonAll:
      return true;
    case PoisoningMitigationLevel::kPoisonCriticalOnly:
      return load_sensitivity == LoadSensitivity::kCritical;
  }
  UNREACHABLE();
}

MemoryLowering::AllocationGroup::AllocationGroup(Node* node,
                                                 AllocationType allocation,
                                                 Zone* zone)
    : node_ids_(zone), allocation_(allocation), size_(nullptr) {
  node_ids_.insert(node->id());
}

MemoryLowering::AllocationGroup::AllocationGroup(Node* node,
                                                 AllocationType allocation,
                                                 Node* size, Zone* zone)
    : node_ids_(zone), allocation_(allocation), size_(size) {
  node_ids_.insert(node->id());
}

void MemoryLowering::AllocationGroup::Add(Node* node) {
  node_ids_.insert(node->id());
}

bool MemoryLowering::AllocationGroup::Contains(Node* node) const {
  // Additions should stay within the same allocated object, so it's safe to
  // ignore them.
  while (node_ids_.find(node->id()) == node_ids_.end()) {
    switch (node->opcode()) {
      case IrOpcode::kBitcastTaggedToWord:
      case IrOpcode::kBitcastWordToTagged:
      case IrOpcode::kInt32Add:
      case IrOpcode::kInt64Add:
        node = NodeProperties::GetValueInput(node, 0);
        break;
      default:
        return false;
    }
  }
  return true;
}

MemoryLowering::AllocationState::AllocationState()
    : group_(nullptr),
      size_(std::numeric_limits<int>::max()),
      top_(nullptr),
      effect_(nullptr) {}

MemoryLowering::AllocationState::AllocationState(AllocationGroup* group,
                                                 Node* effect)
    : group_(group),
      size_(std::numeric_limits<int>::max()),
      top_(nullptr),
      effect_(effect) {}

MemoryLowering::AllocationState::AllocationState(AllocationGroup* group,
                                                 intptr_t size, Node* top,
                                                 Node* effect)
    : group_(group), size_(size), top_(top), effect_(effect) {}

bool MemoryLowering::AllocationState::IsYoungGenerationAllocation() const {
  return group() && group()->IsYoungGenerationAllocation();
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8