macro-assembler-ia32.cc 112 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5
#include "src/v8.h"
6

7
#if V8_TARGET_ARCH_IA32
8

9
#include "src/base/bits.h"
10
#include "src/base/division-by-constant.h"
11 12 13 14 15
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/cpu-profiler.h"
#include "src/debug.h"
#include "src/isolate-inl.h"
16
#include "src/runtime/runtime.h"
17
#include "src/serialize.h"
18

19 20
namespace v8 {
namespace internal {
21

22 23 24
// -------------------------------------------------------------------------
// MacroAssembler implementation.

25 26
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
    : Assembler(arg_isolate, buffer, size),
27
      generating_stub_(false),
28
      has_frame_(false) {
29
  if (isolate() != NULL) {
30
    // TODO(titzer): should we just use a null handle here instead?
31 32 33
    code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
                                  isolate());
  }
34 35 36
}


37
void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
38
  DCHECK(!r.IsDouble());
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  if (r.IsInteger8()) {
    movsx_b(dst, src);
  } else if (r.IsUInteger8()) {
    movzx_b(dst, src);
  } else if (r.IsInteger16()) {
    movsx_w(dst, src);
  } else if (r.IsUInteger16()) {
    movzx_w(dst, src);
  } else {
    mov(dst, src);
  }
}


void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
54
  DCHECK(!r.IsDouble());
55 56 57 58 59
  if (r.IsInteger8() || r.IsUInteger8()) {
    mov_b(dst, src);
  } else if (r.IsInteger16() || r.IsUInteger16()) {
    mov_w(dst, src);
  } else {
60 61 62 63 64
    if (r.IsHeapObject()) {
      AssertNotSmi(src);
    } else if (r.IsSmi()) {
      AssertSmi(src);
    }
65 66 67 68 69
    mov(dst, src);
  }
}


70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
  if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
    Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
    mov(destination, value);
    return;
  }
  ExternalReference roots_array_start =
      ExternalReference::roots_array_start(isolate());
  mov(destination, Immediate(index));
  mov(destination, Operand::StaticArray(destination,
                                        times_pointer_size,
                                        roots_array_start));
}


void MacroAssembler::StoreRoot(Register source,
                               Register scratch,
                               Heap::RootListIndex index) {
88
  DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  ExternalReference roots_array_start =
      ExternalReference::roots_array_start(isolate());
  mov(scratch, Immediate(index));
  mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
      source);
}


void MacroAssembler::CompareRoot(Register with,
                                 Register scratch,
                                 Heap::RootListIndex index) {
  ExternalReference roots_array_start =
      ExternalReference::roots_array_start(isolate());
  mov(scratch, Immediate(index));
  cmp(with, Operand::StaticArray(scratch,
                                times_pointer_size,
                                roots_array_start));
}


void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
110
  DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
111 112 113 114 115 116 117
  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
  cmp(with, value);
}


void MacroAssembler::CompareRoot(const Operand& with,
                                 Heap::RootListIndex index) {
118
  DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
119 120 121 122 123
  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
  cmp(with, value);
}


124 125 126 127 128 129
void MacroAssembler::InNewSpace(
    Register object,
    Register scratch,
    Condition cc,
    Label* condition_met,
    Label::Distance condition_met_distance) {
130
  DCHECK(cc == equal || cc == not_equal);
131 132 133 134
  if (scratch.is(object)) {
    and_(scratch, Immediate(~Page::kPageAlignmentMask));
  } else {
    mov(scratch, Immediate(~Page::kPageAlignmentMask));
135
    and_(scratch, object);
136
  }
137
  // Check that we can use a test_b.
138 139
  DCHECK(MemoryChunk::IN_FROM_SPACE < 8);
  DCHECK(MemoryChunk::IN_TO_SPACE < 8);
140 141 142 143 144 145 146
  int mask = (1 << MemoryChunk::IN_FROM_SPACE)
           | (1 << MemoryChunk::IN_TO_SPACE);
  // If non-zero, the page belongs to new-space.
  test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
         static_cast<uint8_t>(mask));
  j(cc, condition_met, condition_met_distance);
}
147

148

149
void MacroAssembler::RememberedSetHelper(
150
    Register object,  // Only used for debug checks.
151 152 153 154 155
    Register addr,
    Register scratch,
    SaveFPRegsMode save_fp,
    MacroAssembler::RememberedSetFinalAction and_then) {
  Label done;
156
  if (emit_debug_code()) {
157 158 159 160 161
    Label ok;
    JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
    int3();
    bind(&ok);
  }
162 163 164 165 166 167 168
  // Load store buffer top.
  ExternalReference store_buffer =
      ExternalReference::store_buffer_top(isolate());
  mov(scratch, Operand::StaticVariable(store_buffer));
  // Store pointer to buffer.
  mov(Operand(scratch, 0), addr);
  // Increment buffer top.
169
  add(scratch, Immediate(kPointerSize));
170 171 172 173 174 175 176 177 178 179 180
  // Write back new top of buffer.
  mov(Operand::StaticVariable(store_buffer), scratch);
  // Call stub on end of buffer.
  // Check for end of buffer.
  test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
  if (and_then == kReturnAtEnd) {
    Label buffer_overflowed;
    j(not_equal, &buffer_overflowed, Label::kNear);
    ret(0);
    bind(&buffer_overflowed);
  } else {
181
    DCHECK(and_then == kFallThroughAtEnd);
182 183
    j(equal, &done, Label::kNear);
  }
184
  StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
185 186 187 188
  CallStub(&store_buffer_overflow);
  if (and_then == kReturnAtEnd) {
    ret(0);
  } else {
189
    DCHECK(and_then == kFallThroughAtEnd);
190 191
    bind(&done);
  }
192 193 194
}


195 196 197 198
void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
                                        XMMRegister scratch_reg,
                                        Register result_reg) {
  Label done;
199
  Label conv_failure;
200
  xorps(scratch_reg, scratch_reg);
201
  cvtsd2si(result_reg, input_reg);
202 203
  test(result_reg, Immediate(0xFFFFFF00));
  j(zero, &done, Label::kNear);
204 205
  cmp(result_reg, Immediate(0x1));
  j(overflow, &conv_failure, Label::kNear);
206
  mov(result_reg, Immediate(0));
207
  setcc(sign, result_reg);
208 209 210 211
  sub(result_reg, Immediate(1));
  and_(result_reg, Immediate(255));
  jmp(&done, Label::kNear);
  bind(&conv_failure);
212
  Move(result_reg, Immediate(0));
213 214
  ucomisd(input_reg, scratch_reg);
  j(below, &done, Label::kNear);
215
  Move(result_reg, Immediate(255));
216 217 218 219 220 221 222 223 224 225 226 227 228 229
  bind(&done);
}


void MacroAssembler::ClampUint8(Register reg) {
  Label done;
  test(reg, Immediate(0xFFFFFF00));
  j(zero, &done, Label::kNear);
  setcc(negative, reg);  // 1 if negative, 0 if positive.
  dec_b(reg);  // 0 if negative, 255 if positive.
  bind(&done);
}


230 231 232
void MacroAssembler::SlowTruncateToI(Register result_reg,
                                     Register input_reg,
                                     int offset) {
233
  DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
234
  call(stub.GetCode(), RelocInfo::CODE_TARGET);
235 236 237 238 239 240 241
}


void MacroAssembler::TruncateDoubleToI(Register result_reg,
                                       XMMRegister input_reg) {
  Label done;
  cvttsd2si(result_reg, Operand(input_reg));
242 243
  cmp(result_reg, 0x1);
  j(no_overflow, &done, Label::kNear);
244 245

  sub(esp, Immediate(kDoubleSize));
246
  movsd(MemOperand(esp, 0), input_reg);
247 248 249 250 251 252
  SlowTruncateToI(result_reg, esp, 0);
  add(esp, Immediate(kDoubleSize));
  bind(&done);
}


253
void MacroAssembler::DoubleToI(Register result_reg, XMMRegister input_reg,
254 255
                               XMMRegister scratch,
                               MinusZeroMode minus_zero_mode,
256 257
                               Label* lost_precision, Label* is_nan,
                               Label* minus_zero, Label::Distance dst) {
258
  DCHECK(!input_reg.is(scratch));
259
  cvttsd2si(result_reg, Operand(input_reg));
260
  Cvtsi2sd(scratch, Operand(result_reg));
261
  ucomisd(scratch, input_reg);
262 263
  j(not_equal, lost_precision, dst);
  j(parity_even, is_nan, dst);
264
  if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
265 266 267
    Label done;
    // The integer converted back is equal to the original. We
    // only have to test if we got -0 as an input.
268 269 270
    test(result_reg, Operand(result_reg));
    j(not_zero, &done, Label::kNear);
    movmskpd(result_reg, input_reg);
271 272
    // Bit 0 contains the sign of the double in input_reg.
    // If input was positive, we are ok and return 0, otherwise
273
    // jump to minus_zero.
274
    and_(result_reg, 1);
275
    j(not_zero, minus_zero, dst);
276
    bind(&done);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  }
}


void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
                                           Register input_reg) {
  Label done, slow_case;

  if (CpuFeatures::IsSupported(SSE3)) {
    CpuFeatureScope scope(this, SSE3);
    Label convert;
    // Use more powerful conversion when sse3 is available.
    // Load x87 register with heap number.
    fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
    // Get exponent alone and check for too-big exponent.
    mov(result_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
    and_(result_reg, HeapNumber::kExponentMask);
    const uint32_t kTooBigExponent =
        (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
    cmp(Operand(result_reg), Immediate(kTooBigExponent));
    j(greater_equal, &slow_case, Label::kNear);

    // Reserve space for 64 bit answer.
    sub(Operand(esp), Immediate(kDoubleSize));
    // Do conversion, which cannot fail because we checked the exponent.
    fisttp_d(Operand(esp, 0));
    mov(result_reg, Operand(esp, 0));  // Low word of answer is the result.
    add(Operand(esp), Immediate(kDoubleSize));
    jmp(&done, Label::kNear);

    // Slow case.
    bind(&slow_case);
    if (input_reg.is(result_reg)) {
      // Input is clobbered. Restore number from fpu stack
      sub(Operand(esp), Immediate(kDoubleSize));
      fstp_d(Operand(esp, 0));
      SlowTruncateToI(result_reg, esp, 0);
      add(esp, Immediate(kDoubleSize));
    } else {
      fstp(0);
      SlowTruncateToI(result_reg, input_reg);
    }
319
  } else {
320
    movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
321
    cvttsd2si(result_reg, Operand(xmm0));
322 323
    cmp(result_reg, 0x1);
    j(no_overflow, &done, Label::kNear);
324 325 326 327 328 329 330 331 332 333 334 335 336
    // Check if the input was 0x8000000 (kMinInt).
    // If no, then we got an overflow and we deoptimize.
    ExternalReference min_int = ExternalReference::address_of_min_int();
    ucomisd(xmm0, Operand::StaticVariable(min_int));
    j(not_equal, &slow_case, Label::kNear);
    j(parity_even, &slow_case, Label::kNear);  // NaN.
    jmp(&done, Label::kNear);

    // Slow case.
    bind(&slow_case);
    if (input_reg.is(result_reg)) {
      // Input is clobbered. Restore number from double scratch.
      sub(esp, Immediate(kDoubleSize));
337
      movsd(MemOperand(esp, 0), xmm0);
338 339 340 341 342 343 344 345 346 347
      SlowTruncateToI(result_reg, esp, 0);
      add(esp, Immediate(kDoubleSize));
    } else {
      SlowTruncateToI(result_reg, input_reg);
    }
  }
  bind(&done);
}


348
void MacroAssembler::LoadUint32(XMMRegister dst, const Operand& src) {
349 350
  Label done;
  cmp(src, Immediate(0));
351
  ExternalReference uint32_bias = ExternalReference::address_of_uint32_bias();
352
  Cvtsi2sd(dst, src);
353
  j(not_sign, &done, Label::kNear);
354
  addsd(dst, Operand::StaticVariable(uint32_bias));
355 356 357 358
  bind(&done);
}


359 360 361 362 363 364 365 366
void MacroAssembler::RecordWriteArray(
    Register object,
    Register value,
    Register index,
    SaveFPRegsMode save_fp,
    RememberedSetAction remembered_set_action,
    SmiCheck smi_check,
    PointersToHereCheck pointers_to_here_check_for_value) {
367 368 369 370 371 372
  // First, check if a write barrier is even needed. The tests below
  // catch stores of Smis.
  Label done;

  // Skip barrier if writing a smi.
  if (smi_check == INLINE_SMI_CHECK) {
373
    DCHECK_EQ(0, kSmiTag);
374 375 376 377 378 379 380 381 382 383 384
    test(value, Immediate(kSmiTagMask));
    j(zero, &done);
  }

  // Array access: calculate the destination address in the same manner as
  // KeyedStoreIC::GenerateGeneric.  Multiply a smi by 2 to get an offset
  // into an array of words.
  Register dst = index;
  lea(dst, Operand(object, index, times_half_pointer_size,
                   FixedArray::kHeaderSize - kHeapObjectTag));

385 386
  RecordWrite(object, dst, value, save_fp, remembered_set_action,
              OMIT_SMI_CHECK, pointers_to_here_check_for_value);
387 388 389 390 391 392

  bind(&done);

  // Clobber clobbered input registers when running with the debug-code flag
  // turned on to provoke errors.
  if (emit_debug_code()) {
393 394
    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
    mov(index, Immediate(bit_cast<int32_t>(kZapValue)));
395 396 397 398
  }
}


399 400 401 402 403 404 405
void MacroAssembler::RecordWriteField(
    Register object,
    int offset,
    Register value,
    Register dst,
    SaveFPRegsMode save_fp,
    RememberedSetAction remembered_set_action,
406 407
    SmiCheck smi_check,
    PointersToHereCheck pointers_to_here_check_for_value) {
408
  // First, check if a write barrier is even needed. The tests below
409
  // catch stores of Smis.
410
  Label done;
411

412
  // Skip barrier if writing a smi.
413 414 415
  if (smi_check == INLINE_SMI_CHECK) {
    JumpIfSmi(value, &done, Label::kNear);
  }
416

417 418
  // Although the object register is tagged, the offset is relative to the start
  // of the object, so so offset must be a multiple of kPointerSize.
419
  DCHECK(IsAligned(offset, kPointerSize));
420

421 422 423
  lea(dst, FieldOperand(object, offset));
  if (emit_debug_code()) {
    Label ok;
424
    test_b(dst, (1 << kPointerSizeLog2) - 1);
425 426 427
    j(zero, &ok, Label::kNear);
    int3();
    bind(&ok);
428
  }
429

430 431
  RecordWrite(object, dst, value, save_fp, remembered_set_action,
              OMIT_SMI_CHECK, pointers_to_here_check_for_value);
432 433

  bind(&done);
434

435
  // Clobber clobbered input registers when running with the debug-code flag
436
  // turned on to provoke errors.
437
  if (emit_debug_code()) {
438 439
    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
    mov(dst, Immediate(bit_cast<int32_t>(kZapValue)));
440
  }
441 442 443
}


444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
void MacroAssembler::RecordWriteForMap(
    Register object,
    Handle<Map> map,
    Register scratch1,
    Register scratch2,
    SaveFPRegsMode save_fp) {
  Label done;

  Register address = scratch1;
  Register value = scratch2;
  if (emit_debug_code()) {
    Label ok;
    lea(address, FieldOperand(object, HeapObject::kMapOffset));
    test_b(address, (1 << kPointerSizeLog2) - 1);
    j(zero, &ok, Label::kNear);
    int3();
    bind(&ok);
  }

463 464 465
  DCHECK(!object.is(value));
  DCHECK(!object.is(address));
  DCHECK(!value.is(address));
466
  AssertNotSmi(object);
467 468 469 470 471

  if (!FLAG_incremental_marking) {
    return;
  }

472 473 474
  // Compute the address.
  lea(address, FieldOperand(object, HeapObject::kMapOffset));

475 476 477 478
  // A single check of the map's pages interesting flag suffices, since it is
  // only set during incremental collection, and then it's also guaranteed that
  // the from object's page's interesting flag is also set.  This optimization
  // relies on the fact that maps can never be in new space.
479
  DCHECK(!isolate()->heap()->InNewSpace(*map));
480 481 482 483 484 485
  CheckPageFlagForMap(map,
                      MemoryChunk::kPointersToHereAreInterestingMask,
                      zero,
                      &done,
                      Label::kNear);

486 487
  RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET,
                       save_fp);
488 489 490 491
  CallStub(&stub);

  bind(&done);

492 493 494 495
  // Count number of write barriers in generated code.
  isolate()->counters()->write_barriers_static()->Increment();
  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);

496 497 498
  // Clobber clobbered input registers when running with the debug-code flag
  // turned on to provoke errors.
  if (emit_debug_code()) {
499 500 501
    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
    mov(scratch1, Immediate(bit_cast<int32_t>(kZapValue)));
    mov(scratch2, Immediate(bit_cast<int32_t>(kZapValue)));
502 503 504 505
  }
}


506 507 508 509 510 511 512 513
void MacroAssembler::RecordWrite(
    Register object,
    Register address,
    Register value,
    SaveFPRegsMode fp_mode,
    RememberedSetAction remembered_set_action,
    SmiCheck smi_check,
    PointersToHereCheck pointers_to_here_check_for_value) {
514 515 516
  DCHECK(!object.is(value));
  DCHECK(!object.is(address));
  DCHECK(!value.is(address));
517
  AssertNotSmi(object);
518 519 520 521 522 523

  if (remembered_set_action == OMIT_REMEMBERED_SET &&
      !FLAG_incremental_marking) {
    return;
  }

524
  if (emit_debug_code()) {
525 526 527 528 529 530 531
    Label ok;
    cmp(value, Operand(address, 0));
    j(equal, &ok, Label::kNear);
    int3();
    bind(&ok);
  }

532 533 534 535
  // First, check if a write barrier is even needed. The tests below
  // catch stores of Smis and stores into young gen.
  Label done;

536 537 538 539 540
  if (smi_check == INLINE_SMI_CHECK) {
    // Skip barrier if writing a smi.
    JumpIfSmi(value, &done, Label::kNear);
  }

541 542 543 544 545 546 547 548
  if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
    CheckPageFlag(value,
                  value,  // Used as scratch.
                  MemoryChunk::kPointersToHereAreInterestingMask,
                  zero,
                  &done,
                  Label::kNear);
  }
549 550 551 552 553 554 555
  CheckPageFlag(object,
                value,  // Used as scratch.
                MemoryChunk::kPointersFromHereAreInterestingMask,
                zero,
                &done,
                Label::kNear);

556 557
  RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
                       fp_mode);
558
  CallStub(&stub);
559 560 561

  bind(&done);

562 563 564 565
  // Count number of write barriers in generated code.
  isolate()->counters()->write_barriers_static()->Increment();
  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);

566
  // Clobber clobbered registers when running with the debug-code flag
567
  // turned on to provoke errors.
568
  if (emit_debug_code()) {
569 570
    mov(address, Immediate(bit_cast<int32_t>(kZapValue)));
    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
571 572 573 574
  }
}


serya@chromium.org's avatar
serya@chromium.org committed
575
void MacroAssembler::DebugBreak() {
576
  Move(eax, Immediate(0));
577
  mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
578
  CEntryStub ces(isolate(), 1);
579
  call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
serya@chromium.org's avatar
serya@chromium.org committed
580
}
581

582

583 584 585 586 587 588
void MacroAssembler::Cvtsi2sd(XMMRegister dst, const Operand& src) {
  xorps(dst, dst);
  cvtsi2sd(dst, src);
}


589 590
bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
  static const int kMaxImmediateBits = 17;
591
  if (!RelocInfo::IsNone(x.rmode_)) return false;
592 593 594 595
  return !is_intn(x.x_, kMaxImmediateBits);
}


596
void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
597
  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
598
    Move(dst, Immediate(x.x_ ^ jit_cookie()));
599 600
    xor_(dst, jit_cookie());
  } else {
601
    Move(dst, x);
602 603 604 605 606 607 608 609 610 611 612 613 614 615
  }
}


void MacroAssembler::SafePush(const Immediate& x) {
  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
    push(Immediate(x.x_ ^ jit_cookie()));
    xor_(Operand(esp, 0), Immediate(jit_cookie()));
  } else {
    push(x);
  }
}


616 617 618 619 620 621 622 623 624 625 626 627 628 629
void MacroAssembler::CmpObjectType(Register heap_object,
                                   InstanceType type,
                                   Register map) {
  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
  CmpInstanceType(map, type);
}


void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
  cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
       static_cast<int8_t>(type));
}


630 631 632
void MacroAssembler::CheckFastElements(Register map,
                                       Label* fail,
                                       Label::Distance distance) {
633 634 635 636
  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
  STATIC_ASSERT(FAST_ELEMENTS == 2);
  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
637
  cmpb(FieldOperand(map, Map::kBitField2Offset),
638
       Map::kMaximumBitField2FastHoleyElementValue);
639 640 641 642
  j(above, fail, distance);
}


643 644 645
void MacroAssembler::CheckFastObjectElements(Register map,
                                             Label* fail,
                                             Label::Distance distance) {
646 647 648 649
  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
  STATIC_ASSERT(FAST_ELEMENTS == 2);
  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
650
  cmpb(FieldOperand(map, Map::kBitField2Offset),
651
       Map::kMaximumBitField2FastHoleySmiElementValue);
652 653
  j(below_equal, fail, distance);
  cmpb(FieldOperand(map, Map::kBitField2Offset),
654
       Map::kMaximumBitField2FastHoleyElementValue);
655 656 657 658
  j(above, fail, distance);
}


659 660 661 662 663
void MacroAssembler::CheckFastSmiElements(Register map,
                                          Label* fail,
                                          Label::Distance distance) {
  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
664
  cmpb(FieldOperand(map, Map::kBitField2Offset),
665
       Map::kMaximumBitField2FastHoleySmiElementValue);
666 667 668 669
  j(above, fail, distance);
}


670 671 672 673 674 675 676
void MacroAssembler::StoreNumberToDoubleElements(
    Register maybe_number,
    Register elements,
    Register key,
    Register scratch1,
    XMMRegister scratch2,
    Label* fail,
677
    int elements_offset) {
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
  Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
  JumpIfSmi(maybe_number, &smi_value, Label::kNear);

  CheckMap(maybe_number,
           isolate()->factory()->heap_number_map(),
           fail,
           DONT_DO_SMI_CHECK);

  // Double value, canonicalize NaN.
  uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
  cmp(FieldOperand(maybe_number, offset),
      Immediate(kNaNOrInfinityLowerBoundUpper32));
  j(greater_equal, &maybe_nan, Label::kNear);

  bind(&not_nan);
  ExternalReference canonical_nan_reference =
      ExternalReference::address_of_canonical_non_hole_nan();
695 696 697 698 699
  movsd(scratch2, FieldOperand(maybe_number, HeapNumber::kValueOffset));
  bind(&have_double_value);
  movsd(FieldOperand(elements, key, times_4,
                     FixedDoubleArray::kHeaderSize - elements_offset),
        scratch2);
700 701 702 703 704 705 706 707 708
  jmp(&done);

  bind(&maybe_nan);
  // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
  // it's an Infinity, and the non-NaN code path applies.
  j(greater, &is_nan, Label::kNear);
  cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
  j(zero, &not_nan);
  bind(&is_nan);
709
  movsd(scratch2, Operand::StaticVariable(canonical_nan_reference));
710 711 712 713 714 715 716
  jmp(&have_double_value, Label::kNear);

  bind(&smi_value);
  // Value is a smi. Convert to a double and store.
  // Preserve original value.
  mov(scratch1, maybe_number);
  SmiUntag(scratch1);
717 718 719 720
  Cvtsi2sd(scratch2, scratch1);
  movsd(FieldOperand(elements, key, times_4,
                     FixedDoubleArray::kHeaderSize - elements_offset),
        scratch2);
721 722 723 724
  bind(&done);
}


725
void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
726 727 728 729
  cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
}


730 731 732
void MacroAssembler::CheckMap(Register obj,
                              Handle<Map> map,
                              Label* fail,
733
                              SmiCheckType smi_check_type) {
734
  if (smi_check_type == DO_SMI_CHECK) {
735
    JumpIfSmi(obj, fail);
736
  }
737

738
  CompareMap(obj, map);
739 740 741 742
  j(not_equal, fail);
}


danno@chromium.org's avatar
danno@chromium.org committed
743
void MacroAssembler::DispatchMap(Register obj,
744
                                 Register unused,
danno@chromium.org's avatar
danno@chromium.org committed
745 746 747 748
                                 Handle<Map> map,
                                 Handle<Code> success,
                                 SmiCheckType smi_check_type) {
  Label fail;
749
  if (smi_check_type == DO_SMI_CHECK) {
danno@chromium.org's avatar
danno@chromium.org committed
750 751 752 753 754 755 756 757 758
    JumpIfSmi(obj, &fail);
  }
  cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
  j(equal, success);

  bind(&fail);
}


759 760 761 762 763
Condition MacroAssembler::IsObjectStringType(Register heap_object,
                                             Register map,
                                             Register instance_type) {
  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
764
  STATIC_ASSERT(kNotStringTag != 0);
765 766 767 768 769
  test(instance_type, Immediate(kIsNotStringMask));
  return zero;
}


770 771 772 773 774
Condition MacroAssembler::IsObjectNameType(Register heap_object,
                                           Register map,
                                           Register instance_type) {
  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
775
  cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
776 777 778 779
  return below_equal;
}


780 781 782 783 784 785 786 787 788 789 790 791 792
void MacroAssembler::IsObjectJSObjectType(Register heap_object,
                                          Register map,
                                          Register scratch,
                                          Label* fail) {
  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
  IsInstanceJSObjectType(map, scratch, fail);
}


void MacroAssembler::IsInstanceJSObjectType(Register map,
                                            Register scratch,
                                            Label* fail) {
  movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
793
  sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
794 795
  cmp(scratch,
      LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
796 797 798 799
  j(above, fail);
}


800
void MacroAssembler::FCmp() {
801 802
  fucomip();
  fstp(0);
803 804 805
}


806 807 808 809 810 811
void MacroAssembler::AssertNumber(Register object) {
  if (emit_debug_code()) {
    Label ok;
    JumpIfSmi(object, &ok);
    cmp(FieldOperand(object, HeapObject::kMapOffset),
        isolate()->factory()->heap_number_map());
812
    Check(equal, kOperandNotANumber);
813 814
    bind(&ok);
  }
815 816 817
}


818 819 820
void MacroAssembler::AssertSmi(Register object) {
  if (emit_debug_code()) {
    test(object, Immediate(kSmiTagMask));
821
    Check(equal, kOperandIsNotASmi);
822
  }
823 824 825
}


826 827 828
void MacroAssembler::AssertString(Register object) {
  if (emit_debug_code()) {
    test(object, Immediate(kSmiTagMask));
829
    Check(not_equal, kOperandIsASmiAndNotAString);
830 831 832 833
    push(object);
    mov(object, FieldOperand(object, HeapObject::kMapOffset));
    CmpInstanceType(object, FIRST_NONSTRING_TYPE);
    pop(object);
834
    Check(below, kOperandIsNotAString);
835
  }
836 837 838
}


839 840 841
void MacroAssembler::AssertName(Register object) {
  if (emit_debug_code()) {
    test(object, Immediate(kSmiTagMask));
842
    Check(not_equal, kOperandIsASmiAndNotAName);
843 844 845 846
    push(object);
    mov(object, FieldOperand(object, HeapObject::kMapOffset));
    CmpInstanceType(object, LAST_NAME_TYPE);
    pop(object);
847
    Check(below_equal, kOperandIsNotAName);
848 849 850 851
  }
}


852 853 854 855 856 857 858 859 860 861 862 863 864 865
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
  if (emit_debug_code()) {
    Label done_checking;
    AssertNotSmi(object);
    cmp(object, isolate()->factory()->undefined_value());
    j(equal, &done_checking);
    cmp(FieldOperand(object, 0),
        Immediate(isolate()->factory()->allocation_site_map()));
    Assert(equal, kExpectedUndefinedOrCell);
    bind(&done_checking);
  }
}


866 867 868
void MacroAssembler::AssertNotSmi(Register object) {
  if (emit_debug_code()) {
    test(object, Immediate(kSmiTagMask));
869
    Check(not_equal, kOperandIsASmi);
870
  }
871 872 873
}


874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
void MacroAssembler::StubPrologue() {
  push(ebp);  // Caller's frame pointer.
  mov(ebp, esp);
  push(esi);  // Callee's context.
  push(Immediate(Smi::FromInt(StackFrame::STUB)));
}


void MacroAssembler::Prologue(bool code_pre_aging) {
  PredictableCodeSizeScope predictible_code_size_scope(this,
      kNoCodeAgeSequenceLength);
  if (code_pre_aging) {
      // Pre-age the code.
    call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
        RelocInfo::CODE_AGE_SEQUENCE);
    Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
  } else {
891 892 893
    push(ebp);  // Caller's frame pointer.
    mov(ebp, esp);
    push(esi);  // Callee's context.
894
    push(edi);  // Callee's JS function.
895 896 897 898
  }
}


899 900 901 902 903 904 905
void MacroAssembler::EnterFrame(StackFrame::Type type,
                                bool load_constant_pool_pointer_reg) {
  // Out-of-line constant pool not implemented on ia32.
  UNREACHABLE();
}


906
void MacroAssembler::EnterFrame(StackFrame::Type type) {
907
  push(ebp);
908
  mov(ebp, esp);
909 910
  push(esi);
  push(Immediate(Smi::FromInt(type)));
911
  push(Immediate(CodeObject()));
912
  if (emit_debug_code()) {
913
    cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
914
    Check(not_equal, kCodeObjectNotProperlyPatched);
915
  }
916 917 918
}


919
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
920
  if (emit_debug_code()) {
921 922
    cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
        Immediate(Smi::FromInt(type)));
923
    Check(equal, kStackFrameTypesMustMatch);
924 925 926 927
  }
  leave();
}

928 929

void MacroAssembler::EnterExitFramePrologue() {
930
  // Set up the frame structure on the stack.
931 932 933
  DCHECK(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
  DCHECK(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
  DCHECK(ExitFrameConstants::kCallerFPOffset ==  0 * kPointerSize);
934
  push(ebp);
935
  mov(ebp, esp);
936

937
  // Reserve room for entry stack pointer and push the code object.
938
  DCHECK(ExitFrameConstants::kSPOffset  == -1 * kPointerSize);
serya@chromium.org's avatar
serya@chromium.org committed
939 940
  push(Immediate(0));  // Saved entry sp, patched before call.
  push(Immediate(CodeObject()));  // Accessed from ExitFrame::code_slot.
941 942

  // Save the frame pointer and the context in top.
943 944
  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
  ExternalReference context_address(Isolate::kContextAddress, isolate());
945
  ExternalReference c_function_address(Isolate::kCFunctionAddress, isolate());
946 947
  mov(Operand::StaticVariable(c_entry_fp_address), ebp);
  mov(Operand::StaticVariable(context_address), esi);
948
  mov(Operand::StaticVariable(c_function_address), ebx);
949
}
950

951

952 953 954
void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
  // Optionally save all XMM registers.
  if (save_doubles) {
955 956
    int space = XMMRegister::kMaxNumRegisters * kDoubleSize +
                argc * kPointerSize;
957
    sub(esp, Immediate(space));
958
    const int offset = -2 * kPointerSize;
959
    for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
960
      XMMRegister reg = XMMRegister::from_code(i);
961
      movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg);
962 963
    }
  } else {
964
    sub(esp, Immediate(argc * kPointerSize));
965
  }
966 967

  // Get the required frame alignment for the OS.
968
  const int kFrameAlignment = base::OS::ActivationFrameAlignment();
969
  if (kFrameAlignment > 0) {
970
    DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment));
971 972 973 974 975
    and_(esp, -kFrameAlignment);
  }

  // Patch the saved entry sp.
  mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
976 977 978
}


979
void MacroAssembler::EnterExitFrame(bool save_doubles) {
980
  EnterExitFramePrologue();
981

982
  // Set up argc and argv in callee-saved registers.
983
  int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
984
  mov(edi, eax);
985 986
  lea(esi, Operand(ebp, eax, times_4, offset));

987 988
  // Reserve space for argc, argv and isolate.
  EnterExitFrameEpilogue(3, save_doubles);
989 990 991
}


992
void MacroAssembler::EnterApiExitFrame(int argc) {
993
  EnterExitFramePrologue();
994
  EnterExitFrameEpilogue(argc, false);
995 996 997
}


998 999 1000
void MacroAssembler::LeaveExitFrame(bool save_doubles) {
  // Optionally restore all XMM registers.
  if (save_doubles) {
1001
    const int offset = -2 * kPointerSize;
1002
    for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
1003
      XMMRegister reg = XMMRegister::from_code(i);
1004
      movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize)));
1005 1006 1007
    }
  }

1008 1009 1010 1011 1012 1013 1014
  // Get the return address from the stack and restore the frame pointer.
  mov(ecx, Operand(ebp, 1 * kPointerSize));
  mov(ebp, Operand(ebp, 0 * kPointerSize));

  // Pop the arguments and the receiver from the caller stack.
  lea(esp, Operand(esi, 1 * kPointerSize));

1015 1016
  // Push the return address to get ready to return.
  push(ecx);
serya@chromium.org's avatar
serya@chromium.org committed
1017

1018
  LeaveExitFrameEpilogue(true);
1019 1020
}

1021

1022
void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
1023
  // Restore current context from top and clear it in debug mode.
1024
  ExternalReference context_address(Isolate::kContextAddress, isolate());
1025 1026 1027
  if (restore_context) {
    mov(esi, Operand::StaticVariable(context_address));
  }
1028 1029 1030
#ifdef DEBUG
  mov(Operand::StaticVariable(context_address), Immediate(0));
#endif
1031 1032

  // Clear the top frame.
1033
  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
1034
                                       isolate());
1035 1036 1037 1038
  mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
}


1039
void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
1040
  mov(esp, ebp);
1041 1042
  pop(ebp);

1043
  LeaveExitFrameEpilogue(restore_context);
1044 1045 1046
}


1047
void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
1048
                                    int handler_index) {
1049
  // Adjust this code if not the case.
1050 1051
  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1052 1053 1054 1055 1056 1057
  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);

  // We will build up the handler from the bottom by pushing on the stack.
1058 1059
  // First push the frame pointer and context.
  if (kind == StackHandler::JS_ENTRY) {
1060 1061 1062
    // The frame pointer does not point to a JS frame so we save NULL for
    // ebp. We expect the code throwing an exception to check ebp before
    // dereferencing it to restore the context.
1063
    push(Immediate(0));  // NULL frame pointer.
1064
    push(Immediate(Smi::FromInt(0)));  // No context.
1065 1066 1067
  } else {
    push(ebp);
    push(esi);
1068
  }
1069
  // Push the state and the code object.
1070 1071 1072
  unsigned state =
      StackHandler::IndexField::encode(handler_index) |
      StackHandler::KindField::encode(kind);
1073
  push(Immediate(state));
1074
  Push(CodeObject());
1075 1076 1077 1078 1079 1080

  // Link the current handler as the next handler.
  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
  push(Operand::StaticVariable(handler_address));
  // Set this new handler as the current one.
  mov(Operand::StaticVariable(handler_address), esp);
1081 1082 1083
}


1084
void MacroAssembler::PopTryHandler() {
1085
  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1086 1087
  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
  pop(Operand::StaticVariable(handler_address));
1088
  add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
1089 1090 1091
}


1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
void MacroAssembler::JumpToHandlerEntry() {
  // Compute the handler entry address and jump to it.  The handler table is
  // a fixed array of (smi-tagged) code offsets.
  // eax = exception, edi = code object, edx = state.
  mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
  shr(edx, StackHandler::kKindWidth);
  mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
  SmiUntag(edx);
  lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
  jmp(edi);
}


1105 1106
void MacroAssembler::Throw(Register value) {
  // Adjust this code if not the case.
1107 1108
  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1109 1110 1111 1112 1113 1114
  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);

  // The exception is expected in eax.
1115 1116 1117
  if (!value.is(eax)) {
    mov(eax, value);
  }
1118 1119
  // Drop the stack pointer to the top of the top handler.
  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1120
  mov(esp, Operand::StaticVariable(handler_address));
1121
  // Restore the next handler.
1122
  pop(Operand::StaticVariable(handler_address));
1123 1124 1125 1126 1127 1128

  // Remove the code object and state, compute the handler address in edi.
  pop(edi);  // Code object.
  pop(edx);  // Index and state.

  // Restore the context and frame pointer.
1129 1130
  pop(esi);  // Context.
  pop(ebp);  // Frame pointer.
1131

1132
  // If the handler is a JS frame, restore the context to the frame.
1133 1134
  // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
  // ebp or esi.
1135
  Label skip;
1136 1137
  test(esi, esi);
  j(zero, &skip, Label::kNear);
1138
  mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
1139 1140
  bind(&skip);

1141
  JumpToHandlerEntry();
1142 1143 1144
}


1145
void MacroAssembler::ThrowUncatchable(Register value) {
1146
  // Adjust this code if not the case.
1147 1148
  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1149 1150 1151 1152
  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1153

1154
  // The exception is expected in eax.
1155
  if (!value.is(eax)) {
1156
    mov(eax, value);
1157
  }
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
  // Drop the stack pointer to the top of the top stack handler.
  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
  mov(esp, Operand::StaticVariable(handler_address));

  // Unwind the handlers until the top ENTRY handler is found.
  Label fetch_next, check_kind;
  jmp(&check_kind, Label::kNear);
  bind(&fetch_next);
  mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));

  bind(&check_kind);
1169
  STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1170 1171 1172
  test(Operand(esp, StackHandlerConstants::kStateOffset),
       Immediate(StackHandler::KindField::kMask));
  j(not_zero, &fetch_next);
1173 1174 1175

  // Set the top handler address to next handler past the top ENTRY handler.
  pop(Operand::StaticVariable(handler_address));
1176

1177 1178 1179 1180 1181
  // Remove the code object and state, compute the handler address in edi.
  pop(edi);  // Code object.
  pop(edx);  // Index and state.

  // Clear the context pointer and frame pointer (0 was saved in the handler).
1182
  pop(esi);
1183 1184
  pop(ebp);

1185
  JumpToHandlerEntry();
1186 1187 1188
}


1189
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1190 1191
                                            Register scratch1,
                                            Register scratch2,
1192
                                            Label* miss) {
1193 1194
  Label same_contexts;

1195 1196 1197
  DCHECK(!holder_reg.is(scratch1));
  DCHECK(!holder_reg.is(scratch2));
  DCHECK(!scratch1.is(scratch2));
1198

1199
  // Load current lexical context from the stack frame.
1200
  mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
1201 1202

  // When generating debug code, make sure the lexical context is set.
1203
  if (emit_debug_code()) {
1204
    cmp(scratch1, Immediate(0));
1205
    Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
1206
  }
1207
  // Load the native context of the current context.
1208 1209
  int offset =
      Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1210 1211
  mov(scratch1, FieldOperand(scratch1, offset));
  mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
feng@chromium.org's avatar
feng@chromium.org committed
1212

1213
  // Check the context is a native context.
1214
  if (emit_debug_code()) {
1215
    // Read the first word and compare to native_context_map.
1216 1217
    cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
        isolate()->factory()->native_context_map());
1218
    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1219 1220 1221
  }

  // Check if both contexts are the same.
1222
  cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1223
  j(equal, &same_contexts);
1224 1225 1226 1227

  // Compare security tokens, save holder_reg on the stack so we can use it
  // as a temporary register.
  //
1228 1229 1230
  // Check that the security token in the calling global object is
  // compatible with the security token in the receiving global
  // object.
1231
  mov(scratch2,
1232
      FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1233

1234
  // Check the context is a native context.
1235
  if (emit_debug_code()) {
1236
    cmp(scratch2, isolate()->factory()->null_value());
1237
    Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
1238

1239
    // Read the first word and compare to native_context_map(),
1240 1241
    cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
        isolate()->factory()->native_context_map());
1242
    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1243 1244 1245 1246
  }

  int token_offset = Context::kHeaderSize +
                     Context::SECURITY_TOKEN_INDEX * kPointerSize;
1247 1248
  mov(scratch1, FieldOperand(scratch1, token_offset));
  cmp(scratch1, FieldOperand(scratch2, token_offset));
1249
  j(not_equal, miss);
1250 1251

  bind(&same_contexts);
1252 1253 1254
}


1255
// Compute the hash code from the untagged key.  This must be kept in sync with
1256
// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
1257
// code-stub-hydrogen.cc
1258 1259 1260 1261
//
// Note: r0 will contain hash code
void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
  // Xor original key with a seed.
1262
  if (serializer_enabled()) {
1263 1264
    ExternalReference roots_array_start =
        ExternalReference::roots_array_start(isolate());
1265
    mov(scratch, Immediate(Heap::kHashSeedRootIndex));
1266 1267 1268 1269
    mov(scratch,
        Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
    SmiUntag(scratch);
    xor_(r0, scratch);
1270
  } else {
1271
    int32_t seed = isolate()->heap()->HashSeed();
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    xor_(r0, Immediate(seed));
  }

  // hash = ~hash + (hash << 15);
  mov(scratch, r0);
  not_(r0);
  shl(scratch, 15);
  add(r0, scratch);
  // hash = hash ^ (hash >> 12);
  mov(scratch, r0);
  shr(scratch, 12);
  xor_(r0, scratch);
  // hash = hash + (hash << 2);
  lea(r0, Operand(r0, r0, times_4, 0));
  // hash = hash ^ (hash >> 4);
  mov(scratch, r0);
  shr(scratch, 4);
  xor_(r0, scratch);
  // hash = hash * 2057;
  imul(r0, r0, 2057);
  // hash = hash ^ (hash >> 16);
  mov(scratch, r0);
  shr(scratch, 16);
  xor_(r0, scratch);
}



1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
                                              Register elements,
                                              Register key,
                                              Register r0,
                                              Register r1,
                                              Register r2,
                                              Register result) {
  // Register use:
  //
  // elements - holds the slow-case elements of the receiver and is unchanged.
  //
  // key      - holds the smi key on entry and is unchanged.
  //
  // Scratch registers:
  //
  // r0 - holds the untagged key on entry and holds the hash once computed.
  //
  // r1 - used to hold the capacity mask of the dictionary
  //
  // r2 - used for the index into the dictionary.
  //
  // result - holds the result on exit if the load succeeds and we fall through.

  Label done;

1325
  GetNumberHash(r0, r1);
1326 1327

  // Compute capacity mask.
1328
  mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
1329 1330 1331 1332
  shr(r1, kSmiTagSize);  // convert smi to int
  dec(r1);

  // Generate an unrolled loop that performs a few probes before giving up.
1333
  for (int i = 0; i < kNumberDictionaryProbes; i++) {
1334 1335 1336 1337
    // Use r2 for index calculations and keep the hash intact in r0.
    mov(r2, r0);
    // Compute the masked index: (hash + i + i * i) & mask.
    if (i > 0) {
1338
      add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
1339
    }
1340
    and_(r2, r1);
1341 1342

    // Scale the index by multiplying by the entry size.
1343
    DCHECK(SeededNumberDictionary::kEntrySize == 3);
1344 1345 1346 1347 1348 1349
    lea(r2, Operand(r2, r2, times_2, 0));  // r2 = r2 * 3

    // Check if the key matches.
    cmp(key, FieldOperand(elements,
                          r2,
                          times_pointer_size,
1350
                          SeededNumberDictionary::kElementsStartOffset));
1351
    if (i != (kNumberDictionaryProbes - 1)) {
1352 1353 1354 1355 1356 1357 1358 1359 1360
      j(equal, &done);
    } else {
      j(not_equal, miss);
    }
  }

  bind(&done);
  // Check that the value is a normal propety.
  const int kDetailsOffset =
1361
      SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1362
  DCHECK_EQ(NORMAL, 0);
1363
  test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
1364
       Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
1365 1366 1367 1368
  j(not_zero, miss);

  // Get the value at the masked, scaled index.
  const int kValueOffset =
1369
      SeededNumberDictionary::kElementsStartOffset + kPointerSize;
1370 1371 1372 1373
  mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
}


1374 1375 1376
void MacroAssembler::LoadAllocationTopHelper(Register result,
                                             Register scratch,
                                             AllocationFlags flags) {
1377 1378
  ExternalReference allocation_top =
      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1379 1380

  // Just return if allocation top is already known.
1381
  if ((flags & RESULT_CONTAINS_TOP) != 0) {
1382
    // No use of scratch if allocation top is provided.
1383
    DCHECK(scratch.is(no_reg));
1384 1385
#ifdef DEBUG
    // Assert that result actually contains top on entry.
1386
    cmp(result, Operand::StaticVariable(allocation_top));
1387
    Check(equal, kUnexpectedAllocationTop);
1388
#endif
1389 1390 1391 1392 1393
    return;
  }

  // Move address of new object to result. Use scratch register if available.
  if (scratch.is(no_reg)) {
1394
    mov(result, Operand::StaticVariable(allocation_top));
1395
  } else {
1396
    mov(scratch, Immediate(allocation_top));
1397 1398 1399 1400 1401 1402
    mov(result, Operand(scratch, 0));
  }
}


void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
1403 1404
                                               Register scratch,
                                               AllocationFlags flags) {
1405
  if (emit_debug_code()) {
1406
    test(result_end, Immediate(kObjectAlignmentMask));
1407
    Check(zero, kUnalignedAllocationInNewSpace);
1408 1409
  }

1410 1411
  ExternalReference allocation_top =
      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1412 1413 1414

  // Update new top. Use scratch if available.
  if (scratch.is(no_reg)) {
1415
    mov(Operand::StaticVariable(allocation_top), result_end);
1416 1417 1418 1419 1420
  } else {
    mov(Operand(scratch, 0), result_end);
  }
}

1421

1422 1423 1424 1425 1426 1427
void MacroAssembler::Allocate(int object_size,
                              Register result,
                              Register result_end,
                              Register scratch,
                              Label* gc_required,
                              AllocationFlags flags) {
1428 1429
  DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
  DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
1430
  if (!FLAG_inline_new) {
1431
    if (emit_debug_code()) {
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
      // Trash the registers to simulate an allocation failure.
      mov(result, Immediate(0x7091));
      if (result_end.is_valid()) {
        mov(result_end, Immediate(0x7191));
      }
      if (scratch.is_valid()) {
        mov(scratch, Immediate(0x7291));
      }
    }
    jmp(gc_required);
    return;
  }
1444
  DCHECK(!result.is(result_end));
1445 1446

  // Load address of new object into result.
1447
  LoadAllocationTopHelper(result, scratch, flags);
1448

1449 1450 1451
  ExternalReference allocation_limit =
      AllocationUtils::GetAllocationLimitReference(isolate(), flags);

1452
  // Align the next allocation. Storing the filler map without checking top is
1453
  // safe in new-space because the limit of the heap is aligned there.
1454
  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1455 1456
    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1457 1458 1459
    Label aligned;
    test(result, Immediate(kDoubleAlignmentMask));
    j(zero, &aligned, Label::kNear);
1460 1461 1462 1463
    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
      cmp(result, Operand::StaticVariable(allocation_limit));
      j(above_equal, gc_required);
    }
1464 1465 1466 1467 1468 1469
    mov(Operand(result, 0),
        Immediate(isolate()->factory()->one_pointer_filler_map()));
    add(result, Immediate(kDoubleSize / 2));
    bind(&aligned);
  }

1470
  // Calculate new top and bail out if space is exhausted.
1471
  Register top_reg = result_end.is_valid() ? result_end : result;
1472 1473
  if (!top_reg.is(result)) {
    mov(top_reg, result);
1474
  }
1475
  add(top_reg, Immediate(object_size));
1476
  j(carry, gc_required);
1477
  cmp(top_reg, Operand::StaticVariable(allocation_limit));
1478
  j(above, gc_required);
1479 1480

  // Update allocation top.
1481
  UpdateAllocationTopHelper(top_reg, scratch, flags);
1482 1483

  // Tag result if requested.
1484
  bool tag_result = (flags & TAG_OBJECT) != 0;
1485
  if (top_reg.is(result)) {
1486
    if (tag_result) {
1487
      sub(result, Immediate(object_size - kHeapObjectTag));
1488
    } else {
1489
      sub(result, Immediate(object_size));
1490
    }
1491
  } else if (tag_result) {
1492
    DCHECK(kHeapObjectTag == 1);
1493
    inc(result);
1494
  }
1495 1496 1497
}


1498 1499 1500 1501 1502 1503 1504 1505 1506
void MacroAssembler::Allocate(int header_size,
                              ScaleFactor element_size,
                              Register element_count,
                              RegisterValueType element_count_type,
                              Register result,
                              Register result_end,
                              Register scratch,
                              Label* gc_required,
                              AllocationFlags flags) {
1507
  DCHECK((flags & SIZE_IN_WORDS) == 0);
1508
  if (!FLAG_inline_new) {
1509
    if (emit_debug_code()) {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
      // Trash the registers to simulate an allocation failure.
      mov(result, Immediate(0x7091));
      mov(result_end, Immediate(0x7191));
      if (scratch.is_valid()) {
        mov(scratch, Immediate(0x7291));
      }
      // Register element_count is not modified by the function.
    }
    jmp(gc_required);
    return;
  }
1521
  DCHECK(!result.is(result_end));
1522 1523

  // Load address of new object into result.
1524
  LoadAllocationTopHelper(result, scratch, flags);
1525

1526 1527 1528
  ExternalReference allocation_limit =
      AllocationUtils::GetAllocationLimitReference(isolate(), flags);

1529
  // Align the next allocation. Storing the filler map without checking top is
1530
  // safe in new-space because the limit of the heap is aligned there.
1531
  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1532 1533
    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1534 1535 1536
    Label aligned;
    test(result, Immediate(kDoubleAlignmentMask));
    j(zero, &aligned, Label::kNear);
1537 1538 1539 1540
    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
      cmp(result, Operand::StaticVariable(allocation_limit));
      j(above_equal, gc_required);
    }
1541 1542 1543 1544 1545 1546
    mov(Operand(result, 0),
        Immediate(isolate()->factory()->one_pointer_filler_map()));
    add(result, Immediate(kDoubleSize / 2));
    bind(&aligned);
  }

1547
  // Calculate new top and bail out if space is exhausted.
1548 1549
  // We assume that element_count*element_size + header_size does not
  // overflow.
1550 1551 1552 1553
  if (element_count_type == REGISTER_VALUE_IS_SMI) {
    STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
    STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
    STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
1554 1555
    DCHECK(element_size >= times_2);
    DCHECK(kSmiTagSize == 1);
1556 1557
    element_size = static_cast<ScaleFactor>(element_size - 1);
  } else {
1558
    DCHECK(element_count_type == REGISTER_VALUE_IS_INT32);
1559
  }
1560
  lea(result_end, Operand(element_count, element_size, header_size));
1561
  add(result_end, result);
1562
  j(carry, gc_required);
1563
  cmp(result_end, Operand::StaticVariable(allocation_limit));
1564 1565
  j(above, gc_required);

1566
  if ((flags & TAG_OBJECT) != 0) {
1567
    DCHECK(kHeapObjectTag == 1);
1568
    inc(result);
1569
  }
1570 1571

  // Update allocation top.
1572
  UpdateAllocationTopHelper(result_end, scratch, flags);
1573 1574 1575
}


1576 1577 1578 1579 1580 1581
void MacroAssembler::Allocate(Register object_size,
                              Register result,
                              Register result_end,
                              Register scratch,
                              Label* gc_required,
                              AllocationFlags flags) {
1582
  DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1583
  if (!FLAG_inline_new) {
1584
    if (emit_debug_code()) {
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
      // Trash the registers to simulate an allocation failure.
      mov(result, Immediate(0x7091));
      mov(result_end, Immediate(0x7191));
      if (scratch.is_valid()) {
        mov(scratch, Immediate(0x7291));
      }
      // object_size is left unchanged by this function.
    }
    jmp(gc_required);
    return;
  }
1596
  DCHECK(!result.is(result_end));
1597 1598

  // Load address of new object into result.
1599
  LoadAllocationTopHelper(result, scratch, flags);
1600

1601 1602 1603
  ExternalReference allocation_limit =
      AllocationUtils::GetAllocationLimitReference(isolate(), flags);

1604
  // Align the next allocation. Storing the filler map without checking top is
1605
  // safe in new-space because the limit of the heap is aligned there.
1606
  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1607 1608
    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1609 1610 1611
    Label aligned;
    test(result, Immediate(kDoubleAlignmentMask));
    j(zero, &aligned, Label::kNear);
1612 1613 1614 1615
    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
      cmp(result, Operand::StaticVariable(allocation_limit));
      j(above_equal, gc_required);
    }
1616 1617 1618 1619 1620 1621
    mov(Operand(result, 0),
        Immediate(isolate()->factory()->one_pointer_filler_map()));
    add(result, Immediate(kDoubleSize / 2));
    bind(&aligned);
  }

1622
  // Calculate new top and bail out if space is exhausted.
1623 1624 1625
  if (!object_size.is(result_end)) {
    mov(result_end, object_size);
  }
1626
  add(result_end, result);
1627
  j(carry, gc_required);
1628
  cmp(result_end, Operand::StaticVariable(allocation_limit));
1629
  j(above, gc_required);
1630

1631 1632
  // Tag result if requested.
  if ((flags & TAG_OBJECT) != 0) {
1633
    DCHECK(kHeapObjectTag == 1);
1634
    inc(result);
1635
  }
1636 1637

  // Update allocation top.
1638
  UpdateAllocationTopHelper(result_end, scratch, flags);
1639 1640 1641 1642 1643
}


void MacroAssembler::UndoAllocationInNewSpace(Register object) {
  ExternalReference new_space_allocation_top =
1644
      ExternalReference::new_space_allocation_top_address(isolate());
1645 1646

  // Make sure the object has no tag before resetting top.
1647
  and_(object, Immediate(~kHeapObjectTagMask));
1648 1649
#ifdef DEBUG
  cmp(object, Operand::StaticVariable(new_space_allocation_top));
1650
  Check(below, kUndoAllocationOfNonAllocatedMemory);
1651 1652 1653 1654 1655
#endif
  mov(Operand::StaticVariable(new_space_allocation_top), object);
}


1656 1657 1658
void MacroAssembler::AllocateHeapNumber(Register result,
                                        Register scratch1,
                                        Register scratch2,
1659 1660
                                        Label* gc_required,
                                        MutableMode mode) {
1661
  // Allocate heap number in new space.
1662 1663
  Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
           TAG_OBJECT);
1664

1665 1666 1667 1668
  Handle<Map> map = mode == MUTABLE
      ? isolate()->factory()->mutable_heap_number_map()
      : isolate()->factory()->heap_number_map();

1669
  // Set the map.
1670
  mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(map));
1671 1672 1673
}


1674 1675 1676 1677 1678 1679
void MacroAssembler::AllocateTwoByteString(Register result,
                                           Register length,
                                           Register scratch1,
                                           Register scratch2,
                                           Register scratch3,
                                           Label* gc_required) {
1680 1681
  // Calculate the number of bytes needed for the characters in the string while
  // observing object alignment.
1682 1683
  DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
  DCHECK(kShortSize == 2);
1684 1685
  // scratch1 = length * 2 + kObjectAlignmentMask.
  lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
1686
  and_(scratch1, Immediate(~kObjectAlignmentMask));
1687 1688

  // Allocate two byte string in new space.
1689 1690 1691 1692 1693 1694 1695 1696 1697
  Allocate(SeqTwoByteString::kHeaderSize,
           times_1,
           scratch1,
           REGISTER_VALUE_IS_INT32,
           result,
           scratch2,
           scratch3,
           gc_required,
           TAG_OBJECT);
1698 1699 1700

  // Set the map, length and hash field.
  mov(FieldOperand(result, HeapObject::kMapOffset),
1701
      Immediate(isolate()->factory()->string_map()));
1702 1703 1704
  mov(scratch1, length);
  SmiTag(scratch1);
  mov(FieldOperand(result, String::kLengthOffset), scratch1);
1705 1706 1707 1708 1709
  mov(FieldOperand(result, String::kHashFieldOffset),
      Immediate(String::kEmptyHashField));
}


1710 1711 1712 1713
void MacroAssembler::AllocateOneByteString(Register result, Register length,
                                           Register scratch1, Register scratch2,
                                           Register scratch3,
                                           Label* gc_required) {
1714 1715
  // Calculate the number of bytes needed for the characters in the string while
  // observing object alignment.
1716
  DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1717
  mov(scratch1, length);
1718
  DCHECK(kCharSize == 1);
1719 1720
  add(scratch1, Immediate(kObjectAlignmentMask));
  and_(scratch1, Immediate(~kObjectAlignmentMask));
1721

1722
  // Allocate one-byte string in new space.
1723 1724 1725 1726 1727 1728 1729 1730 1731
  Allocate(SeqOneByteString::kHeaderSize,
           times_1,
           scratch1,
           REGISTER_VALUE_IS_INT32,
           result,
           scratch2,
           scratch3,
           gc_required,
           TAG_OBJECT);
1732 1733 1734

  // Set the map, length and hash field.
  mov(FieldOperand(result, HeapObject::kMapOffset),
1735
      Immediate(isolate()->factory()->one_byte_string_map()));
1736 1737 1738
  mov(scratch1, length);
  SmiTag(scratch1);
  mov(FieldOperand(result, String::kLengthOffset), scratch1);
1739 1740 1741 1742 1743
  mov(FieldOperand(result, String::kHashFieldOffset),
      Immediate(String::kEmptyHashField));
}


1744 1745 1746
void MacroAssembler::AllocateOneByteString(Register result, int length,
                                           Register scratch1, Register scratch2,
                                           Label* gc_required) {
1747
  DCHECK(length > 0);
1748

1749
  // Allocate one-byte string in new space.
1750 1751
  Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
           gc_required, TAG_OBJECT);
1752 1753 1754

  // Set the map, length and hash field.
  mov(FieldOperand(result, HeapObject::kMapOffset),
1755
      Immediate(isolate()->factory()->one_byte_string_map()));
1756 1757 1758 1759 1760 1761 1762
  mov(FieldOperand(result, String::kLengthOffset),
      Immediate(Smi::FromInt(length)));
  mov(FieldOperand(result, String::kHashFieldOffset),
      Immediate(String::kEmptyHashField));
}


1763
void MacroAssembler::AllocateTwoByteConsString(Register result,
1764 1765 1766 1767
                                        Register scratch1,
                                        Register scratch2,
                                        Label* gc_required) {
  // Allocate heap number in new space.
1768 1769
  Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
           TAG_OBJECT);
1770 1771 1772

  // Set the map. The other fields are left uninitialized.
  mov(FieldOperand(result, HeapObject::kMapOffset),
1773
      Immediate(isolate()->factory()->cons_string_map()));
1774 1775 1776
}


1777 1778 1779 1780
void MacroAssembler::AllocateOneByteConsString(Register result,
                                               Register scratch1,
                                               Register scratch2,
                                               Label* gc_required) {
1781 1782 1783 1784 1785
  Allocate(ConsString::kSize,
           result,
           scratch1,
           scratch2,
           gc_required,
1786
           TAG_OBJECT);
1787 1788 1789

  // Set the map. The other fields are left uninitialized.
  mov(FieldOperand(result, HeapObject::kMapOffset),
1790
      Immediate(isolate()->factory()->cons_one_byte_string_map()));
1791 1792
}

1793

1794
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
1795 1796 1797 1798
                                          Register scratch1,
                                          Register scratch2,
                                          Label* gc_required) {
  // Allocate heap number in new space.
1799 1800
  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
           TAG_OBJECT);
1801 1802 1803 1804 1805 1806 1807

  // Set the map. The other fields are left uninitialized.
  mov(FieldOperand(result, HeapObject::kMapOffset),
      Immediate(isolate()->factory()->sliced_string_map()));
}


1808 1809 1810 1811
void MacroAssembler::AllocateOneByteSlicedString(Register result,
                                                 Register scratch1,
                                                 Register scratch2,
                                                 Label* gc_required) {
1812
  // Allocate heap number in new space.
1813 1814
  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
           TAG_OBJECT);
1815 1816 1817

  // Set the map. The other fields are left uninitialized.
  mov(FieldOperand(result, HeapObject::kMapOffset),
1818
      Immediate(isolate()->factory()->sliced_one_byte_string_map()));
1819 1820 1821
}


1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
// Copy memory, byte-by-byte, from source to destination.  Not optimized for
// long or aligned copies.  The contents of scratch and length are destroyed.
// Source and destination are incremented by length.
// Many variants of movsb, loop unrolling, word moves, and indexed operands
// have been tried here already, and this is fastest.
// A simpler loop is faster on small copies, but 30% slower on large ones.
// The cld() instruction must have been emitted, to set the direction flag(),
// before calling this function.
void MacroAssembler::CopyBytes(Register source,
                               Register destination,
                               Register length,
                               Register scratch) {
1834
  Label short_loop, len4, len8, len12, done, short_string;
1835 1836 1837
  DCHECK(source.is(esi));
  DCHECK(destination.is(edi));
  DCHECK(length.is(ecx));
1838 1839
  cmp(length, Immediate(4));
  j(below, &short_string, Label::kNear);
1840 1841 1842 1843 1844 1845

  // Because source is 4-byte aligned in our uses of this function,
  // we keep source aligned for the rep_movs call by copying the odd bytes
  // at the end of the ranges.
  mov(scratch, Operand(source, length, times_1, -4));
  mov(Operand(destination, length, times_1, -4), scratch);
1846 1847 1848 1849 1850 1851 1852 1853

  cmp(length, Immediate(8));
  j(below_equal, &len4, Label::kNear);
  cmp(length, Immediate(12));
  j(below_equal, &len8, Label::kNear);
  cmp(length, Immediate(16));
  j(below_equal, &len12, Label::kNear);

1854 1855 1856
  mov(scratch, ecx);
  shr(ecx, 2);
  rep_movs();
1857 1858
  and_(scratch, Immediate(0x3));
  add(destination, scratch);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
  jmp(&done, Label::kNear);

  bind(&len12);
  mov(scratch, Operand(source, 8));
  mov(Operand(destination, 8), scratch);
  bind(&len8);
  mov(scratch, Operand(source, 4));
  mov(Operand(destination, 4), scratch);
  bind(&len4);
  mov(scratch, Operand(source, 0));
  mov(Operand(destination, 0), scratch);
  add(destination, length);
  jmp(&done, Label::kNear);
1872 1873

  bind(&short_string);
1874
  test(length, length);
1875
  j(zero, &done, Label::kNear);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

  bind(&short_loop);
  mov_b(scratch, Operand(source, 0));
  mov_b(Operand(destination, 0), scratch);
  inc(source);
  inc(destination);
  dec(length);
  j(not_zero, &short_loop);

  bind(&done);
1886 1887
}

1888

1889 1890 1891 1892 1893 1894 1895
void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
                                                Register end_offset,
                                                Register filler) {
  Label loop, entry;
  jmp(&entry);
  bind(&loop);
  mov(Operand(start_offset, 0), filler);
1896
  add(start_offset, Immediate(kPointerSize));
1897
  bind(&entry);
1898
  cmp(start_offset, end_offset);
1899 1900 1901 1902
  j(less, &loop);
}


1903 1904 1905 1906
void MacroAssembler::BooleanBitTest(Register object,
                                    int field_offset,
                                    int bit_index) {
  bit_index += kSmiTagSize + kSmiShiftSize;
1907
  DCHECK(base::bits::IsPowerOfTwo32(kBitsPerByte));
1908 1909 1910 1911 1912 1913 1914 1915
  int byte_index = bit_index / kBitsPerByte;
  int byte_bit_index = bit_index & (kBitsPerByte - 1);
  test_b(FieldOperand(object, field_offset + byte_index),
         static_cast<byte>(1 << byte_bit_index));
}



1916 1917 1918 1919
void MacroAssembler::NegativeZeroTest(Register result,
                                      Register op,
                                      Label* then_label) {
  Label ok;
1920
  test(result, result);
1921
  j(not_zero, &ok);
1922
  test(op, op);
1923
  j(sign, then_label);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
  bind(&ok);
}


void MacroAssembler::NegativeZeroTest(Register result,
                                      Register op1,
                                      Register op2,
                                      Register scratch,
                                      Label* then_label) {
  Label ok;
1934
  test(result, result);
1935
  j(not_zero, &ok);
1936 1937
  mov(scratch, op1);
  or_(scratch, op2);
1938
  j(sign, then_label);
1939 1940 1941 1942
  bind(&ok);
}


1943 1944 1945
void MacroAssembler::TryGetFunctionPrototype(Register function,
                                             Register result,
                                             Register scratch,
1946 1947
                                             Label* miss,
                                             bool miss_on_bound_function) {
1948 1949 1950 1951
  Label non_instance;
  if (miss_on_bound_function) {
    // Check that the receiver isn't a smi.
    JumpIfSmi(function, miss);
1952

1953 1954 1955
    // Check that the function really is a function.
    CmpObjectType(function, JS_FUNCTION_TYPE, result);
    j(not_equal, miss);
1956

1957 1958 1959 1960 1961 1962 1963
    // If a bound function, go to miss label.
    mov(scratch,
        FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
    BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
                   SharedFunctionInfo::kBoundFunction);
    j(not_zero, miss);

1964 1965 1966 1967 1968
    // Make sure that the function has an instance prototype.
    movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
    test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
    j(not_zero, &non_instance);
  }
1969 1970 1971 1972 1973 1974 1975 1976

  // Get the prototype or initial map from the function.
  mov(result,
      FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));

  // If the prototype or initial map is the hole, don't return it and
  // simply miss the cache instead. This will allow us to allocate a
  // prototype object on-demand in the runtime system.
1977
  cmp(result, Immediate(isolate()->factory()->the_hole_value()));
1978
  j(equal, miss);
1979 1980 1981

  // If the function does not have an initial map, we're done.
  Label done;
1982
  CmpObjectType(result, MAP_TYPE, scratch);
1983 1984 1985 1986 1987
  j(not_equal, &done);

  // Get the prototype from the initial map.
  mov(result, FieldOperand(result, Map::kPrototypeOffset));

1988 1989 1990 1991 1992 1993 1994 1995
  if (miss_on_bound_function) {
    jmp(&done);

    // Non-instance prototype: Fetch prototype from constructor field
    // in initial map.
    bind(&non_instance);
    mov(result, FieldOperand(result, Map::kConstructorOffset));
  }
1996 1997 1998 1999 2000 2001

  // All done.
  bind(&done);
}


2002
void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
2003
  DCHECK(AllowThisStubCall(stub));  // Calls are not allowed in some stubs.
2004
  call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
2005 2006 2007 2008
}


void MacroAssembler::TailCallStub(CodeStub* stub) {
2009
  jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
2010 2011 2012 2013
}


void MacroAssembler::StubReturn(int argc) {
2014
  DCHECK(argc >= 1 && generating_stub());
2015 2016 2017 2018
  ret((argc - 1) * kPointerSize);
}


2019
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
2020
  return has_frame_ || !stub->SometimesSetsUpAFrame();
2021 2022 2023
}


2024 2025 2026 2027
void MacroAssembler::IndexFromHash(Register hash, Register index) {
  // The assert checks that the constants for the maximum number of digits
  // for an array index cached in the hash field and the number of bits
  // reserved for it does not conflict.
2028
  DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
2029 2030 2031 2032
         (1 << String::kArrayIndexValueBits));
  if (!index.is(hash)) {
    mov(index, hash);
  }
2033
  DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
2034 2035 2036
}


2037
void MacroAssembler::CallRuntime(const Runtime::Function* f,
2038 2039
                                 int num_arguments,
                                 SaveFPRegsMode save_doubles) {
2040 2041 2042
  // If the expected number of arguments of the runtime function is
  // constant, we check that the actual number of arguments match the
  // expectation.
2043
  CHECK(f->nargs < 0 || f->nargs == num_arguments);
2044

2045 2046 2047 2048
  // TODO(1236192): Most runtime routines don't need the number of
  // arguments passed in because it is constant. At some point we
  // should remove this need and make the runtime routine entry code
  // smarter.
2049
  Move(eax, Immediate(num_arguments));
2050
  mov(ebx, Immediate(ExternalReference(f, isolate())));
2051
  CEntryStub ces(isolate(), 1, save_doubles);
2052
  CallStub(&ces);
2053 2054 2055
}


2056 2057 2058 2059 2060
void MacroAssembler::CallExternalReference(ExternalReference ref,
                                           int num_arguments) {
  mov(eax, Immediate(num_arguments));
  mov(ebx, Immediate(ref));

2061
  CEntryStub stub(isolate(), 1);
2062 2063 2064 2065
  CallStub(&stub);
}


serya@chromium.org's avatar
serya@chromium.org committed
2066 2067 2068
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
                                               int num_arguments,
                                               int result_size) {
2069 2070 2071 2072
  // TODO(1236192): Most runtime routines don't need the number of
  // arguments passed in because it is constant. At some point we
  // should remove this need and make the runtime routine entry code
  // smarter.
2073
  Move(eax, Immediate(num_arguments));
serya@chromium.org's avatar
serya@chromium.org committed
2074 2075 2076 2077 2078 2079 2080
  JumpToExternalReference(ext);
}


void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
                                     int num_arguments,
                                     int result_size) {
2081 2082 2083
  TailCallExternalReference(ExternalReference(fid, isolate()),
                            num_arguments,
                            result_size);
2084 2085 2086
}


2087 2088
Operand ApiParameterOperand(int index) {
  return Operand(esp, index * kPointerSize);
2089 2090 2091
}


2092 2093 2094
void MacroAssembler::PrepareCallApiFunction(int argc) {
  EnterApiExitFrame(argc);
  if (emit_debug_code()) {
2095
    mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
2096
  }
2097 2098
}

2099

2100
void MacroAssembler::CallApiFunctionAndReturn(
2101
    Register function_address,
2102
    ExternalReference thunk_ref,
2103 2104 2105 2106
    Operand thunk_last_arg,
    int stack_space,
    Operand return_value_operand,
    Operand* context_restore_operand) {
2107
  ExternalReference next_address =
2108
      ExternalReference::handle_scope_next_address(isolate());
2109
  ExternalReference limit_address =
2110
      ExternalReference::handle_scope_limit_address(isolate());
2111
  ExternalReference level_address =
2112
      ExternalReference::handle_scope_level_address(isolate());
2113

2114
  DCHECK(edx.is(function_address));
2115 2116 2117 2118
  // Allocate HandleScope in callee-save registers.
  mov(ebx, Operand::StaticVariable(next_address));
  mov(edi, Operand::StaticVariable(limit_address));
  add(Operand::StaticVariable(level_address), Immediate(1));
2119

2120 2121 2122
  if (FLAG_log_timer_events) {
    FrameScope frame(this, StackFrame::MANUAL);
    PushSafepointRegisters();
2123 2124 2125 2126
    PrepareCallCFunction(1, eax);
    mov(Operand(esp, 0),
        Immediate(ExternalReference::isolate_address(isolate())));
    CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
2127 2128 2129
    PopSafepointRegisters();
  }

2130 2131 2132

  Label profiler_disabled;
  Label end_profiler_check;
2133
  mov(eax, Immediate(ExternalReference::is_profiling_address(isolate())));
2134 2135 2136 2137
  cmpb(Operand(eax, 0), 0);
  j(zero, &profiler_disabled);

  // Additional parameter is the address of the actual getter function.
2138
  mov(thunk_last_arg, function_address);
2139
  // Call the api function.
2140 2141
  mov(eax, Immediate(thunk_ref));
  call(eax);
2142 2143 2144
  jmp(&end_profiler_check);

  bind(&profiler_disabled);
2145
  // Call the api function.
2146
  call(function_address);
2147
  bind(&end_profiler_check);
2148

2149 2150 2151
  if (FLAG_log_timer_events) {
    FrameScope frame(this, StackFrame::MANUAL);
    PushSafepointRegisters();
2152 2153 2154 2155
    PrepareCallCFunction(1, eax);
    mov(Operand(esp, 0),
        Immediate(ExternalReference::isolate_address(isolate())));
    CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
2156 2157 2158
    PopSafepointRegisters();
  }

2159
  Label prologue;
2160
  // Load the value from ReturnValue
2161
  mov(eax, return_value_operand);
2162

2163
  Label promote_scheduled_exception;
2164
  Label exception_handled;
2165 2166 2167 2168 2169 2170 2171 2172
  Label delete_allocated_handles;
  Label leave_exit_frame;

  bind(&prologue);
  // No more valid handles (the result handle was the last one). Restore
  // previous handle scope.
  mov(Operand::StaticVariable(next_address), ebx);
  sub(Operand::StaticVariable(level_address), Immediate(1));
2173
  Assert(above_equal, kInvalidHandleScopeLevel);
2174
  cmp(edi, Operand::StaticVariable(limit_address));
2175
  j(not_equal, &delete_allocated_handles);
2176 2177 2178 2179
  bind(&leave_exit_frame);

  // Check if the function scheduled an exception.
  ExternalReference scheduled_exception_address =
2180
      ExternalReference::scheduled_exception_address(isolate());
2181
  cmp(Operand::StaticVariable(scheduled_exception_address),
2182
      Immediate(isolate()->factory()->the_hole_value()));
2183
  j(not_equal, &promote_scheduled_exception);
2184
  bind(&exception_handled);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

#if ENABLE_EXTRA_CHECKS
  // Check if the function returned a valid JavaScript value.
  Label ok;
  Register return_value = eax;
  Register map = ecx;

  JumpIfSmi(return_value, &ok, Label::kNear);
  mov(map, FieldOperand(return_value, HeapObject::kMapOffset));

  CmpInstanceType(map, FIRST_NONSTRING_TYPE);
  j(below, &ok, Label::kNear);

  CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
  j(above_equal, &ok, Label::kNear);

  cmp(map, isolate()->factory()->heap_number_map());
  j(equal, &ok, Label::kNear);

  cmp(return_value, isolate()->factory()->undefined_value());
  j(equal, &ok, Label::kNear);

  cmp(return_value, isolate()->factory()->true_value());
  j(equal, &ok, Label::kNear);

  cmp(return_value, isolate()->factory()->false_value());
  j(equal, &ok, Label::kNear);

  cmp(return_value, isolate()->factory()->null_value());
  j(equal, &ok, Label::kNear);

2216
  Abort(kAPICallReturnedInvalidObject);
2217 2218 2219 2220

  bind(&ok);
#endif

2221 2222 2223 2224 2225
  bool restore_context = context_restore_operand != NULL;
  if (restore_context) {
    mov(esi, *context_restore_operand);
  }
  LeaveApiExitFrame(!restore_context);
2226
  ret(stack_space * kPointerSize);
2227

2228
  bind(&promote_scheduled_exception);
2229 2230
  {
    FrameScope frame(this, StackFrame::INTERNAL);
2231
    CallRuntime(Runtime::kPromoteScheduledException, 0);
2232 2233
  }
  jmp(&exception_handled);
2234

2235
  // HandleScope limit has changed. Delete allocated extensions.
2236 2237
  ExternalReference delete_extensions =
      ExternalReference::delete_handle_scope_extensions(isolate());
2238 2239 2240
  bind(&delete_allocated_handles);
  mov(Operand::StaticVariable(limit_address), edi);
  mov(edi, eax);
2241 2242
  mov(Operand(esp, 0),
      Immediate(ExternalReference::isolate_address(isolate())));
2243
  mov(eax, Immediate(delete_extensions));
2244
  call(eax);
2245 2246
  mov(eax, edi);
  jmp(&leave_exit_frame);
2247 2248 2249
}


serya@chromium.org's avatar
serya@chromium.org committed
2250
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
2251
  // Set the entry point and jump to the C entry runtime stub.
2252
  mov(ebx, Immediate(ext));
2253
  CEntryStub ces(isolate(), 1);
2254
  jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
2255 2256 2257 2258 2259 2260 2261
}


void MacroAssembler::InvokePrologue(const ParameterCount& expected,
                                    const ParameterCount& actual,
                                    Handle<Code> code_constant,
                                    const Operand& code_operand,
2262
                                    Label* done,
2263
                                    bool* definitely_mismatches,
2264
                                    InvokeFlag flag,
2265
                                    Label::Distance done_near,
2266
                                    const CallWrapper& call_wrapper) {
2267
  bool definitely_matches = false;
2268
  *definitely_mismatches = false;
2269 2270
  Label invoke;
  if (expected.is_immediate()) {
2271
    DCHECK(actual.is_immediate());
2272 2273 2274 2275
    if (expected.immediate() == actual.immediate()) {
      definitely_matches = true;
    } else {
      mov(eax, actual.immediate());
2276 2277 2278 2279 2280 2281 2282 2283
      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
      if (expected.immediate() == sentinel) {
        // Don't worry about adapting arguments for builtins that
        // don't want that done. Skip adaption code by making it look
        // like we have a match between expected and actual number of
        // arguments.
        definitely_matches = true;
      } else {
2284
        *definitely_mismatches = true;
2285 2286
        mov(ebx, expected.immediate());
      }
2287 2288 2289 2290 2291 2292 2293 2294
    }
  } else {
    if (actual.is_immediate()) {
      // Expected is in register, actual is immediate. This is the
      // case when we invoke function values without going through the
      // IC mechanism.
      cmp(expected.reg(), actual.immediate());
      j(equal, &invoke);
2295
      DCHECK(expected.reg().is(ebx));
2296 2297 2298 2299
      mov(eax, actual.immediate());
    } else if (!expected.reg().is(actual.reg())) {
      // Both expected and actual are in (different) registers. This
      // is the case when we invoke functions using call and apply.
2300
      cmp(expected.reg(), actual.reg());
2301
      j(equal, &invoke);
2302 2303
      DCHECK(actual.reg().is(eax));
      DCHECK(expected.reg().is(ebx));
2304 2305 2306 2307 2308
    }
  }

  if (!definitely_matches) {
    Handle<Code> adaptor =
2309
        isolate()->builtins()->ArgumentsAdaptorTrampoline();
2310
    if (!code_constant.is_null()) {
2311
      mov(edx, Immediate(code_constant));
2312
      add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
2313 2314 2315 2316 2317
    } else if (!code_operand.is_reg(edx)) {
      mov(edx, code_operand);
    }

    if (flag == CALL_FUNCTION) {
2318
      call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
2319
      call(adaptor, RelocInfo::CODE_TARGET);
2320
      call_wrapper.AfterCall();
2321 2322 2323
      if (!*definitely_mismatches) {
        jmp(done, done_near);
      }
2324
    } else {
2325
      jmp(adaptor, RelocInfo::CODE_TARGET);
2326 2327 2328 2329 2330 2331 2332 2333 2334
    }
    bind(&invoke);
  }
}


void MacroAssembler::InvokeCode(const Operand& code,
                                const ParameterCount& expected,
                                const ParameterCount& actual,
2335
                                InvokeFlag flag,
2336
                                const CallWrapper& call_wrapper) {
2337
  // You can't call a function without a valid frame.
2338
  DCHECK(flag == JUMP_FUNCTION || has_frame());
2339

2340
  Label done;
2341
  bool definitely_mismatches = false;
2342
  InvokePrologue(expected, actual, Handle<Code>::null(), code,
2343
                 &done, &definitely_mismatches, flag, Label::kNear,
2344
                 call_wrapper);
2345 2346 2347 2348 2349 2350
  if (!definitely_mismatches) {
    if (flag == CALL_FUNCTION) {
      call_wrapper.BeforeCall(CallSize(code));
      call(code);
      call_wrapper.AfterCall();
    } else {
2351
      DCHECK(flag == JUMP_FUNCTION);
2352 2353 2354
      jmp(code);
    }
    bind(&done);
2355 2356 2357 2358 2359 2360
  }
}


void MacroAssembler::InvokeFunction(Register fun,
                                    const ParameterCount& actual,
2361
                                    InvokeFlag flag,
2362
                                    const CallWrapper& call_wrapper) {
2363
  // You can't call a function without a valid frame.
2364
  DCHECK(flag == JUMP_FUNCTION || has_frame());
2365

2366
  DCHECK(fun.is(edi));
2367 2368 2369
  mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
  mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2370
  SmiUntag(ebx);
2371 2372

  ParameterCount expected(ebx);
2373
  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2374
             expected, actual, flag, call_wrapper);
2375 2376 2377
}


2378
void MacroAssembler::InvokeFunction(Register fun,
2379
                                    const ParameterCount& expected,
2380
                                    const ParameterCount& actual,
2381
                                    InvokeFlag flag,
2382
                                    const CallWrapper& call_wrapper) {
2383
  // You can't call a function without a valid frame.
2384
  DCHECK(flag == JUMP_FUNCTION || has_frame());
2385

2386
  DCHECK(fun.is(edi));
2387
  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2388

2389
  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2390
             expected, actual, flag, call_wrapper);
2391 2392 2393
}


2394 2395 2396 2397
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
                                    const ParameterCount& expected,
                                    const ParameterCount& actual,
                                    InvokeFlag flag,
2398
                                    const CallWrapper& call_wrapper) {
2399
  LoadHeapObject(edi, function);
2400
  InvokeFunction(edi, expected, actual, flag, call_wrapper);
2401 2402 2403
}


2404 2405
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
                                   InvokeFlag flag,
2406
                                   const CallWrapper& call_wrapper) {
2407
  // You can't call a builtin without a valid frame.
2408
  DCHECK(flag == JUMP_FUNCTION || has_frame());
2409 2410 2411 2412 2413

  // Rely on the assertion to check that the number of provided
  // arguments match the expected number of arguments. Fake a
  // parameter count to avoid emitting code to do the check.
  ParameterCount expected(0);
2414 2415
  GetBuiltinFunction(edi, id);
  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2416
             expected, expected, flag, call_wrapper);
2417 2418
}

2419

2420 2421 2422
void MacroAssembler::GetBuiltinFunction(Register target,
                                        Builtins::JavaScript id) {
  // Load the JavaScript builtin function from the builtins object.
2423
  mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2424
  mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
2425 2426 2427
  mov(target, FieldOperand(target,
                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}
2428

2429

2430
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2431
  DCHECK(!target.is(edi));
2432
  // Load the JavaScript builtin function from the builtins object.
2433 2434 2435
  GetBuiltinFunction(edi, id);
  // Load the code entry point from the function into the target register.
  mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
2436 2437 2438
}


2439 2440 2441
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
  if (context_chain_length > 0) {
    // Move up the chain of contexts to the context containing the slot.
2442
    mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2443
    for (int i = 1; i < context_chain_length; i++) {
2444
      mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2445
    }
2446 2447 2448 2449 2450 2451 2452
  } else {
    // Slot is in the current function context.  Move it into the
    // destination register in case we store into it (the write barrier
    // cannot be allowed to destroy the context in esi).
    mov(dst, esi);
  }

2453 2454 2455 2456
  // We should not have found a with context by walking the context chain
  // (i.e., the static scope chain and runtime context chain do not agree).
  // A variable occurring in such a scope should have slot type LOOKUP and
  // not CONTEXT.
2457
  if (emit_debug_code()) {
2458 2459
    cmp(FieldOperand(dst, HeapObject::kMapOffset),
        isolate()->factory()->with_context_map());
2460
    Check(not_equal, kVariableResolvedToWithContext);
2461 2462 2463 2464
  }
}


2465 2466 2467 2468 2469 2470 2471
void MacroAssembler::LoadTransitionedArrayMapConditional(
    ElementsKind expected_kind,
    ElementsKind transitioned_kind,
    Register map_in_out,
    Register scratch,
    Label* no_map_match) {
  // Load the global or builtins object from the current context.
2472
  mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2473
  mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
2474 2475

  // Check that the function's map is the same as the expected cached map.
2476 2477 2478 2479 2480 2481
  mov(scratch, Operand(scratch,
                       Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));

  size_t offset = expected_kind * kPointerSize +
      FixedArrayBase::kHeaderSize;
  cmp(map_in_out, FieldOperand(scratch, offset));
2482 2483 2484
  j(not_equal, no_map_match);

  // Use the transitioned cached map.
2485 2486 2487
  offset = transitioned_kind * kPointerSize +
      FixedArrayBase::kHeaderSize;
  mov(map_in_out, FieldOperand(scratch, offset));
2488 2489 2490
}


2491 2492
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
  // Load the global or builtins object from the current context.
2493 2494
  mov(function,
      Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2495
  // Load the native context from the global or builtins object.
2496 2497
  mov(function,
      FieldOperand(function, GlobalObject::kNativeContextOffset));
2498
  // Load the function from the native context.
2499 2500 2501 2502 2503 2504 2505 2506
  mov(function, Operand(function, Context::SlotOffset(index)));
}


void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
                                                  Register map) {
  // Load the initial map.  The global functions all have initial maps.
  mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2507
  if (emit_debug_code()) {
2508
    Label ok, fail;
2509
    CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
2510 2511
    jmp(&ok);
    bind(&fail);
2512
    Abort(kGlobalFunctionsMustHaveInitialMap);
2513 2514 2515 2516
    bind(&ok);
  }
}

2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
// Store the value in register src in the safepoint register stack
// slot for register dst.
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
  mov(SafepointRegisterSlot(dst), src);
}


void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
  mov(SafepointRegisterSlot(dst), src);
}


void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
  mov(dst, SafepointRegisterSlot(src));
}


Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
  return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}


2540 2541 2542 2543
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
  // The registers are pushed starting with the lowest encoding,
  // which means that lowest encodings are furthest away from
  // the stack pointer.
2544
  DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
2545 2546 2547 2548
  return kNumSafepointRegisters - reg_code - 1;
}


2549 2550
void MacroAssembler::LoadHeapObject(Register result,
                                    Handle<HeapObject> object) {
2551
  AllowDeferredHandleDereference embedding_raw_address;
2552
  if (isolate()->heap()->InNewSpace(*object)) {
2553
    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2554
    mov(result, Operand::ForCell(cell));
2555 2556 2557 2558 2559 2560
  } else {
    mov(result, object);
  }
}


2561
void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
2562
  AllowDeferredHandleDereference using_raw_address;
2563
  if (isolate()->heap()->InNewSpace(*object)) {
2564
    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2565
    cmp(reg, Operand::ForCell(cell));
2566 2567 2568 2569 2570 2571
  } else {
    cmp(reg, object);
  }
}


2572
void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
2573
  AllowDeferredHandleDereference using_raw_address;
2574
  if (isolate()->heap()->InNewSpace(*object)) {
2575
    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2576
    push(Operand::ForCell(cell));
2577 2578 2579 2580 2581 2582
  } else {
    Push(object);
  }
}


2583 2584 2585 2586 2587
void MacroAssembler::Ret() {
  ret(0);
}


2588 2589 2590 2591 2592
void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
  if (is_uint16(bytes_dropped)) {
    ret(bytes_dropped);
  } else {
    pop(scratch);
2593
    add(esp, Immediate(bytes_dropped));
2594 2595 2596 2597 2598 2599
    push(scratch);
    ret(0);
  }
}


2600 2601
void MacroAssembler::Drop(int stack_elements) {
  if (stack_elements > 0) {
2602
    add(esp, Immediate(stack_elements * kPointerSize));
2603 2604 2605 2606
  }
}


2607 2608 2609 2610 2611 2612 2613
void MacroAssembler::Move(Register dst, Register src) {
  if (!dst.is(src)) {
    mov(dst, src);
  }
}


2614 2615 2616
void MacroAssembler::Move(Register dst, const Immediate& x) {
  if (x.is_zero()) {
    xor_(dst, dst);  // Shorter than mov of 32-bit immediate 0.
2617
  } else {
2618
    mov(dst, x);
2619 2620 2621 2622
  }
}


2623 2624 2625 2626 2627
void MacroAssembler::Move(const Operand& dst, const Immediate& x) {
  mov(dst, x);
}


2628 2629 2630
void MacroAssembler::Move(XMMRegister dst, uint32_t src) {
  if (src == 0) {
    pxor(dst, dst);
2631
  } else {
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
    unsigned cnt = base::bits::CountPopulation32(src);
    unsigned nlz = base::bits::CountLeadingZeros32(src);
    unsigned ntz = base::bits::CountTrailingZeros32(src);
    if (nlz + cnt + ntz == 32) {
      pcmpeqd(dst, dst);
      if (ntz == 0) {
        psrld(dst, 32 - cnt);
      } else {
        pslld(dst, 32 - cnt);
        if (nlz != 0) psrld(dst, nlz);
      }
    } else {
      push(eax);
      mov(eax, Immediate(src));
      movd(dst, Operand(eax));
      pop(eax);
    }
  }
}


void MacroAssembler::Move(XMMRegister dst, uint64_t src) {
  uint32_t lower = static_cast<uint32_t>(src);
  uint32_t upper = static_cast<uint32_t>(src >> 32);
  if (upper == 0) {
    Move(dst, lower);
  } else {
    unsigned cnt = base::bits::CountPopulation64(src);
    unsigned nlz = base::bits::CountLeadingZeros64(src);
    unsigned ntz = base::bits::CountTrailingZeros64(src);
    if (nlz + cnt + ntz == 64) {
      pcmpeqd(dst, dst);
      if (ntz == 0) {
        psrlq(dst, 64 - cnt);
      } else {
        psllq(dst, 64 - cnt);
        if (nlz != 0) psrlq(dst, nlz);
      }
    } else if (lower == 0) {
      Move(dst, upper);
      psllq(dst, 32);
2673 2674
    } else if (CpuFeatures::IsSupported(SSE4_1)) {
      CpuFeatureScope scope(this, SSE4_1);
2675 2676 2677 2678
      push(eax);
      Move(eax, Immediate(lower));
      movd(dst, Operand(eax));
      Move(eax, Immediate(upper));
2679
      pinsrd(dst, Operand(eax), 1);
2680
      pop(eax);
2681 2682 2683 2684 2685
    } else {
      push(Immediate(upper));
      push(Immediate(lower));
      movsd(dst, Operand(esp, 0));
      add(esp, Immediate(kDoubleSize));
2686
    }
2687 2688 2689 2690
  }
}


2691 2692 2693 2694 2695 2696 2697 2698
void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
  if (FLAG_native_code_counters && counter->Enabled()) {
    mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
  }
}


void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
2699
  DCHECK(value > 0);
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
  if (FLAG_native_code_counters && counter->Enabled()) {
    Operand operand = Operand::StaticVariable(ExternalReference(counter));
    if (value == 1) {
      inc(operand);
    } else {
      add(operand, Immediate(value));
    }
  }
}


void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
2712
  DCHECK(value > 0);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
  if (FLAG_native_code_counters && counter->Enabled()) {
    Operand operand = Operand::StaticVariable(ExternalReference(counter));
    if (value == 1) {
      dec(operand);
    } else {
      sub(operand, Immediate(value));
    }
  }
}


2724 2725 2726
void MacroAssembler::IncrementCounter(Condition cc,
                                      StatsCounter* counter,
                                      int value) {
2727
  DCHECK(value > 0);
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
  if (FLAG_native_code_counters && counter->Enabled()) {
    Label skip;
    j(NegateCondition(cc), &skip);
    pushfd();
    IncrementCounter(counter, value);
    popfd();
    bind(&skip);
  }
}


void MacroAssembler::DecrementCounter(Condition cc,
                                      StatsCounter* counter,
                                      int value) {
2742
  DCHECK(value > 0);
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
  if (FLAG_native_code_counters && counter->Enabled()) {
    Label skip;
    j(NegateCondition(cc), &skip);
    pushfd();
    DecrementCounter(counter, value);
    popfd();
    bind(&skip);
  }
}


2754 2755
void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
  if (emit_debug_code()) Check(cc, reason);
2756 2757 2758
}


2759
void MacroAssembler::AssertFastElements(Register elements) {
2760
  if (emit_debug_code()) {
2761
    Factory* factory = isolate()->factory();
2762 2763
    Label ok;
    cmp(FieldOperand(elements, HeapObject::kMapOffset),
2764
        Immediate(factory->fixed_array_map()));
2765
    j(equal, &ok);
2766 2767 2768
    cmp(FieldOperand(elements, HeapObject::kMapOffset),
        Immediate(factory->fixed_double_array_map()));
    j(equal, &ok);
2769
    cmp(FieldOperand(elements, HeapObject::kMapOffset),
2770
        Immediate(factory->fixed_cow_array_map()));
2771
    j(equal, &ok);
2772
    Abort(kJSObjectWithFastElementsMapHasSlowElements);
2773 2774 2775 2776 2777
    bind(&ok);
  }
}


2778
void MacroAssembler::Check(Condition cc, BailoutReason reason) {
2779
  Label L;
2780
  j(cc, &L);
2781
  Abort(reason);
2782 2783 2784 2785 2786
  // will not return here
  bind(&L);
}


2787
void MacroAssembler::CheckStackAlignment() {
2788
  int frame_alignment = base::OS::ActivationFrameAlignment();
2789 2790
  int frame_alignment_mask = frame_alignment - 1;
  if (frame_alignment > kPointerSize) {
2791
    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
    Label alignment_as_expected;
    test(esp, Immediate(frame_alignment_mask));
    j(zero, &alignment_as_expected);
    // Abort if stack is not aligned.
    int3();
    bind(&alignment_as_expected);
  }
}


2802
void MacroAssembler::Abort(BailoutReason reason) {
2803
#ifdef DEBUG
2804
  const char* msg = GetBailoutReason(reason);
2805 2806 2807 2808
  if (msg != NULL) {
    RecordComment("Abort message: ");
    RecordComment(msg);
  }
2809 2810 2811 2812 2813

  if (FLAG_trap_on_abort) {
    int3();
    return;
  }
2814
#endif
2815

2816
  push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(reason))));
2817 2818 2819 2820 2821
  // Disable stub call restrictions to always allow calls to abort.
  if (!has_frame_) {
    // We don't actually want to generate a pile of code for this, so just
    // claim there is a stack frame, without generating one.
    FrameScope scope(this, StackFrame::NONE);
2822
    CallRuntime(Runtime::kAbort, 1);
2823
  } else {
2824
    CallRuntime(Runtime::kAbort, 1);
2825
  }
2826
  // will not return here
2827
  int3();
2828 2829 2830
}


2831 2832
void MacroAssembler::LoadInstanceDescriptors(Register map,
                                             Register descriptors) {
2833
  mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
2834 2835 2836
}


2837 2838 2839 2840 2841 2842
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
  mov(dst, FieldOperand(map, Map::kBitField3Offset));
  DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
}


2843 2844 2845
void MacroAssembler::LoadPowerOf2(XMMRegister dst,
                                  Register scratch,
                                  int power) {
2846
  DCHECK(is_uintn(power + HeapNumber::kExponentBias,
2847 2848
                  HeapNumber::kExponentBits));
  mov(scratch, Immediate(power + HeapNumber::kExponentBias));
2849
  movd(dst, scratch);
2850 2851 2852 2853
  psllq(dst, HeapNumber::kMantissaBits);
}


2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
void MacroAssembler::LookupNumberStringCache(Register object,
                                             Register result,
                                             Register scratch1,
                                             Register scratch2,
                                             Label* not_found) {
  // Use of registers. Register result is used as a temporary.
  Register number_string_cache = result;
  Register mask = scratch1;
  Register scratch = scratch2;

  // Load the number string cache.
  LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
  // Make the hash mask from the length of the number string cache. It
  // contains two elements (number and string) for each cache entry.
  mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
  shr(mask, kSmiTagSize + 1);  // Untag length and divide it by two.
  sub(mask, Immediate(1));  // Make mask.

  // Calculate the entry in the number string cache. The hash value in the
  // number string cache for smis is just the smi value, and the hash for
  // doubles is the xor of the upper and lower words. See
  // Heap::GetNumberStringCache.
  Label smi_hash_calculated;
  Label load_result_from_cache;
  Label not_smi;
  STATIC_ASSERT(kSmiTag == 0);
  JumpIfNotSmi(object, &not_smi, Label::kNear);
  mov(scratch, object);
  SmiUntag(scratch);
  jmp(&smi_hash_calculated, Label::kNear);
  bind(&not_smi);
  cmp(FieldOperand(object, HeapObject::kMapOffset),
      isolate()->factory()->heap_number_map());
  j(not_equal, not_found);
  STATIC_ASSERT(8 == kDoubleSize);
  mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
  xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
  // Object is heap number and hash is now in scratch. Calculate cache index.
  and_(scratch, mask);
  Register index = scratch;
  Register probe = mask;
  mov(probe,
      FieldOperand(number_string_cache,
                   index,
                   times_twice_pointer_size,
                   FixedArray::kHeaderSize));
  JumpIfSmi(probe, not_found);
2901 2902
  movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
  ucomisd(xmm0, FieldOperand(probe, HeapNumber::kValueOffset));
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
  j(parity_even, not_found);  // Bail out if NaN is involved.
  j(not_equal, not_found);  // The cache did not contain this value.
  jmp(&load_result_from_cache, Label::kNear);

  bind(&smi_hash_calculated);
  // Object is smi and hash is now in scratch. Calculate cache index.
  and_(scratch, mask);
  // Check if the entry is the smi we are looking for.
  cmp(object,
      FieldOperand(number_string_cache,
                   index,
                   times_twice_pointer_size,
                   FixedArray::kHeaderSize));
  j(not_equal, not_found);

  // Get the result from the cache.
  bind(&load_result_from_cache);
  mov(result,
      FieldOperand(number_string_cache,
                   index,
                   times_twice_pointer_size,
                   FixedArray::kHeaderSize + kPointerSize));
  IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
}


2929 2930
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
    Register instance_type, Register scratch, Label* failure) {
2931 2932 2933 2934 2935
  if (!scratch.is(instance_type)) {
    mov(scratch, instance_type);
  }
  and_(scratch,
       kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
2936
  cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
2937 2938 2939 2940
  j(not_equal, failure);
}


2941 2942 2943 2944 2945
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register object1,
                                                           Register object2,
                                                           Register scratch1,
                                                           Register scratch2,
                                                           Label* failure) {
2946
  // Check that both objects are not smis.
2947
  STATIC_ASSERT(kSmiTag == 0);
2948 2949
  mov(scratch1, object1);
  and_(scratch1, object2);
2950
  JumpIfSmi(scratch1, failure);
2951 2952 2953 2954 2955 2956 2957

  // Load instance type for both strings.
  mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
  mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
  movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
  movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));

2958 2959
  // Check that both are flat one-byte strings.
  const int kFlatOneByteStringMask =
2960
      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2961
  const int kFlatOneByteStringTag =
2962
      kStringTag | kOneByteStringTag | kSeqStringTag;
2963
  // Interleave bits from both instance types and compare them in one check.
2964 2965 2966
  DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
  and_(scratch1, kFlatOneByteStringMask);
  and_(scratch2, kFlatOneByteStringMask);
2967
  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2968
  cmp(scratch1, kFlatOneByteStringTag | (kFlatOneByteStringTag << 3));
2969 2970 2971 2972
  j(not_equal, failure);
}


2973 2974 2975
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
                                                     Label* not_unique_name,
                                                     Label::Distance distance) {
2976 2977 2978 2979 2980 2981 2982 2983
  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
  Label succeed;
  test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
  j(zero, &succeed);
  cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE));
  j(not_equal, not_unique_name, distance);

  bind(&succeed);
2984 2985 2986
}


2987 2988 2989 2990 2991 2992
void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
                                               Register index,
                                               Register value,
                                               uint32_t encoding_mask) {
  Label is_object;
  JumpIfNotSmi(string, &is_object, Label::kNear);
2993
  Abort(kNonObject);
2994 2995 2996 2997 2998 2999 3000 3001 3002
  bind(&is_object);

  push(value);
  mov(value, FieldOperand(string, HeapObject::kMapOffset));
  movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));

  and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
  cmp(value, Immediate(encoding_mask));
  pop(value);
3003
  Check(equal, kUnexpectedStringType);
3004 3005 3006 3007 3008

  // The index is assumed to be untagged coming in, tag it to compare with the
  // string length without using a temp register, it is restored at the end of
  // this function.
  SmiTag(index);
3009
  Check(no_overflow, kIndexIsTooLarge);
3010 3011

  cmp(index, FieldOperand(string, String::kLengthOffset));
3012
  Check(less, kIndexIsTooLarge);
3013 3014

  cmp(index, Immediate(Smi::FromInt(0)));
3015
  Check(greater_equal, kIndexIsNegative);
3016 3017 3018 3019 3020 3021

  // Restore the index
  SmiUntag(index);
}


3022
void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
3023
  int frame_alignment = base::OS::ActivationFrameAlignment();
3024
  if (frame_alignment != 0) {
3025 3026 3027
    // Make stack end at alignment and make room for num_arguments words
    // and the original value of esp.
    mov(scratch, esp);
3028
    sub(esp, Immediate((num_arguments + 1) * kPointerSize));
3029
    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
3030
    and_(esp, -frame_alignment);
3031 3032
    mov(Operand(esp, num_arguments * kPointerSize), scratch);
  } else {
3033
    sub(esp, Immediate(num_arguments * kPointerSize));
3034 3035 3036 3037 3038 3039 3040
  }
}


void MacroAssembler::CallCFunction(ExternalReference function,
                                   int num_arguments) {
  // Trashing eax is ok as it will be the return value.
3041
  mov(eax, Immediate(function));
3042 3043 3044 3045 3046 3047
  CallCFunction(eax, num_arguments);
}


void MacroAssembler::CallCFunction(Register function,
                                   int num_arguments) {
3048
  DCHECK(has_frame());
3049
  // Check stack alignment.
3050
  if (emit_debug_code()) {
3051 3052 3053
    CheckStackAlignment();
  }

3054
  call(function);
3055
  if (base::OS::ActivationFrameAlignment() != 0) {
3056 3057
    mov(esp, Operand(esp, num_arguments * kPointerSize));
  } else {
3058
    add(esp, Immediate(num_arguments * kPointerSize));
3059 3060 3061 3062
  }
}


3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
#ifdef DEBUG
bool AreAliased(Register reg1,
                Register reg2,
                Register reg3,
                Register reg4,
                Register reg5,
                Register reg6,
                Register reg7,
                Register reg8) {
  int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
      reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
      reg7.is_valid() + reg8.is_valid();

  RegList regs = 0;
  if (reg1.is_valid()) regs |= reg1.bit();
  if (reg2.is_valid()) regs |= reg2.bit();
  if (reg3.is_valid()) regs |= reg3.bit();
  if (reg4.is_valid()) regs |= reg4.bit();
  if (reg5.is_valid()) regs |= reg5.bit();
  if (reg6.is_valid()) regs |= reg6.bit();
  if (reg7.is_valid()) regs |= reg7.bit();
  if (reg8.is_valid()) regs |= reg8.bit();
  int n_of_non_aliasing_regs = NumRegs(regs);

  return n_of_valid_regs != n_of_non_aliasing_regs;
3088
}
3089
#endif
3090 3091


3092
CodePatcher::CodePatcher(byte* address, int size)
3093 3094
    : address_(address),
      size_(size),
3095
      masm_(NULL, address, size + Assembler::kGap) {
3096
  // Create a new macro assembler pointing to the address of the code to patch.
3097 3098
  // The size is adjusted with kGap on order for the assembler to generate size
  // bytes of instructions without failing with buffer size constraints.
3099
  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3100 3101 3102 3103 3104
}


CodePatcher::~CodePatcher() {
  // Indicate that code has changed.
3105
  CpuFeatures::FlushICache(address_, size_);
3106 3107

  // Check that the code was patched as expected.
3108 3109
  DCHECK(masm_.pc_ == address_ + size_);
  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3110 3111 3112
}


3113 3114 3115 3116 3117 3118 3119
void MacroAssembler::CheckPageFlag(
    Register object,
    Register scratch,
    int mask,
    Condition cc,
    Label* condition_met,
    Label::Distance condition_met_distance) {
3120
  DCHECK(cc == zero || cc == not_zero);
3121 3122 3123 3124
  if (scratch.is(object)) {
    and_(scratch, Immediate(~Page::kPageAlignmentMask));
  } else {
    mov(scratch, Immediate(~Page::kPageAlignmentMask));
3125
    and_(scratch, object);
3126 3127 3128 3129 3130 3131 3132 3133
  }
  if (mask < (1 << kBitsPerByte)) {
    test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
           static_cast<uint8_t>(mask));
  } else {
    test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
  }
  j(cc, condition_met, condition_met_distance);
3134 3135 3136 3137 3138 3139 3140 3141 3142
}


void MacroAssembler::CheckPageFlagForMap(
    Handle<Map> map,
    int mask,
    Condition cc,
    Label* condition_met,
    Label::Distance condition_met_distance) {
3143
  DCHECK(cc == zero || cc == not_zero);
3144
  Page* page = Page::FromAddress(map->address());
3145
  DCHECK(!serializer_enabled());  // Serializer cannot match page_flags.
3146 3147 3148
  ExternalReference reference(ExternalReference::page_flags(page));
  // The inlined static address check of the page's flags relies
  // on maps never being compacted.
3149
  DCHECK(!isolate()->heap()->mark_compact_collector()->
3150 3151 3152 3153 3154 3155 3156
         IsOnEvacuationCandidate(*map));
  if (mask < (1 << kBitsPerByte)) {
    test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask));
  } else {
    test(Operand::StaticVariable(reference), Immediate(mask));
  }
  j(cc, condition_met, condition_met_distance);
3157 3158 3159
}


3160 3161 3162 3163 3164 3165
void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
                                        Register scratch,
                                        Label* if_deprecated) {
  if (map->CanBeDeprecated()) {
    mov(scratch, map);
    mov(scratch, FieldOperand(scratch, Map::kBitField3Offset));
3166
    and_(scratch, Immediate(Map::Deprecated::kMask));
3167 3168 3169 3170 3171
    j(not_zero, if_deprecated);
  }
}


3172 3173 3174 3175 3176 3177 3178 3179
void MacroAssembler::JumpIfBlack(Register object,
                                 Register scratch0,
                                 Register scratch1,
                                 Label* on_black,
                                 Label::Distance on_black_near) {
  HasColor(object, scratch0, scratch1,
           on_black, on_black_near,
           1, 0);  // kBlackBitPattern.
3180
  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
}


void MacroAssembler::HasColor(Register object,
                              Register bitmap_scratch,
                              Register mask_scratch,
                              Label* has_color,
                              Label::Distance has_color_distance,
                              int first_bit,
                              int second_bit) {
3191
  DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
3192 3193 3194 3195 3196 3197

  GetMarkBits(object, bitmap_scratch, mask_scratch);

  Label other_color, word_boundary;
  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
  j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
3198
  add(mask_scratch, mask_scratch);  // Shift left 1 by adding.
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
  j(zero, &word_boundary, Label::kNear);
  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
  jmp(&other_color, Label::kNear);

  bind(&word_boundary);
  test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);

  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
  bind(&other_color);
}


void MacroAssembler::GetMarkBits(Register addr_reg,
                                 Register bitmap_reg,
                                 Register mask_reg) {
3215
  DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
3216
  mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
3217 3218
  and_(bitmap_reg, addr_reg);
  mov(ecx, addr_reg);
3219 3220 3221 3222 3223 3224
  int shift =
      Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
  shr(ecx, shift);
  and_(ecx,
       (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));

3225 3226
  add(bitmap_reg, ecx);
  mov(ecx, addr_reg);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
  shr(ecx, kPointerSizeLog2);
  and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
  mov(mask_reg, Immediate(1));
  shl_cl(mask_reg);
}


void MacroAssembler::EnsureNotWhite(
    Register value,
    Register bitmap_scratch,
    Register mask_scratch,
    Label* value_is_white_and_not_data,
    Label::Distance distance) {
3240
  DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
3241 3242 3243
  GetMarkBits(value, bitmap_scratch, mask_scratch);

  // If the value is black or grey we don't need to do anything.
3244 3245 3246 3247
  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
  DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
  DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3248 3249 3250 3251 3252 3253 3254 3255

  Label done;

  // Since both black and grey have a 1 in the first position and white does
  // not have a 1 there we only need to check one bit.
  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
  j(not_zero, &done, Label::kNear);

3256
  if (emit_debug_code()) {
3257 3258 3259 3260
    // Check for impossible bit pattern.
    Label ok;
    push(mask_scratch);
    // shl.  May overflow making the check conservative.
3261
    add(mask_scratch, mask_scratch);
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
    test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
    j(zero, &ok, Label::kNear);
    int3();
    bind(&ok);
    pop(mask_scratch);
  }

  // Value is white.  We check whether it is data that doesn't need scanning.
  // Currently only checks for HeapNumber and non-cons strings.
  Register map = ecx;  // Holds map while checking type.
  Register length = ecx;  // Holds length of object after checking type.
  Label not_heap_number;
  Label is_data_object;

  // Check for heap-number
  mov(map, FieldOperand(value, HeapObject::kMapOffset));
3278
  cmp(map, isolate()->factory()->heap_number_map());
3279 3280 3281 3282 3283 3284
  j(not_equal, &not_heap_number, Label::kNear);
  mov(length, Immediate(HeapNumber::kSize));
  jmp(&is_data_object, Label::kNear);

  bind(&not_heap_number);
  // Check for strings.
3285 3286
  DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
  DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3287 3288 3289 3290
  // If it's a string and it's not a cons string then it's an object containing
  // no GC pointers.
  Register instance_type = ecx;
  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
3291
  test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
3292 3293 3294 3295 3296 3297 3298
  j(not_zero, value_is_white_and_not_data);
  // It's a non-indirect (non-cons and non-slice) string.
  // If it's external, the length is just ExternalString::kSize.
  // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
  Label not_external;
  // External strings are the only ones with the kExternalStringTag bit
  // set.
3299 3300
  DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
  DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
3301
  test_b(instance_type, kExternalStringTag);
3302 3303 3304 3305 3306
  j(zero, &not_external, Label::kNear);
  mov(length, Immediate(ExternalString::kSize));
  jmp(&is_data_object, Label::kNear);

  bind(&not_external);
3307
  // Sequential string, either Latin1 or UC16.
3308
  DCHECK(kOneByteStringTag == 0x04);
3309 3310 3311
  and_(length, Immediate(kStringEncodingMask));
  xor_(length, Immediate(kStringEncodingMask));
  add(length, Immediate(0x04));
3312
  // Value now either 4 (if Latin1) or 8 (if UC16), i.e., char-size shifted
3313 3314
  // by 2. If we multiply the string length as smi by this, it still
  // won't overflow a 32-bit value.
3315 3316
  DCHECK_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize);
  DCHECK(SeqOneByteString::kMaxSize <=
3317 3318
         static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
  imul(length, FieldOperand(value, String::kLengthOffset));
3319
  shr(length, 2 + kSmiTagSize + kSmiShiftSize);
3320 3321
  add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
  and_(length, Immediate(~kObjectAlignmentMask));
3322 3323 3324 3325 3326 3327 3328 3329 3330

  bind(&is_data_object);
  // Value is a data object, and it is white.  Mark it black.  Since we know
  // that the object is white we can make it black by flipping one bit.
  or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);

  and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
  add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
      length);
3331
  if (emit_debug_code()) {
3332 3333
    mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
    cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
3334
    Check(less_equal, kLiveBytesCountOverflowChunkSize);
3335
  }
3336 3337 3338 3339

  bind(&done);
}

3340

3341 3342 3343
void MacroAssembler::EnumLength(Register dst, Register map) {
  STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
  mov(dst, FieldOperand(map, Map::kBitField3Offset));
3344 3345
  and_(dst, Immediate(Map::EnumLengthBits::kMask));
  SmiTag(dst);
3346 3347 3348
}


3349
void MacroAssembler::CheckEnumCache(Label* call_runtime) {
3350
  Label next, start;
3351 3352
  mov(ecx, eax);

3353 3354
  // Check if the enum length field is properly initialized, indicating that
  // there is an enum cache.
3355 3356
  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));

3357
  EnumLength(edx, ebx);
3358
  cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
3359 3360
  j(equal, call_runtime);

3361 3362 3363 3364
  jmp(&start);

  bind(&next);
  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3365 3366

  // For all objects but the receiver, check that the cache is empty.
3367 3368 3369 3370 3371 3372 3373 3374
  EnumLength(edx, ebx);
  cmp(edx, Immediate(Smi::FromInt(0)));
  j(not_equal, call_runtime);

  bind(&start);

  // Check that there are no elements. Register rcx contains the current JS
  // object we've reached through the prototype chain.
3375
  Label no_elements;
3376 3377
  mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
  cmp(ecx, isolate()->factory()->empty_fixed_array());
3378 3379 3380 3381
  j(equal, &no_elements);

  // Second chance, the object may be using the empty slow element dictionary.
  cmp(ecx, isolate()->factory()->empty_slow_element_dictionary());
3382 3383
  j(not_equal, call_runtime);

3384
  bind(&no_elements);
3385 3386 3387 3388 3389
  mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
  cmp(ecx, isolate()->factory()->null_value());
  j(not_equal, &next);
}

3390

3391
void MacroAssembler::TestJSArrayForAllocationMemento(
3392
    Register receiver_reg,
3393 3394
    Register scratch_reg,
    Label* no_memento_found) {
3395 3396 3397 3398 3399 3400
  ExternalReference new_space_start =
      ExternalReference::new_space_start(isolate());
  ExternalReference new_space_allocation_top =
      ExternalReference::new_space_allocation_top_address(isolate());

  lea(scratch_reg, Operand(receiver_reg,
3401
      JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
3402
  cmp(scratch_reg, Immediate(new_space_start));
3403
  j(less, no_memento_found);
3404
  cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
3405
  j(greater, no_memento_found);
3406
  cmp(MemOperand(scratch_reg, -AllocationMemento::kSize),
3407
      Immediate(isolate()->factory()->allocation_memento_map()));
3408 3409 3410
}


3411 3412 3413 3414 3415
void MacroAssembler::JumpIfDictionaryInPrototypeChain(
    Register object,
    Register scratch0,
    Register scratch1,
    Label* found) {
3416
  DCHECK(!scratch1.is(scratch0));
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
  Factory* factory = isolate()->factory();
  Register current = scratch0;
  Label loop_again;

  // scratch contained elements pointer.
  mov(current, object);

  // Loop based on the map going up the prototype chain.
  bind(&loop_again);
  mov(current, FieldOperand(current, HeapObject::kMapOffset));
  mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
3428
  DecodeField<Map::ElementsKindBits>(scratch1);
3429 3430 3431 3432 3433 3434 3435
  cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
  j(equal, found);
  mov(current, FieldOperand(current, Map::kPrototypeOffset));
  cmp(current, Immediate(factory->null_value()));
  j(not_equal, &loop_again);
}

3436

3437
void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
3438 3439
  DCHECK(!dividend.is(eax));
  DCHECK(!dividend.is(edx));
3440 3441 3442
  base::MagicNumbersForDivision<uint32_t> mag =
      base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
  mov(eax, Immediate(mag.multiplier));
3443
  imul(dividend);
3444 3445 3446 3447
  bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
  if (divisor > 0 && neg) add(edx, dividend);
  if (divisor < 0 && !neg && mag.multiplier > 0) sub(edx, dividend);
  if (mag.shift > 0) sar(edx, mag.shift);
3448 3449 3450
  mov(eax, dividend);
  shr(eax, 31);
  add(edx, eax);
3451 3452 3453
}


3454
} }  // namespace v8::internal
3455 3456

#endif  // V8_TARGET_ARCH_IA32