test-macro-assembler-mips.cc 46.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
29
#include <iostream>  // NOLINT(readability/streams)
30

31
#include "src/api/api-inl.h"
32
#include "src/base/utils/random-number-generator.h"
33
#include "src/codegen/assembler-inl.h"
34
#include "src/codegen/macro-assembler.h"
35
#include "src/deoptimizer/deoptimizer.h"
36
#include "src/execution/simulator.h"
37
#include "src/init/v8.h"
38
#include "src/objects/heap-number.h"
39
#include "src/objects/js-array-inl.h"
40
#include "src/objects/objects-inl.h"
41
#include "src/utils/ostreams.h"
42
#include "test/cctest/cctest.h"
43
#include "test/common/assembler-tester.h"
44

45 46
namespace v8 {
namespace internal {
47

48
// TODO(mips): Refine these signatures per test case.
49 50 51
using F1 = void*(int x, int p1, int p2, int p3, int p4);
using F3 = void*(void* p, int p1, int p2, int p3, int p4);
using F4 = void*(void* p0, void* p1, int p2, int p3, int p4);
52 53 54

#define __ masm->

55 56 57
TEST(BYTESWAP) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
58
  HandleScope scope(isolate);
59 60

  struct T {
61 62 63
    uint32_t s4;
    uint32_t s2;
    uint32_t u2;
64
  };
65

66
  T t;
67 68
  uint32_t test_values[] = {0x5612FFCD, 0x9D327ACC, 0x781A15C3, 0xFCDE,    0x9F,
                            0xC81A15C3, 0x80000000, 0xFFFFFFFF, 0x00008000};
69

70
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
71

72 73
  MacroAssembler* masm = &assembler;

74 75 76 77 78 79 80 81 82 83 84 85 86 87
  __ lw(a1, MemOperand(a0, offsetof(T, s4)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 4);
  __ sw(a1, MemOperand(a0, offsetof(T, s4)));

  __ lw(a1, MemOperand(a0, offsetof(T, s2)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, s2)));

  __ lw(a1, MemOperand(a0, offsetof(T, u2)));
  __ nop();
  __ ByteSwapUnsigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, u2)));
88 89 90 91 92

  __ jr(ra);
  __ nop();

  CodeDesc desc;
93
  masm->GetCode(isolate, &desc);
94 95
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
96
  auto f = GeneratedCode<F3>::FromCode(*code);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

  for (size_t i = 0; i < arraysize(test_values); i++) {
    int16_t in_s2 = static_cast<int16_t>(test_values[i]);
    uint16_t in_u2 = static_cast<uint16_t>(test_values[i]);

    t.s4 = test_values[i];
    t.s2 = static_cast<uint64_t>(in_s2);
    t.u2 = static_cast<uint64_t>(in_u2);

    f.Call(&t, 0, 0, 0, 0);

    CHECK_EQ(ByteReverse(test_values[i]), t.s4);
    CHECK_EQ(ByteReverse<int16_t>(in_s2), static_cast<int16_t>(t.s2));
    CHECK_EQ(ByteReverse<uint16_t>(in_u2), static_cast<uint16_t>(t.u2));
  }
112
}
113

114 115 116 117 118
static void TestNaN(const char *code) {
  // NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
  // tests checks the case where a x86 NaN value is serialized into the
  // snapshot on the simulator during cross compilation.
  v8::HandleScope scope(CcTest::isolate());
119
  v8::Local<v8::Context> context = CcTest::NewContext({PRINT_EXTENSION_ID});
120 121
  v8::Context::Scope context_scope(context);

122 123 124 125
  v8::Local<v8::Script> script =
      v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
  v8::Local<v8::Object> result =
      v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
126
  i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
127
  i::Handle<i::JSArray> array1(i::JSArray::cast(*o), o->GetIsolate());
128
  i::FixedDoubleArray a = i::FixedDoubleArray::cast(array1->elements());
129
  double value = a.get_scalar(0);
130
  CHECK(std::isnan(value) &&
131
        bit_cast<uint64_t>(value) ==
132
            bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
}


TEST(NaN0) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
          "}"
          "result;");
}


TEST(NaN1) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = [NaN];"
          "}"
          "result;");
}

155

156 157 158 159 160 161 162 163
TEST(jump_tables4) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required before emission of the dd table (where trampolines are
  // blocked), and proper transition to long-branch mode.
  // Regression test for v8:4294.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
164
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
165 166 167 168 169 170
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
171
  Label near_start, end, done;
172

173
  __ Push(ra);
174 175 176 177 178 179 180 181 182 183 184
  __ mov(v0, zero_reg);

  __ Branch(&end);
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < 32768 - 256; ++i) {
    __ addiu(v0, v0, 1);
  }

185 186
  __ GenerateSwitchTable(a0, kNumCases,
                         [&labels](size_t i) { return labels + i; });
187 188 189

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
190
    __ li(v0, values[i]);
191 192 193 194
    __ Branch(&done);
  }

  __ bind(&done);
195
  __ Pop(ra);
196 197 198 199 200 201 202
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
203
  masm->GetCode(isolate, &desc);
204 205
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
206
#ifdef OBJECT_PRINT
207
  code->Print(std::cout);
208
#endif
209
  auto f = GeneratedCode<F1>::FromCode(*code);
210
  for (int i = 0; i < kNumCases; ++i) {
211
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
212 213 214 215 216 217
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


218 219 220 221 222 223 224 225
TEST(jump_tables5) {
  if (!IsMipsArchVariant(kMips32r6)) return;

  // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
  // compact branch instruction before emission of the dd table.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
226
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
227 228 229 230 231 232 233 234
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label done;

235
  __ Push(ra);
236 237

  {
238 239 240
    __ BlockTrampolinePoolFor(kNumCases + 6 + 1);

    __ addiupc(at, 6 + 1);
241
    __ Lsa(at, at, a0, 2);
242
    __ lw(at, MemOperand(at));
243 244 245
    __ jalr(at);
    __ nop();  // Branch delay slot nop.
    __ bc(&done);
246 247
    // A nop instruction must be generated by the forbidden slot guard
    // (Assembler::dd(Label*)).
248 249 250 251 252 253 254
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
255
    __ li(v0, values[i]);
256 257 258 259 260
    __ jr(ra);
    __ nop();
  }

  __ bind(&done);
261
  __ Pop(ra);
262 263 264 265
  __ jr(ra);
  __ nop();

  CodeDesc desc;
266
  masm->GetCode(isolate, &desc);
267 268
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
269
#ifdef OBJECT_PRINT
270
  code->Print(std::cout);
271
#endif
272
  auto f = GeneratedCode<F1>::FromCode(*code);
273
  for (int i = 0; i < kNumCases; ++i) {
274
    int32_t res = reinterpret_cast<int32_t>(f.Call(i, 0, 0, 0, 0));
275
    ::printf("f(%d) = %d\n", i, res);
276 277 278 279
    CHECK_EQ(values[i], res);
  }
}

280 281 282 283 284 285 286 287 288 289
TEST(jump_tables6) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required after emission of the dd table (where trampolines are
  // blocked). This test checks if number of really generated instructions is
  // greater than number of counted instructions from code, as we are expecting
  // generation of trampoline in this case (when number of kFillInstr
  // instructions is close to 32K)
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
290
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
291 292
  MacroAssembler* masm = &assembler;

293 294 295 296 297 298
  const int kSwitchTableCases = 40;

  const int kMaxBranchOffset = Assembler::kMaxBranchOffset;
  const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize;
  const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize;

299 300
  const int kMaxOffsetForTrampolineStart =
      kMaxBranchOffset - 16 * kTrampolineSlotsSize;
301 302
  const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) -
                         (kSwitchTablePrologueSize + kSwitchTableCases) - 20;
303

304
  int values[kSwitchTableCases];
305
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
306
  Label labels[kSwitchTableCases];
307 308 309 310 311 312 313 314 315
  Label near_start, end, done;

  __ Push(ra);
  __ mov(v0, zero_reg);

  int offs1 = masm->pc_offset();
  int gen_insn = 0;

  __ Branch(&end);
316
  gen_insn += Assembler::IsCompactBranchSupported() ? 1 : 2;
317 318 319 320 321 322 323 324 325
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < kFillInstr; ++i) {
    __ addiu(v0, v0, 1);
  }
  gen_insn += kFillInstr;

326
  __ GenerateSwitchTable(a0, kSwitchTableCases,
327
                         [&labels](size_t i) { return labels + i; });
328
  gen_insn += (kSwitchTablePrologueSize + kSwitchTableCases);
329

330
  for (int i = 0; i < kSwitchTableCases; ++i) {
331 332 333 334
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ Branch(&done);
  }
335 336
  gen_insn +=
      ((Assembler::IsCompactBranchSupported() ? 3 : 4) * kSwitchTableCases);
337 338 339 340 341 342

  // If offset from here to first branch instr is greater than max allowed
  // offset for trampoline ...
  CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1);
  // ... number of generated instructions must be greater then "gen_insn",
  // as we are expecting trampoline generation
343
  CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize);
344 345 346 347 348 349 350 351 352 353

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
354
  masm->GetCode(isolate, &desc);
355 356
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
357
#ifdef OBJECT_PRINT
358
  code->Print(std::cout);
359
#endif
360
  auto f = GeneratedCode<F1>::FromCode(*code);
361
  for (int i = 0; i < kSwitchTableCases; ++i) {
362
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
363 364 365 366
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}
367

368 369 370
static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
371
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
372 373 374 375 376 377 378
  MacroAssembler* masm = &assembler;

  __ Lsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
379
  assembler.GetCode(isolate, &desc);
380 381
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
382

383
  auto f = GeneratedCode<F1>::FromCode(*code);
384

385
  uint32_t res = reinterpret_cast<uint32_t>(f.Call(rt, rs, 0, 0, 0));
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

  return res;
}


TEST(Lsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int32_t rt;
    int32_t rs;
    uint8_t sa;
    uint32_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
403
                             {0x4, 0x1, 3, 0xC},
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT32_MAX, 1, 0x2},
                             {0x4, INT32_MAX >> 1, 2, 0x0},
420 421 422
                             {0x4, INT32_MAX >> 2, 3, 0xFFFFFFFC},
                             {0x4, INT32_MAX >> 3, 4, 0xFFFFFFF4},
                             {0x4, INT32_MAX >> 4, 5, 0xFFFFFFE4},
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

                             // Signed addition overflow.
                             {INT32_MAX - 1, 0x1, 1, 0x80000000},
                             {INT32_MAX - 3, 0x1, 2, 0x80000000},
                             {INT32_MAX - 7, 0x1, 3, 0x80000000},
                             {INT32_MAX - 15, 0x1, 4, 0x80000000},
                             {INT32_MAX - 31, 0x1, 5, 0x80000000},

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
           tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}

447
static const std::vector<uint32_t> cvt_trunc_uint32_test_values() {
448 449 450
  static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00,
                                     0x7FFFFFFF, 0x80000000, 0x80000001,
                                     0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF};
451 452 453
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

454
static const std::vector<int32_t> cvt_trunc_int32_test_values() {
455 456
  static const int32_t kValues[] = {
      static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
457
      static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF),
458
      static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
459 460
      static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF),
      static_cast<int32_t>(0xFFFFFFFF)};
461 462 463 464
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
465 466
#define FOR_INPUTS(ctype, itype, var, test_vector)           \
  std::vector<ctype> var##_vec = test_vector();              \
467 468 469
  for (std::vector<ctype>::iterator var = var##_vec.begin(); \
       var != var##_vec.end(); ++var)

470 471 472 473 474 475 476
#define FOR_INPUTS2(ctype, itype, var, var2, test_vector)  \
  std::vector<ctype> var##_vec = test_vector();            \
  std::vector<ctype>::iterator var;                        \
  std::vector<ctype>::reverse_iterator var2;               \
  for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
       var != var##_vec.end(); ++var, ++var2)

477 478 479 480 481 482 483 484
#define FOR_ENUM_INPUTS(var, type, test_vector) \
  FOR_INPUTS(enum type, type, var, test_vector)
#define FOR_STRUCT_INPUTS(var, type, test_vector) \
  FOR_INPUTS(struct type, type, var, test_vector)
#define FOR_UINT32_INPUTS(var, test_vector) \
  FOR_INPUTS(uint32_t, uint32, var, test_vector)
#define FOR_INT32_INPUTS(var, test_vector) \
  FOR_INPUTS(int32_t, int32, var, test_vector)
485 486 487 488 489
#define FOR_INT32_INPUTS2(var, var2, test_vector) \
  FOR_INPUTS2(int32_t, int32, var, var2, test_vector)

#define FOR_UINT64_INPUTS(var, test_vector) \
  FOR_INPUTS(uint64_t, uint32, var, test_vector)
490 491 492

template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
493
  using F_CVT = RET_TYPE(IN_TYPE x0, int x1, int x2, int x3, int x4);
494 495 496

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
497
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
498 499 500 501 502 503 504 505 506
  MacroAssembler* masm = &assm;

  __ mtc1(a0, f4);
  GenerateConvertInstructionFunc(masm);
  __ mfc1(v0, f2);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
507
  assm.GetCode(isolate, &desc);
508 509
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
510

511
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
512

513
  return reinterpret_cast<RET_TYPE>(f.Call(x, 0, 0, 0, 0));
514 515 516 517
}

TEST(cvt_s_w_Trunc_uw_s) {
  CcTest::InitializeVM();
518
  FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) {
519
    uint32_t input = *i;
520 521
    auto fn = [](MacroAssembler* masm) {
      __ cvt_s_w(f0, f4);
522
      __ Trunc_uw_s(f2, f0, f6);
523 524
    };
    CHECK_EQ(static_cast<float>(input), run_Cvt<uint32_t>(input, fn));
525 526 527 528 529
  }
}

TEST(cvt_d_w_Trunc_w_d) {
  CcTest::InitializeVM();
530
  FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) {
531
    int32_t input = *i;
532 533 534 535 536
    auto fn = [](MacroAssembler* masm) {
      __ cvt_d_w(f0, f4);
      __ Trunc_w_d(f2, f0);
    };
    CHECK_EQ(static_cast<double>(input), run_Cvt<int32_t>(input, fn));
537 538 539
  }
}

540 541
static const std::vector<int32_t> overflow_int32_test_values() {
  static const int32_t kValues[] = {
542 543 544 545 546
      static_cast<int32_t>(0xF0000000), static_cast<int32_t>(0x00000001),
      static_cast<int32_t>(0xFF000000), static_cast<int32_t>(0x0000F000),
      static_cast<int32_t>(0x0F000000), static_cast<int32_t>(0x991234AB),
      static_cast<int32_t>(0xB0FFFF01), static_cast<int32_t>(0x00006FFF),
      static_cast<int32_t>(0xFFFFFFFF)};
547 548 549
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

550 551
TEST(OverflowInstructions) {
  CcTest::InitializeVM();
552
  Isolate* isolate = CcTest::i_isolate();
553
  HandleScope handles(isolate);
554

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
  struct T {
    int32_t lhs;
    int32_t rhs;
    int32_t output_add;
    int32_t output_add2;
    int32_t output_sub;
    int32_t output_sub2;
    int32_t output_mul;
    int32_t output_mul2;
    int32_t overflow_add;
    int32_t overflow_add2;
    int32_t overflow_sub;
    int32_t overflow_sub2;
    int32_t overflow_mul;
    int32_t overflow_mul2;
  };
  T t;
572 573 574

  FOR_INT32_INPUTS(i, overflow_int32_test_values) {
    FOR_INT32_INPUTS(j, overflow_int32_test_values) {
575 576 577 578
      int32_t ii = *i;
      int32_t jj = *j;
      int32_t expected_add, expected_sub, expected_mul;
      bool expected_add_ovf, expected_sub_ovf, expected_mul_ovf;
579
      MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
      MacroAssembler* masm = &assembler;

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ AddOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_add)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add)));
      __ mov(t3, zero_reg);
      __ AddOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_add2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ SubOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_sub)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub)));
      __ mov(t3, zero_reg);
      __ SubOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_sub2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ MulOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_mul)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul)));
      __ mov(t3, zero_reg);
      __ MulOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_mul2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul2)));

      __ jr(ra);
      __ nop();

      CodeDesc desc;
      masm->GetCode(isolate, &desc);
      Handle<Code> code =
621
          Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
      auto f = GeneratedCode<F3>::FromCode(*code);
      t.lhs = ii;
      t.rhs = jj;
      f.Call(&t, 0, 0, 0, 0);

      expected_add_ovf = base::bits::SignedAddOverflow32(ii, jj, &expected_add);
      expected_sub_ovf = base::bits::SignedSubOverflow32(ii, jj, &expected_sub);
      expected_mul_ovf = base::bits::SignedMulOverflow32(ii, jj, &expected_mul);

      CHECK_EQ(expected_add_ovf, t.overflow_add < 0);
      CHECK_EQ(expected_sub_ovf, t.overflow_sub < 0);
      CHECK_EQ(expected_mul_ovf, t.overflow_mul != 0);

      CHECK_EQ(t.overflow_add, t.overflow_add2);
      CHECK_EQ(t.overflow_sub, t.overflow_sub2);
      CHECK_EQ(t.overflow_mul, t.overflow_mul2);

      CHECK_EQ(expected_add, t.output_add);
      CHECK_EQ(expected_add, t.output_add2);
      CHECK_EQ(expected_sub, t.output_sub);
      CHECK_EQ(expected_sub, t.output_sub2);
      if (!expected_mul_ovf) {
        CHECK_EQ(expected_mul, t.output_mul);
        CHECK_EQ(expected_mul, t.output_mul2);
646 647 648 649 650 651
      }
    }
  }
}


652 653 654 655
TEST(min_max_nan) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
656
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  MacroAssembler* masm = &assembler;

  struct TestFloat {
    double a;
    double b;
    double c;
    double d;
    float e;
    float f;
    float g;
    float h;
  };

  TestFloat test;
  const double dnan = std::numeric_limits<double>::quiet_NaN();
  const double dinf = std::numeric_limits<double>::infinity();
  const double dminf = -std::numeric_limits<double>::infinity();
  const float fnan = std::numeric_limits<float>::quiet_NaN();
  const float finf = std::numeric_limits<float>::infinity();
  const float fminf = std::numeric_limits<float>::infinity();
  const int kTableLength = 13;

  double inputsa[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, dinf, dminf,
                                  dinf, dnan, 3.0,  dinf, dnan, dnan};
  double inputsb[kTableLength] = {3.0,   2.0, 0.0,  -0.0, dinf, 42.0, dinf,
                                  dminf, 3.0, dnan, dnan, dinf, dnan};
  double outputsdmin[kTableLength] = {2.0,  2.0,   -0.0,  -0.0, 42.0,
                                      42.0, dminf, dminf, dnan, dnan,
                                      dnan, dnan,  dnan};
  double outputsdmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  dinf, dinf, dinf,
                                      dinf, dnan, dnan, dnan, dnan, dnan};

  float inputse[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, finf, fminf,
                                 finf, fnan, 3.0,  finf, fnan, fnan};
  float inputsf[kTableLength] = {3.0,   2.0, 0.0,  -0.0, finf, 42.0, finf,
                                 fminf, 3.0, fnan, fnan, finf, fnan};
  float outputsfmin[kTableLength] = {2.0,   2.0,  -0.0, -0.0, 42.0, 42.0, fminf,
                                     fminf, fnan, fnan, fnan, fnan, fnan};
  float outputsfmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  finf, finf, finf,
                                     finf, fnan, fnan, fnan, fnan, fnan};

  auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
700
    __ LoadRoot(t8, RootIndex::kNanValue);
701
    __ Ldc1(dst, FieldMemOperand(t8, HeapNumber::kValueOffset));
702 703 704 705 706 707 708 709 710 711 712 713 714 715
    __ Branch(back);
  };

  auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
    __ Move(dst, fnan);
    __ Branch(back);
  };

  Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
  Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;

  __ push(s6);
  __ InitializeRootRegister();
716 717
  __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
  __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
718 719
  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
  __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
720
  __ Float64Min(f10, f4, f8, &handle_mind_nan);
721
  __ bind(&back_mind_nan);
722
  __ Float64Max(f12, f4, f8, &handle_maxd_nan);
723
  __ bind(&back_maxd_nan);
724
  __ Float32Min(f14, f2, f6, &handle_mins_nan);
725
  __ bind(&back_mins_nan);
726
  __ Float32Max(f16, f2, f6, &handle_maxs_nan);
727
  __ bind(&back_maxs_nan);
728 729
  __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
  __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
730 731 732 733 734 735 736 737 738 739 740 741
  __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
  __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
  __ pop(s6);
  __ jr(ra);
  __ nop();

  handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
  handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
  handle_snan(f14, &handle_mins_nan, &back_mins_nan);
  handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);

  CodeDesc desc;
742
  masm->GetCode(isolate, &desc);
743 744
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
745
  auto f = GeneratedCode<F3>::FromCode(*code);
746 747 748 749 750 751
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputsa[i];
    test.b = inputsb[i];
    test.e = inputse[i];
    test.f = inputsf[i];

752
    f.Call(&test, 0, 0, 0, 0);
753 754 755 756 757 758 759 760

    CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
    CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
    CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
    CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
  }
}

761 762 763
template <typename IN_TYPE, typename Func>
bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
                   IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
764
  using F_CVT = int32_t(char* x0, int x1, int x2, int x3, int x4);
765 766 767

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
768
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
769 770 771 772 773 774 775 776
  MacroAssembler* masm = &assm;
  IN_TYPE res;

  GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
777
  assm.GetCode(isolate, &desc);
778 779
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
780

781
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
782 783

  MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
784
  f.Call(memory_buffer, 0, 0, 0, 0);
785 786 787 788 789 790 791
  MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));

  return res == value;
}

static const std::vector<uint64_t> unsigned_test_values() {
  static const uint64_t kValues[] = {
792 793
      0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0,
      0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF,
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
  };
  return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset() {
  static const int32_t kValues[] = {// value, offset
                                    -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset_increment() {
  static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

TEST(Ulh) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulh(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulh(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_2));

        auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulhu(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_3));

        auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulhu(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_4));
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
      }
    }
  }
}

TEST(Ulh_bitextension) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          Label success, fail, end, different;
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ulhu(t1, MemOperand(a0, in_offset));
          __ Branch(&different, ne, t0, Operand(t1));

          // If signed and unsigned values are same, check
          // the upper bits to see if they are zero
          __ sra(t0, t0, 15);
          __ Branch(&success, eq, t0, Operand(zero_reg));
          __ Branch(&fail);

          // If signed and unsigned values are different,
          // check that the upper bits are complementary
          __ bind(&different);
          __ sra(t1, t1, 15);
          __ Branch(&fail, ne, t1, Operand(1));
          __ sra(t0, t0, 15);
          __ addiu(t0, t0, 1);
          __ Branch(&fail, ne, t0, Operand(zero_reg));
          // Fall through to success

          __ bind(&success);
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ush(t0, MemOperand(a0, out_offset), v0);
          __ Branch(&end);
          __ bind(&fail);
          __ Ush(zero_reg, MemOperand(a0, out_offset), v0);
          __ bind(&end);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn));
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
      }
    }
  }
}

TEST(Ulw) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

927 928 929 930 931 932 933 934 935 936 937 938 939 940
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulw(v0, MemOperand(a0, in_offset));
          __ Usw(v0, MemOperand(a0, out_offset));
        };
        CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulw(a0, MemOperand(a0, in_offset));
          __ Usw(a0, MemOperand(t0, out_offset));
        };
941
        CHECK_EQ(true,
942 943
                 run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
                                         (uint32_t)value, fn_2));
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
      }
    }
  }
}

TEST(Ulwc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        float value = static_cast<float>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

963 964 965 966 967 968 969
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Ulwc1(f0, MemOperand(a0, in_offset), t0);
          __ Uswc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<float>(buffer_middle, in_offset,
                                            out_offset, value, fn));
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
      }
    }
  }
}

TEST(Uldc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        double value = static_cast<double>(*i);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

989 990 991 992 993 994 995
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Uldc1(f0, MemOperand(a0, in_offset), t0);
          __ Usdc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<double>(buffer_middle, in_offset,
                                             out_offset, value, fn));
996 997 998 999 1000
      }
    }
  }
}

1001 1002
static const std::vector<uint32_t> sltu_test_values() {
  static const uint32_t kValues[] = {
1003 1004 1005
      0,          1,          0x7FFE,     0x7FFF,     0x8000,
      0x8001,     0xFFFE,     0xFFFF,     0xFFFF7FFE, 0xFFFF7FFF,
      0xFFFF8000, 0xFFFF8001, 0xFFFFFFFE, 0xFFFFFFFF,
1006 1007 1008 1009 1010 1011
  };
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

template <typename Func>
bool run_Sltu(uint32_t rs, uint32_t rd, Func GenerateSltuInstructionFunc) {
1012
  using F_CVT = int32_t(uint32_t x0, uint32_t x1, int x2, int x3, int x4);
1013 1014 1015

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
1016
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
1017 1018 1019 1020 1021 1022 1023
  MacroAssembler* masm = &assm;

  GenerateSltuInstructionFunc(masm, rd);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
1024
  assm.GetCode(isolate, &desc);
1025 1026
  Handle<Code> code =
      Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
1027

1028 1029
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
  int32_t res = reinterpret_cast<int32_t>(f.Call(rs, rd, 0, 0, 0));
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
  return res == 1;
}

TEST(Sltu) {
  CcTest::InitializeVM();

  FOR_UINT32_INPUTS(i, sltu_test_values) {
    FOR_UINT32_INPUTS(j, sltu_test_values) {
      uint32_t rs = *i;
      uint32_t rd = *j;

1041 1042 1043 1044 1045 1046 1047 1048 1049
      auto fn_1 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, Operand(imm));
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_1));

      auto fn_2 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, a1);
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_2));
1050 1051 1052 1053
    }
  }
}

1054
template <typename T, typename Inputs, typename Results>
1055
static GeneratedCode<F4> GenerateMacroFloat32MinMax(MacroAssembler* masm) {
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
  __ lwc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ lwc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
  __ swc1(a, MemOperand(a1, offsetof(Results, res_field)))

  // a = min(b, c);
  FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float32MinOutOfLine(a, b, c);
1095
  __ Branch(&done_min_abc);
1096 1097 1098

  __ bind(&ool_min_aab);
  __ Float32MinOutOfLine(a, a, b);
1099
  __ Branch(&done_min_aab);
1100 1101 1102

  __ bind(&ool_min_aba);
  __ Float32MinOutOfLine(a, b, a);
1103
  __ Branch(&done_min_aba);
1104 1105 1106

  __ bind(&ool_max_abc);
  __ Float32MaxOutOfLine(a, b, c);
1107
  __ Branch(&done_max_abc);
1108 1109 1110

  __ bind(&ool_max_aab);
  __ Float32MaxOutOfLine(a, a, b);
1111
  __ Branch(&done_max_aab);
1112 1113 1114

  __ bind(&ool_max_aba);
  __ Float32MaxOutOfLine(a, b, a);
1115
  __ Branch(&done_max_aba);
1116 1117

  CodeDesc desc;
1118
  masm->GetCode(masm->isolate(), &desc);
1119
  Handle<Code> code =
1120
      Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
1121
          .Build();
1122
#ifdef DEBUG
1123
  StdoutStream os;
1124
  code->Print(os);
1125
#endif
1126
  return GeneratedCode<F4>::FromCode(*code);
1127 1128 1129 1130 1131 1132 1133 1134
}

TEST(macro_float_minmax_f32) {
  // Test the Float32Min and Float32Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1135
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
  MacroAssembler* masm = &assembler;

  struct Inputs {
    float src1_;
    float src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    float min_abc_;
    float min_aab_;
    float min_aba_;
    float max_abc_;
    float max_aab_;
    float max_aba_;
  };

1154 1155
  GeneratedCode<F4> f =
      GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>(masm);
1156 1157 1158 1159 1160

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1161
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  float nan_a = std::numeric_limits<float>::quiet_NaN();
  float nan_b = std::numeric_limits<float>::quiet_NaN();

  CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
  CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
  CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
  CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);

  CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
  CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
  CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);

  CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

template <typename T, typename Inputs, typename Results>
1197
static GeneratedCode<F4> GenerateMacroFloat64MinMax(MacroAssembler* masm) {
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
1209 1210
  __ Ldc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ Ldc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
1211 1212
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
1213
  __ Sdc1(a, MemOperand(a1, offsetof(Results, res_field)))
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

  // a = min(b, c);
  FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float64MinOutOfLine(a, b, c);
1237
  __ Branch(&done_min_abc);
1238 1239 1240

  __ bind(&ool_min_aab);
  __ Float64MinOutOfLine(a, a, b);
1241
  __ Branch(&done_min_aab);
1242 1243 1244

  __ bind(&ool_min_aba);
  __ Float64MinOutOfLine(a, b, a);
1245
  __ Branch(&done_min_aba);
1246 1247 1248

  __ bind(&ool_max_abc);
  __ Float64MaxOutOfLine(a, b, c);
1249
  __ Branch(&done_max_abc);
1250 1251 1252

  __ bind(&ool_max_aab);
  __ Float64MaxOutOfLine(a, a, b);
1253
  __ Branch(&done_max_aab);
1254 1255 1256

  __ bind(&ool_max_aba);
  __ Float64MaxOutOfLine(a, b, a);
1257
  __ Branch(&done_max_aba);
1258 1259

  CodeDesc desc;
1260
  masm->GetCode(masm->isolate(), &desc);
1261
  Handle<Code> code =
1262
      Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
1263
          .Build();
1264
#ifdef DEBUG
1265
  StdoutStream os;
1266
  code->Print(os);
1267
#endif
1268
  return GeneratedCode<F4>::FromCode(*code);
1269 1270 1271 1272 1273 1274 1275 1276
}

TEST(macro_float_minmax_f64) {
  // Test the Float64Min and Float64Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1277
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
  MacroAssembler* masm = &assembler;

  struct Inputs {
    double src1_;
    double src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    double min_abc_;
    double min_aab_;
    double min_aba_;
    double max_abc_;
    double max_aab_;
    double max_aba_;
  };

1296 1297
  GeneratedCode<F4> f =
      GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>(masm);
1298 1299 1300 1301 1302

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1303
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  double nan_a = std::numeric_limits<double>::quiet_NaN();
  double nan_b = std::numeric_limits<double>::quiet_NaN();

  CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
  CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
  CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
  CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
  CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
  CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
  CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
  CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);

  CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
  CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
  CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
  CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);

  CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
TEST(DeoptExitSizeIsFixed) {
  CHECK(Deoptimizer::kSupportsFixedDeoptExitSizes);

  Isolate* isolate = CcTest::i_isolate();
  HandleScope handles(isolate);
  auto buffer = AllocateAssemblerBuffer();
  MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
                      buffer->CreateView());
  STATIC_ASSERT(static_cast<int>(kFirstDeoptimizeKind) == 0);
  for (int i = 0; i < kDeoptimizeKindCount; i++) {
    DeoptimizeKind kind = static_cast<DeoptimizeKind>(i);
    Label before_exit;
    masm.bind(&before_exit);
    if (kind == DeoptimizeKind::kEagerWithResume) {
      Builtins::Name target = Deoptimizer::GetDeoptWithResumeBuiltin(
1353
          DeoptimizeReason::kDynamicCheckMaps);
1354 1355 1356
      masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit,
                                 nullptr);
      CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit),
1357
               Deoptimizer::kEagerWithResumeBeforeArgsSize);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    } else {
      Builtins::Name target = Deoptimizer::GetDeoptimizationEntry(kind);
      masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit,
                                 nullptr);
      CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit),
               kind == DeoptimizeKind::kLazy
                   ? Deoptimizer::kLazyDeoptExitSize
                   : Deoptimizer::kNonLazyDeoptExitSize);
    }
  }
}

1370
#undef __
1371 1372 1373

}  // namespace internal
}  // namespace v8