test-assembler-ppc.cc 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "src/v8.h"

#include "src/disassembler.h"
31
#include "src/heap/factory.h"
32
#include "src/ppc/assembler-ppc-inl.h"
33
#include "src/simulator.h"
34
#include "test/cctest/cctest.h"
35
#include "test/common/assembler-tester.h"
36

37 38
namespace v8 {
namespace internal {
39

40 41
// TODO(ppc): Refine these signatures per test case, they can have arbitrary
// return and argument types and arbitrary number of arguments.
42 43 44 45 46
using F_iiiii = void*(int x, int p1, int p2, int p3, int p4);
using F_piiii = void*(void* p0, int p1, int p2, int p3, int p4);
using F_ppiii = void*(void* p0, void* p1, int p2, int p3, int p4);
using F_pppii = void*(void* p0, void* p1, void* p2, int p3, int p4);
using F_ippii = void*(int p0, void* p1, void* p2, int p3, int p4);
47 48 49 50 51 52

#define __ assm.

// Simple add parameter 1 to parameter 2 and return
TEST(0) {
  CcTest::InitializeVM();
53
  Isolate* isolate = CcTest::i_isolate();
54 55
  HandleScope scope(isolate);

56
  Assembler assm(AssemblerOptions{});
57 58 59 60 61 62 63

  __ function_descriptor();

  __ add(r3, r3, r4);
  __ blr();

  CodeDesc desc;
64
  assm.GetCode(isolate, &desc);
65 66
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
67
#ifdef DEBUG
68
  code->Print();
69
#endif
70 71
  auto f = GeneratedCode<F_iiiii>::FromCode(*code);
  intptr_t res = reinterpret_cast<intptr_t>(f.Call(3, 4, 0, 0, 0));
72 73 74 75 76 77 78 79
  ::printf("f() = %" V8PRIdPTR "\n", res);
  CHECK_EQ(7, static_cast<int>(res));
}


// Loop 100 times, adding loop counter to result
TEST(1) {
  CcTest::InitializeVM();
80
  Isolate* isolate = CcTest::i_isolate();
81 82
  HandleScope scope(isolate);

83
  Assembler assm(AssemblerOptions{});
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  Label L, C;

  __ function_descriptor();

  __ mr(r4, r3);
  __ li(r3, Operand::Zero());
  __ b(&C);

  __ bind(&L);
  __ add(r3, r3, r4);
  __ subi(r4, r4, Operand(1));

  __ bind(&C);
  __ cmpi(r4, Operand::Zero());
  __ bne(&L);
  __ blr();

  CodeDesc desc;
102
  assm.GetCode(isolate, &desc);
103 104
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
105
#ifdef DEBUG
106
  code->Print();
107
#endif
108 109
  auto f = GeneratedCode<F_iiiii>::FromCode(*code);
  intptr_t res = reinterpret_cast<intptr_t>(f.Call(100, 0, 0, 0, 0));
110 111 112 113 114 115 116
  ::printf("f() = %" V8PRIdPTR "\n", res);
  CHECK_EQ(5050, static_cast<int>(res));
}


TEST(2) {
  CcTest::InitializeVM();
117
  Isolate* isolate = CcTest::i_isolate();
118 119
  HandleScope scope(isolate);

120
  Assembler assm(AssemblerOptions{});
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  Label L, C;

  __ function_descriptor();

  __ mr(r4, r3);
  __ li(r3, Operand(1));
  __ b(&C);

  __ bind(&L);
#if defined(V8_TARGET_ARCH_PPC64)
  __ mulld(r3, r4, r3);
#else
  __ mullw(r3, r4, r3);
#endif
  __ subi(r4, r4, Operand(1));

  __ bind(&C);
  __ cmpi(r4, Operand::Zero());
  __ bne(&L);
  __ blr();

  // some relocated stuff here, not executed
  __ RecordComment("dead code, just testing relocations");
  __ mov(r0, Operand(isolate->factory()->true_value()));
  __ RecordComment("dead code, just testing immediate operands");
  __ mov(r0, Operand(-1));
  __ mov(r0, Operand(0xFF000000));
  __ mov(r0, Operand(0xF0F0F0F0));
  __ mov(r0, Operand(0xFFF0FFFF));

  CodeDesc desc;
152
  assm.GetCode(isolate, &desc);
153 154
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
155
#ifdef DEBUG
156
  code->Print();
157
#endif
158 159
  auto f = GeneratedCode<F_iiiii>::FromCode(*code);
  intptr_t res = reinterpret_cast<intptr_t>(f.Call(10, 0, 0, 0, 0));
160 161 162 163 164 165 166
  ::printf("f() = %" V8PRIdPTR "\n", res);
  CHECK_EQ(3628800, static_cast<int>(res));
}


TEST(3) {
  CcTest::InitializeVM();
167
  Isolate* isolate = CcTest::i_isolate();
168 169 170 171 172 173 174 175 176
  HandleScope scope(isolate);

  typedef struct {
    int i;
    char c;
    int16_t s;
  } T;
  T t;

177
  Assembler assm(AssemblerOptions{});
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

  __ function_descriptor();

// build a frame
#if V8_TARGET_ARCH_PPC64
  __ stdu(sp, MemOperand(sp, -32));
  __ std(fp, MemOperand(sp, 24));
#else
  __ stwu(sp, MemOperand(sp, -16));
  __ stw(fp, MemOperand(sp, 12));
#endif
  __ mr(fp, sp);

  // r4 points to our struct
  __ mr(r4, r3);

  // modify field int i of struct
195
  __ lwz(r3, MemOperand(r4, offsetof(T, i)));
196
  __ srwi(r5, r3, Operand(1));
197
  __ stw(r5, MemOperand(r4, offsetof(T, i)));
198 199

  // modify field char c of struct
200
  __ lbz(r5, MemOperand(r4, offsetof(T, c)));
201 202
  __ add(r3, r5, r3);
  __ slwi(r5, r5, Operand(2));
203
  __ stb(r5, MemOperand(r4, offsetof(T, c)));
204 205

  // modify field int16_t s of struct
206
  __ lhz(r5, MemOperand(r4, offsetof(T, s)));
207 208
  __ add(r3, r5, r3);
  __ srwi(r5, r5, Operand(3));
209
  __ sth(r5, MemOperand(r4, offsetof(T, s)));
210 211 212 213 214 215 216 217 218 219 220 221 222

// restore frame
#if V8_TARGET_ARCH_PPC64
  __ addi(r11, fp, Operand(32));
  __ ld(fp, MemOperand(r11, -8));
#else
  __ addi(r11, fp, Operand(16));
  __ lwz(fp, MemOperand(r11, -4));
#endif
  __ mr(sp, r11);
  __ blr();

  CodeDesc desc;
223
  assm.GetCode(isolate, &desc);
224 225
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
226
#ifdef DEBUG
227
  code->Print();
228
#endif
229
  auto f = GeneratedCode<F_piiii>::FromCode(*code);
230 231 232
  t.i = 100000;
  t.c = 10;
  t.s = 1000;
233
  intptr_t res = reinterpret_cast<intptr_t>(f.Call(&t, 0, 0, 0, 0));
234 235 236 237 238 239 240 241 242 243 244
  ::printf("f() = %" V8PRIdPTR "\n", res);
  CHECK_EQ(101010, static_cast<int>(res));
  CHECK_EQ(100000 / 2, t.i);
  CHECK_EQ(10 * 4, t.c);
  CHECK_EQ(1000 / 8, t.s);
}

#if 0
TEST(4) {
  // Test the VFP floating point instructions.
  CcTest::InitializeVM();
245
  Isolate* isolate = CcTest::i_isolate();
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
    int i;
    double m;
    double n;
    float x;
    float y;
  } T;
  T t;

  // Create a function that accepts &t, and loads, manipulates, and stores
  // the doubles and floats.
267
  Assembler assm(AssemblerOptions{});
268 269 270 271 272 273 274 275 276 277
  Label L, C;

  if (CpuFeatures::IsSupported(VFP3)) {
    CpuFeatures::Scope scope(VFP3);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

    __ mov(r4, Operand(r0));
278 279
    __ vldr(d6, r4, offsetof(T, a));
    __ vldr(d7, r4, offsetof(T, b));
280
    __ vadd(d5, d6, d7);
281
    __ vstr(d5, r4, offsetof(T, c));
282 283 284

    __ vmov(r2, r3, d5);
    __ vmov(d4, r2, r3);
285
    __ vstr(d4, r4, offsetof(T, b));
286 287

    // Load t.x and t.y, switch values, and store back to the struct.
288 289
    __ vldr(s0, r4, offsetof(T, x));
    __ vldr(s31, r4, offsetof(T, y));
290 291 292
    __ vmov(s16, s0);
    __ vmov(s0, s31);
    __ vmov(s31, s16);
293 294
    __ vstr(s0, r4, offsetof(T, x));
    __ vstr(s31, r4, offsetof(T, y));
295 296 297

    // Move a literal into a register that can be encoded in the instruction.
    __ vmov(d4, 1.0);
298
    __ vstr(d4, r4, offsetof(T, e));
299 300

    // Move a literal into a register that requires 64 bits to encode.
301
    // 0x3FF0000010000000 = 1.000000059604644775390625
302
    __ vmov(d4, 1.000000059604644775390625);
303
    __ vstr(d4, r4, offsetof(T, d));
304 305 306 307

    // Convert from floating point to integer.
    __ vmov(d4, 2.0);
    __ vcvt_s32_f64(s31, d4);
308
    __ vstr(s31, r4, offsetof(T, i));
309 310 311 312 313

    // Convert from integer to floating point.
    __ mov(lr, Operand(42));
    __ vmov(s31, lr);
    __ vcvt_f64_s32(d4, s31);
314
    __ vstr(d4, r4, offsetof(T, f));
315 316

    // Test vabs.
317
    __ vldr(d1, r4, offsetof(T, g));
318
    __ vabs(d0, d1);
319 320
    __ vstr(d0, r4, offsetof(T, g));
    __ vldr(d2, r4, offsetof(T, h));
321
    __ vabs(d0, d2);
322
    __ vstr(d0, r4, offsetof(T, h));
323 324

    // Test vneg.
325
    __ vldr(d1, r4, offsetof(T, m));
326
    __ vneg(d0, d1);
327 328
    __ vstr(d0, r4, offsetof(T, m));
    __ vldr(d1, r4, offsetof(T, n));
329
    __ vneg(d0, d1);
330
    __ vstr(d0, r4, offsetof(T, n));
331 332 333 334

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
335
    assm.GetCode(isolate, &desc);
336
    Object code = isolate->heap()->CreateCode(
337
        desc,
338
        Code::STUB,
339 340 341
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
342
    Code::cast(code)->Print();
343
#endif
344
    auto f = GeneratedCode<F_piiii>::FromCode(*code);
345 346 347 348 349 350 351 352 353 354 355 356 357
    t.a = 1.5;
    t.b = 2.75;
    t.c = 17.17;
    t.d = 0.0;
    t.e = 0.0;
    t.f = 0.0;
    t.g = -2718.2818;
    t.h = 31415926.5;
    t.i = 0;
    t.m = -2718.2818;
    t.n = 123.456;
    t.x = 4.5;
    t.y = 9.0;
358
    f.Call(&t, 0, 0, 0, 0);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    CHECK_EQ(4.5, t.y);
    CHECK_EQ(9.0, t.x);
    CHECK_EQ(-123.456, t.n);
    CHECK_EQ(2718.2818, t.m);
    CHECK_EQ(2, t.i);
    CHECK_EQ(2718.2818, t.g);
    CHECK_EQ(31415926.5, t.h);
    CHECK_EQ(42.0, t.f);
    CHECK_EQ(1.0, t.e);
    CHECK_EQ(1.000000059604644775390625, t.d);
    CHECK_EQ(4.25, t.c);
    CHECK_EQ(4.25, t.b);
    CHECK_EQ(1.5, t.a);
  }
}


TEST(5) {
  // Test the ARMv7 bitfield instructions.
  CcTest::InitializeVM();
379
  Isolate* isolate = CcTest::i_isolate();
380 381
  HandleScope scope(isolate);

382
  Assembler assm(AssemblerOptions{});
383 384 385 386 387 388 389 390 391 392 393 394

  if (CpuFeatures::IsSupported(ARMv7)) {
    CpuFeatures::Scope scope(ARMv7);
    // On entry, r0 = 0xAAAAAAAA = 0b10..10101010.
    __ ubfx(r0, r0, 1, 12);  // 0b00..010101010101 = 0x555
    __ sbfx(r0, r0, 0, 5);   // 0b11..111111110101 = -11
    __ bfc(r0, 1, 3);        // 0b11..111111110001 = -15
    __ mov(r1, Operand(7));
    __ bfi(r0, r1, 3, 3);    // 0b11..111111111001 = -7
    __ mov(pc, Operand(lr));

    CodeDesc desc;
395
    assm.GetCode(isolate, &desc);
396
    Object code = isolate->heap()->CreateCode(
397
        desc,
398
        Code::STUB,
399 400 401
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
402
    Code::cast(code)->Print();
403
#endif
404 405
    auto f = GeneratedCode<F_iiiii>::FromCode(*code);
    int res = reinterpret_cast<int>(f.Call(0xAAAAAAAA, 0, 0, 0, 0));
406 407 408 409 410 411 412 413 414
    ::printf("f() = %d\n", res);
    CHECK_EQ(-7, res);
  }
}


TEST(6) {
  // Test saturating instructions.
  CcTest::InitializeVM();
415
  Isolate* isolate = CcTest::i_isolate();
416 417
  HandleScope scope(isolate);

418
  Assembler assm(AssemblerOptions{});
419 420 421 422 423 424 425 426 427 428 429

  if (CpuFeatures::IsSupported(ARMv7)) {
    CpuFeatures::Scope scope(ARMv7);
    __ usat(r1, 8, Operand(r0));           // Sat 0xFFFF to 0-255 = 0xFF.
    __ usat(r2, 12, Operand(r0, ASR, 9));  // Sat (0xFFFF>>9) to 0-4095 = 0x7F.
    __ usat(r3, 1, Operand(r0, LSL, 16));  // Sat (0xFFFF<<16) to 0-1 = 0x0.
    __ addi(r0, r1, Operand(r2));
    __ addi(r0, r0, Operand(r3));
    __ mov(pc, Operand(lr));

    CodeDesc desc;
430
    assm.GetCode(isolate, &desc);
431
    Object code = isolate->heap()->CreateCode(
432
        desc,
433
        Code::STUB,
434 435 436
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
437
    Code::cast(code)->Print();
438
#endif
439 440
    auto f = GeneratedCode<F_iiiii>::FromCode(*code);
    int res = reinterpret_cast<int>(f.Call(0xFFFF, 0, 0, 0, 0));
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    ::printf("f() = %d\n", res);
    CHECK_EQ(382, res);
  }
}

enum VCVTTypes {
  s32_f64,
  u32_f64
};

static void TestRoundingMode(VCVTTypes types,
                             VFPRoundingMode mode,
                             double value,
                             int expected,
                             bool expected_exception = false) {
  CcTest::InitializeVM();
457
  Isolate* isolate = CcTest::i_isolate();
458 459
  HandleScope scope(isolate);

460
  Assembler assm(AssemblerOptions{});
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

  if (CpuFeatures::IsSupported(VFP3)) {
    CpuFeatures::Scope scope(VFP3);

    Label wrong_exception;

    __ vmrs(r1);
    // Set custom FPSCR.
    __ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask));
    __ orr(r2, r2, Operand(mode));
    __ vmsr(r2);

    // Load value, convert, and move back result to r0 if everything went well.
    __ vmov(d1, value);
    switch (types) {
      case s32_f64:
        __ vcvt_s32_f64(s0, d1, kFPSCRRounding);
        break;

      case u32_f64:
        __ vcvt_u32_f64(s0, d1, kFPSCRRounding);
        break;

      default:
        UNREACHABLE();
        break;
    }
    // Check for vfp exceptions
    __ vmrs(r2);
    __ tst(r2, Operand(kVFPExceptionMask));
    // Check that we behaved as expected.
    __ b(&wrong_exception,
         expected_exception ? eq : ne);
    // There was no exception. Retrieve the result and return.
    __ vmov(r0, s0);
    __ mov(pc, Operand(lr));

    // The exception behaviour is not what we expected.
    // Load a special value and return.
    __ bind(&wrong_exception);
    __ mov(r0, Operand(11223344));
    __ mov(pc, Operand(lr));

    CodeDesc desc;
505
    assm.GetCode(isolate, &desc);
506
    Object code = isolate->heap()->CreateCode(
507
        desc,
508
        Code::STUB,
509 510 511
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
512
    Code::cast(code)->Print();
513
#endif
514 515
    auto f = GeneratedCode<F_iiiii>::FromCode(*code);
    int res = reinterpret_cast<int>(f.Call(0, 0, 0, 0, 0));
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    ::printf("res = %d\n", res);
    CHECK_EQ(expected, res);
  }
}


TEST(7) {
  // Test vfp rounding modes.

  // s32_f64 (double to integer).

  TestRoundingMode(s32_f64, RN,  0, 0);
  TestRoundingMode(s32_f64, RN,  0.5, 0);
  TestRoundingMode(s32_f64, RN, -0.5, 0);
  TestRoundingMode(s32_f64, RN,  1.5, 2);
  TestRoundingMode(s32_f64, RN, -1.5, -2);
  TestRoundingMode(s32_f64, RN,  123.7, 124);
  TestRoundingMode(s32_f64, RN, -123.7, -124);
  TestRoundingMode(s32_f64, RN,  123456.2,  123456);
  TestRoundingMode(s32_f64, RN, -123456.2, -123456);
  TestRoundingMode(s32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt);
  TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true);
  TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true);
  TestRoundingMode(s32_f64, RN, static_cast<double>(kMinInt), kMinInt);
  TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt);
  TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true);
  TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true);

  TestRoundingMode(s32_f64, RM,  0, 0);
  TestRoundingMode(s32_f64, RM,  0.5, 0);
  TestRoundingMode(s32_f64, RM, -0.5, -1);
  TestRoundingMode(s32_f64, RM,  123.7, 123);
  TestRoundingMode(s32_f64, RM, -123.7, -124);
  TestRoundingMode(s32_f64, RM,  123456.2,  123456);
  TestRoundingMode(s32_f64, RM, -123456.2, -123457);
  TestRoundingMode(s32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true);
  TestRoundingMode(s32_f64, RM, static_cast<double>(kMinInt), kMinInt);
  TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true);
  TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt);

  TestRoundingMode(s32_f64, RZ,  0, 0);
  TestRoundingMode(s32_f64, RZ,  0.5, 0);
  TestRoundingMode(s32_f64, RZ, -0.5, 0);
  TestRoundingMode(s32_f64, RZ,  123.7,  123);
  TestRoundingMode(s32_f64, RZ, -123.7, -123);
  TestRoundingMode(s32_f64, RZ,  123456.2,  123456);
  TestRoundingMode(s32_f64, RZ, -123456.2, -123456);
  TestRoundingMode(s32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true);
  TestRoundingMode(s32_f64, RZ, static_cast<double>(kMinInt), kMinInt);
  TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt);
  TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true);


  // u32_f64 (double to integer).

  // Negative values.
  TestRoundingMode(u32_f64, RN, -0.5, 0);
  TestRoundingMode(u32_f64, RN, -123456.7, 0, true);
  TestRoundingMode(u32_f64, RN, static_cast<double>(kMinInt), 0, true);
  TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true);

  TestRoundingMode(u32_f64, RM, -0.5, 0, true);
  TestRoundingMode(u32_f64, RM, -123456.7, 0, true);
  TestRoundingMode(u32_f64, RM, static_cast<double>(kMinInt), 0, true);
  TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true);

  TestRoundingMode(u32_f64, RZ, -0.5, 0);
  TestRoundingMode(u32_f64, RZ, -123456.7, 0, true);
  TestRoundingMode(u32_f64, RZ, static_cast<double>(kMinInt), 0, true);
  TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true);

  // Positive values.
593 594
  // kMaxInt is the maximum *signed* integer: 0x7FFFFFFF.
  static const uint32_t kMaxUInt = 0xFFFFFFFFu;
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
  TestRoundingMode(u32_f64, RZ,  0, 0);
  TestRoundingMode(u32_f64, RZ,  0.5, 0);
  TestRoundingMode(u32_f64, RZ,  123.7,  123);
  TestRoundingMode(u32_f64, RZ,  123456.2,  123456);
  TestRoundingMode(u32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0),
                                static_cast<uint32_t>(kMaxInt) + 1);
  TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt);
  TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true);

  TestRoundingMode(u32_f64, RM,  0, 0);
  TestRoundingMode(u32_f64, RM,  0.5, 0);
  TestRoundingMode(u32_f64, RM,  123.7, 123);
  TestRoundingMode(u32_f64, RM,  123456.2,  123456);
  TestRoundingMode(u32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0),
                                static_cast<uint32_t>(kMaxInt) + 1);
  TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt);
  TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true);

  TestRoundingMode(u32_f64, RN,  0, 0);
  TestRoundingMode(u32_f64, RN,  0.5, 0);
  TestRoundingMode(u32_f64, RN,  1.5, 2);
  TestRoundingMode(u32_f64, RN,  123.7, 124);
  TestRoundingMode(u32_f64, RN,  123456.2,  123456);
  TestRoundingMode(u32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt);
  TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5),
                                static_cast<uint32_t>(kMaxInt) + 1);
  TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt);
  TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true);
  TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true);
}


TEST(8) {
  // Test VFP multi load/store with ia_w.
  CcTest::InitializeVM();
635
  Isolate* isolate = CcTest::i_isolate();
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
  } D;
  D d;

  typedef struct {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
    float g;
    float h;
  } F;
  F f;

  // Create a function that uses vldm/vstm to move some double and
  // single precision values around in memory.
664
  Assembler assm(AssemblerOptions{});
665 666 667 668 669 670 671 672

  if (CpuFeatures::IsSupported(VFP2)) {
    CpuFeatures::Scope scope(VFP2);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

673
    __ addi(r4, r0, Operand(offsetof(D, a)));
674 675 676
    __ vldm(ia_w, r4, d0, d3);
    __ vldm(ia_w, r4, d4, d7);

677
    __ addi(r4, r0, Operand(offsetof(D, a)));
678 679 680
    __ vstm(ia_w, r4, d6, d7);
    __ vstm(ia_w, r4, d0, d5);

681
    __ addi(r4, r1, Operand(offsetof(F, a)));
682 683 684
    __ vldm(ia_w, r4, s0, s3);
    __ vldm(ia_w, r4, s4, s7);

685
    __ addi(r4, r1, Operand(offsetof(F, a)));
686 687 688 689 690 691
    __ vstm(ia_w, r4, s6, s7);
    __ vstm(ia_w, r4, s0, s5);

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
692
    assm.GetCode(isolate, &desc);
693
    Object code = isolate->heap()->CreateCode(
694
        desc,
695
        Code::STUB,
696 697 698
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
699
    Code::cast(code)->Print();
700
#endif
701
    auto fn = GeneratedCode<F_ppiii>::FromCode(*code);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    d.a = 1.1;
    d.b = 2.2;
    d.c = 3.3;
    d.d = 4.4;
    d.e = 5.5;
    d.f = 6.6;
    d.g = 7.7;
    d.h = 8.8;

    f.a = 1.0;
    f.b = 2.0;
    f.c = 3.0;
    f.d = 4.0;
    f.e = 5.0;
    f.f = 6.0;
    f.g = 7.0;
    f.h = 8.0;

720
    fn.Call(&d, &f, 0, 0, 0);
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

    CHECK_EQ(7.7, d.a);
    CHECK_EQ(8.8, d.b);
    CHECK_EQ(1.1, d.c);
    CHECK_EQ(2.2, d.d);
    CHECK_EQ(3.3, d.e);
    CHECK_EQ(4.4, d.f);
    CHECK_EQ(5.5, d.g);
    CHECK_EQ(6.6, d.h);

    CHECK_EQ(7.0, f.a);
    CHECK_EQ(8.0, f.b);
    CHECK_EQ(1.0, f.c);
    CHECK_EQ(2.0, f.d);
    CHECK_EQ(3.0, f.e);
    CHECK_EQ(4.0, f.f);
    CHECK_EQ(5.0, f.g);
    CHECK_EQ(6.0, f.h);
  }
}


TEST(9) {
  // Test VFP multi load/store with ia.
  CcTest::InitializeVM();
746
  Isolate* isolate = CcTest::i_isolate();
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
  } D;
  D d;

  typedef struct {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
    float g;
    float h;
  } F;
  F f;

  // Create a function that uses vldm/vstm to move some double and
  // single precision values around in memory.
775
  Assembler assm(AssemblerOptions{});
776 777 778 779 780 781 782 783

  if (CpuFeatures::IsSupported(VFP2)) {
    CpuFeatures::Scope scope(VFP2);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

784
    __ addi(r4, r0, Operand(offsetof(D, a)));
785 786 787 788
    __ vldm(ia, r4, d0, d3);
    __ addi(r4, r4, Operand(4 * 8));
    __ vldm(ia, r4, d4, d7);

789
    __ addi(r4, r0, Operand(offsetof(D, a)));
790 791 792 793
    __ vstm(ia, r4, d6, d7);
    __ addi(r4, r4, Operand(2 * 8));
    __ vstm(ia, r4, d0, d5);

794
    __ addi(r4, r1, Operand(offsetof(F, a)));
795 796 797 798
    __ vldm(ia, r4, s0, s3);
    __ addi(r4, r4, Operand(4 * 4));
    __ vldm(ia, r4, s4, s7);

799
    __ addi(r4, r1, Operand(offsetof(F, a)));
800 801 802 803 804 805 806
    __ vstm(ia, r4, s6, s7);
    __ addi(r4, r4, Operand(2 * 4));
    __ vstm(ia, r4, s0, s5);

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
807
    assm.GetCode(isolate, &desc);
808
    Object code = isolate->heap()->CreateCode(
809
        desc,
810
        Code::STUB,
811 812 813
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
814
    Code::cast(code)->Print();
815
#endif
816
    auto fn = GeneratedCode<F_ppiii>::FromCode(*code);
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
    d.a = 1.1;
    d.b = 2.2;
    d.c = 3.3;
    d.d = 4.4;
    d.e = 5.5;
    d.f = 6.6;
    d.g = 7.7;
    d.h = 8.8;

    f.a = 1.0;
    f.b = 2.0;
    f.c = 3.0;
    f.d = 4.0;
    f.e = 5.0;
    f.f = 6.0;
    f.g = 7.0;
    f.h = 8.0;

835
    fn.Call(&d, &f, 0, 0, 0);
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

    CHECK_EQ(7.7, d.a);
    CHECK_EQ(8.8, d.b);
    CHECK_EQ(1.1, d.c);
    CHECK_EQ(2.2, d.d);
    CHECK_EQ(3.3, d.e);
    CHECK_EQ(4.4, d.f);
    CHECK_EQ(5.5, d.g);
    CHECK_EQ(6.6, d.h);

    CHECK_EQ(7.0, f.a);
    CHECK_EQ(8.0, f.b);
    CHECK_EQ(1.0, f.c);
    CHECK_EQ(2.0, f.d);
    CHECK_EQ(3.0, f.e);
    CHECK_EQ(4.0, f.f);
    CHECK_EQ(5.0, f.g);
    CHECK_EQ(6.0, f.h);
  }
}


TEST(10) {
  // Test VFP multi load/store with db_w.
  CcTest::InitializeVM();
861
  Isolate* isolate = CcTest::i_isolate();
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
  } D;
  D d;

  typedef struct {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
    float g;
    float h;
  } F;
  F f;

  // Create a function that uses vldm/vstm to move some double and
  // single precision values around in memory.
890
  Assembler assm(AssemblerOptions{});
891 892 893 894 895 896 897 898

  if (CpuFeatures::IsSupported(VFP2)) {
    CpuFeatures::Scope scope(VFP2);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

899
    __ addi(r4, r0, Operand(offsetof(D, h) + 8));
900 901 902
    __ vldm(db_w, r4, d4, d7);
    __ vldm(db_w, r4, d0, d3);

903
    __ addi(r4, r0, Operand(offsetof(D, h) + 8));
904 905 906
    __ vstm(db_w, r4, d0, d5);
    __ vstm(db_w, r4, d6, d7);

907
    __ addi(r4, r1, Operand(offsetof(F, h) + 4));
908 909 910
    __ vldm(db_w, r4, s4, s7);
    __ vldm(db_w, r4, s0, s3);

911
    __ addi(r4, r1, Operand(offsetof(F, h) + 4));
912 913 914 915 916 917
    __ vstm(db_w, r4, s0, s5);
    __ vstm(db_w, r4, s6, s7);

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
918
    assm.GetCode(isolate, &desc);
919
    Object code = isolate->heap()->CreateCode(
920
        desc,
921
        Code::STUB,
922 923 924
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
925
    Code::cast(code)->Print();
926
#endif
927
    auto fn = GeneratedCode<F_ppiii>::FromCode(*code);
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
    d.a = 1.1;
    d.b = 2.2;
    d.c = 3.3;
    d.d = 4.4;
    d.e = 5.5;
    d.f = 6.6;
    d.g = 7.7;
    d.h = 8.8;

    f.a = 1.0;
    f.b = 2.0;
    f.c = 3.0;
    f.d = 4.0;
    f.e = 5.0;
    f.f = 6.0;
    f.g = 7.0;
    f.h = 8.0;

946
    fn.Call(&d, &f, 0, 0, 0);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

    CHECK_EQ(7.7, d.a);
    CHECK_EQ(8.8, d.b);
    CHECK_EQ(1.1, d.c);
    CHECK_EQ(2.2, d.d);
    CHECK_EQ(3.3, d.e);
    CHECK_EQ(4.4, d.f);
    CHECK_EQ(5.5, d.g);
    CHECK_EQ(6.6, d.h);

    CHECK_EQ(7.0, f.a);
    CHECK_EQ(8.0, f.b);
    CHECK_EQ(1.0, f.c);
    CHECK_EQ(2.0, f.d);
    CHECK_EQ(3.0, f.e);
    CHECK_EQ(4.0, f.f);
    CHECK_EQ(5.0, f.g);
    CHECK_EQ(6.0, f.h);
  }
}


TEST(11) {
  // Test instructions using the carry flag.
  CcTest::InitializeVM();
972
  Isolate* isolate = CcTest::i_isolate();
973 974 975 976 977 978 979 980 981 982
  HandleScope scope(isolate);

  typedef struct {
    int32_t a;
    int32_t b;
    int32_t c;
    int32_t d;
  } I;
  I i;

983 984
  i.a = 0xABCD0001;
  i.b = 0xABCD0000;
985

986
  Assembler assm(AssemblerOptions{});
987 988

  // Test HeapObject untagging.
989
  __ ldr(r1, MemOperand(r0, offsetof(I, a)));
990 991
  __ mov(r1, Operand(r1, ASR, 1), SetCC);
  __ adc(r1, r1, Operand(r1), LeaveCC, cs);
992
  __ str(r1, MemOperand(r0, offsetof(I, a)));
993

994
  __ ldr(r2, MemOperand(r0, offsetof(I, b)));
995 996
  __ mov(r2, Operand(r2, ASR, 1), SetCC);
  __ adc(r2, r2, Operand(r2), LeaveCC, cs);
997
  __ str(r2, MemOperand(r0, offsetof(I, b)));
998 999

  // Test corner cases.
1000
  __ mov(r1, Operand(0xFFFFFFFF));
1001 1002 1003
  __ mov(r2, Operand::Zero());
  __ mov(r3, Operand(r1, ASR, 1), SetCC);  // Set the carry.
  __ adc(r3, r1, Operand(r2));
1004
  __ str(r3, MemOperand(r0, offsetof(I, c)));
1005

1006
  __ mov(r1, Operand(0xFFFFFFFF));
1007 1008 1009
  __ mov(r2, Operand::Zero());
  __ mov(r3, Operand(r2, ASR, 1), SetCC);  // Unset the carry.
  __ adc(r3, r1, Operand(r2));
1010
  __ str(r3, MemOperand(r0, offsetof(I, d)));
1011 1012 1013 1014

  __ mov(pc, Operand(lr));

  CodeDesc desc;
1015
  assm.GetCode(isolate, &desc);
1016
  Object code = isolate->heap()->CreateCode(
1017
      desc,
1018
      Code::STUB,
1019 1020 1021
      Handle<Code>())->ToObjectChecked();
  CHECK(code->IsCode());
#ifdef DEBUG
1022
  Code::cast(code)->Print();
1023
#endif
1024 1025
  auto f = GeneratedCode<F_piiii>::FromCode(*code);
  f.Call(&i, 0, 0, 0, 0);
1026

1027 1028
  CHECK_EQ(0xABCD0001, i.a);
  CHECK_EQ(static_cast<int32_t>(0xABCD0000) >> 1, i.b);
1029
  CHECK_EQ(0x00000000, i.c);
1030
  CHECK_EQ(0xFFFFFFFF, i.d);
1031 1032 1033 1034 1035 1036
}


TEST(12) {
  // Test chaining of label usages within instructions (issue 1644).
  CcTest::InitializeVM();
1037
  Isolate* isolate = CcTest::i_isolate();
1038 1039
  HandleScope scope(isolate);

1040
  Assembler assm(AssemblerOptions{});
1041 1042 1043 1044 1045 1046 1047 1048 1049
  Label target;
  __ b(eq, &target);
  __ b(ne, &target);
  __ bind(&target);
  __ nop();
}
#endif

#undef __
1050 1051 1052

}  // namespace internal
}  // namespace v8