builtins-ppc.cc 116 KB
Newer Older
1 2 3 4 5 6
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_PPC

7
#include "src/api-arguments.h"
8
#include "src/code-factory.h"
9
#include "src/counters.h"
10
#include "src/debug/debug.h"
11
#include "src/deoptimizer.h"
12 13
#include "src/frame-constants.h"
#include "src/frames.h"
14 15
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/heap/heap-inl.h"
16
#include "src/macro-assembler-inl.h"
17
#include "src/objects/cell.h"
18
#include "src/objects/foreign.h"
19
#include "src/objects/heap-number.h"
20
#include "src/objects/js-generator.h"
21
#include "src/objects/smi.h"
22
#include "src/register-configuration.h"
23
#include "src/runtime/runtime.h"
24
#include "src/wasm/wasm-objects.h"
25 26 27 28 29 30

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

31
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
32
                                ExitFrameType exit_frame_type) {
33
  __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
34 35 36 37 38 39 40 41 42 43
  if (exit_frame_type == BUILTIN_EXIT) {
    __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
            RelocInfo::CODE_TARGET);
  } else {
    DCHECK(exit_frame_type == EXIT);
    __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
            RelocInfo::CODE_TARGET);
  }
}

44
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
45 46 47 48 49 50 51 52 53 54
  // ----------- S t a t e -------------
  //  -- r3     : number of arguments
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  if (FLAG_debug_code) {
    // Initial map for the builtin InternalArray functions should be maps.
    __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
    __ TestIfSmi(r5, r0);
55 56
    __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction,
              cr0);
57
    __ CompareObjectType(r5, r6, r7, MAP_TYPE);
58
    __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
59 60 61 62
  }

  // Run the native code for the InternalArray function called as a normal
  // function.
63 64
  __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
          RelocInfo::CODE_TARGET);
65 66
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
                                           Runtime::FunctionId function_id) {
  // ----------- S t a t e -------------
  //  -- r3 : argument count (preserved for callee)
  //  -- r4 : target function (preserved for callee)
  //  -- r6 : new target (preserved for callee)
  // -----------------------------------
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    // Push the number of arguments to the callee.
    // Push a copy of the target function and the new target.
    // Push function as parameter to the runtime call.
    __ SmiTag(r3);
    __ Push(r3, r4, r6, r4);

    __ CallRuntime(function_id, 1);
    __ mr(r5, r3);

    // Restore target function and new target.
    __ Pop(r3, r4, r6);
    __ SmiUntag(r3);
  }
89
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
90
  __ JumpCodeObject(r5);
91 92
}

93 94
namespace {

95
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
96 97 98
  // ----------- S t a t e -------------
  //  -- r3     : number of arguments
  //  -- r4     : constructor function
99
  //  -- r6     : new target
100
  //  -- cp     : context
101 102 103 104 105 106
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  // Enter a construct frame.
  {
107
    FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
108

109
    // Preserve the incoming parameters on the stack.
110

111 112 113 114
    __ SmiTag(r3);
    __ Push(cp, r3);
    __ SmiUntag(r3, SetRC);
    // The receiver for the builtin/api call.
115
    __ PushRoot(RootIndex::kTheHoleValue);
116
    // Set up pointer to last argument.
117
    __ addi(r7, fp, Operand(StandardFrameConstants::kCallerSPOffset));
118 119

    // Copy arguments and receiver to the expression stack.
120

121
    Label loop, no_args;
122 123 124 125 126 127 128 129 130 131
    // ----------- S t a t e -------------
    //  --                 r3: number of arguments (untagged)
    //  --                 r4: constructor function
    //  --                 r6: new target
    //  --                 r7: pointer to last argument
    //  --                 cr0: condition indicating whether r3 is zero
    //  -- sp[0*kPointerSize]: the hole (receiver)
    //  -- sp[1*kPointerSize]: number of arguments (tagged)
    //  -- sp[2*kPointerSize]: context
    // -----------------------------------
132
    __ beq(&no_args, cr0);
133
    __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2));
134
    __ sub(sp, sp, ip);
135 136 137
    __ mtctr(r3);
    __ bind(&loop);
    __ subi(ip, ip, Operand(kPointerSize));
138
    __ LoadPX(r0, MemOperand(r7, ip));
139
    __ StorePX(r0, MemOperand(sp, ip));
140 141 142 143
    __ bdnz(&loop);
    __ bind(&no_args);

    // Call the function.
144
    // r3: number of arguments (untagged)
145
    // r4: constructor function
146
    // r6: new target
147 148 149
    {
      ConstantPoolUnavailableScope constant_pool_unavailable(masm);
      ParameterCount actual(r3);
150
      __ InvokeFunction(r4, r6, actual, CALL_FUNCTION);
151
    }
152 153

    // Restore context from the frame.
154
    __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
155 156
    // Restore smi-tagged arguments count from the frame.
    __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
157 158 159

    // Leave construct frame.
  }
160 161
  // Remove caller arguments from the stack and return.
  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
162

163 164 165 166
  __ SmiToPtrArrayOffset(r4, r4);
  __ add(sp, sp, r4);
  __ addi(sp, sp, Operand(kPointerSize));
  __ blr();
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
                                 Register scratch, Label* stack_overflow) {
  // Check the stack for overflow. We are not trying to catch
  // interruptions (e.g. debug break and preemption) here, so the "real stack
  // limit" is checked.
  __ LoadRoot(scratch, RootIndex::kRealStackLimit);
  // Make scratch the space we have left. The stack might already be overflowed
  // here which will cause scratch to become negative.
  __ sub(scratch, sp, scratch);
  // Check if the arguments will overflow the stack.
  __ ShiftLeftImm(r0, num_args, Operand(kPointerSizeLog2));
  __ cmp(scratch, r0);
  __ ble(stack_overflow);  // Signed comparison.
}

184 185
}  // namespace

186
// The construct stub for ES5 constructor functions and ES6 class constructors.
187
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  // ----------- S t a t e -------------
  //  --      r3: number of arguments (untagged)
  //  --      r4: constructor function
  //  --      r6: new target
  //  --      cp: context
  //  --      lr: return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  // Enter a construct frame.
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
    Label post_instantiation_deopt_entry, not_create_implicit_receiver;

    // Preserve the incoming parameters on the stack.
    __ SmiTag(r3);
204
    __ Push(cp, r3, r4);
205
    __ PushRoot(RootIndex::kUndefinedValue);
206
    __ Push(r6);
207 208 209

    // ----------- S t a t e -------------
    //  --        sp[0*kPointerSize]: new target
210 211 212 213
    //  --        sp[1*kPointerSize]: padding
    //  -- r4 and sp[2*kPointerSize]: constructor function
    //  --        sp[3*kPointerSize]: number of arguments (tagged)
    //  --        sp[4*kPointerSize]: context
214 215 216
    // -----------------------------------

    __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
217
    __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset));
218
    __ TestBitMask(r7, SharedFunctionInfo::IsDerivedConstructorBit::kMask, r0);
219 220 221 222 223
    __ bne(&not_create_implicit_receiver, cr0);

    // If not derived class constructor: Allocate the new receiver object.
    __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
                        r7, r8);
224
    __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
225
            RelocInfo::CODE_TARGET);
226 227 228 229
    __ b(&post_instantiation_deopt_entry);

    // Else: use TheHoleValue as receiver for constructor call
    __ bind(&not_create_implicit_receiver);
230
    __ LoadRoot(r3, RootIndex::kTheHoleValue);
231 232

    // ----------- S t a t e -------------
233
    //  --                          r3: receiver
234 235 236 237 238
    //  -- Slot 4 / sp[0*kPointerSize]: new target
    //  -- Slot 3 / sp[1*kPointerSize]: padding
    //  -- Slot 2 / sp[2*kPointerSize]: constructor function
    //  -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
    //  -- Slot 0 / sp[4*kPointerSize]: context
239
    // -----------------------------------
240 241 242 243
    // Deoptimizer enters here.
    masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
        masm->pc_offset());
    __ bind(&post_instantiation_deopt_entry);
244

245 246 247 248 249
    // Restore new target.
    __ Pop(r6);
    // Push the allocated receiver to the stack. We need two copies
    // because we may have to return the original one and the calling
    // conventions dictate that the called function pops the receiver.
250 251
    __ Push(r3, r3);

252 253 254 255
    // ----------- S t a t e -------------
    //  --                 r6: new target
    //  -- sp[0*kPointerSize]: implicit receiver
    //  -- sp[1*kPointerSize]: implicit receiver
256 257 258 259
    //  -- sp[2*kPointerSize]: padding
    //  -- sp[3*kPointerSize]: constructor function
    //  -- sp[4*kPointerSize]: number of arguments (tagged)
    //  -- sp[5*kPointerSize]: context
260 261 262 263
    // -----------------------------------

    // Restore constructor function and argument count.
    __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
264
    __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
265
    __ SmiUntag(r3);
266

267 268 269
    // Set up pointer to last argument.
    __ addi(r7, fp, Operand(StandardFrameConstants::kCallerSPOffset));

270 271 272 273 274 275 276 277 278 279 280 281 282
    Label enough_stack_space, stack_overflow;
    Generate_StackOverflowCheck(masm, r3, r8, &stack_overflow);
    __ b(&enough_stack_space);

    __ bind(&stack_overflow);
    // Restore the context from the frame.
    __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
    __ CallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable code.
    __ bkpt(0);

    __ bind(&enough_stack_space);

283 284 285 286 287 288 289 290 291
    // Copy arguments and receiver to the expression stack.
    Label loop, no_args;
    // ----------- S t a t e -------------
    //  --                        r3: number of arguments (untagged)
    //  --                        r6: new target
    //  --                        r7: pointer to last argument
    //  --                        cr0: condition indicating whether r3 is zero
    //  --        sp[0*kPointerSize]: implicit receiver
    //  --        sp[1*kPointerSize]: implicit receiver
292 293 294 295
    //  --        sp[2*kPointerSize]: padding
    //  -- r4 and sp[3*kPointerSize]: constructor function
    //  --        sp[4*kPointerSize]: number of arguments (tagged)
    //  --        sp[5*kPointerSize]: context
296
    // -----------------------------------
297 298
    __ cmpi(r3, Operand::Zero());
    __ beq(&no_args);
299
    __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2));
300 301 302 303 304 305 306 307
    __ sub(sp, sp, ip);
    __ mtctr(r3);
    __ bind(&loop);
    __ subi(ip, ip, Operand(kPointerSize));
    __ LoadPX(r0, MemOperand(r7, ip));
    __ StorePX(r0, MemOperand(sp, ip));
    __ bdnz(&loop);
    __ bind(&no_args);
308

309 310 311 312
    // Call the function.
    {
      ConstantPoolUnavailableScope constant_pool_unavailable(masm);
      ParameterCount actual(r3);
313
      __ InvokeFunction(r4, r6, actual, CALL_FUNCTION);
314 315 316 317 318
    }

    // ----------- S t a t e -------------
    //  --                 r0: constructor result
    //  -- sp[0*kPointerSize]: implicit receiver
319 320 321 322
    //  -- sp[1*kPointerSize]: padding
    //  -- sp[2*kPointerSize]: constructor function
    //  -- sp[3*kPointerSize]: number of arguments
    //  -- sp[4*kPointerSize]: context
323 324 325 326 327 328 329 330 331 332 333 334
    // -----------------------------------

    // Store offset of return address for deoptimizer.
    masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
        masm->pc_offset());

    // Restore the context from the frame.
    __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));

    // If the result is an object (in the ECMA sense), we should get rid
    // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    // on page 74.
335
    Label use_receiver, do_throw, leave_frame;
336 337

    // If the result is undefined, we jump out to using the implicit receiver.
338
    __ JumpIfRoot(r3, RootIndex::kUndefinedValue, &use_receiver);
339 340 341 342 343

    // Otherwise we do a smi check and fall through to check if the return value
    // is a valid receiver.

    // If the result is a smi, it is *not* an object in the ECMA sense.
344
    __ JumpIfSmi(r3, &use_receiver);
345 346 347 348 349 350

    // If the type of the result (stored in its map) is less than
    // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
    __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE);
    __ bge(&leave_frame);
351
    __ b(&use_receiver);
352 353

    __ bind(&do_throw);
354
    __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
355 356 357 358 359

    // Throw away the result of the constructor invocation and use the
    // on-stack receiver as the result.
    __ bind(&use_receiver);
    __ LoadP(r3, MemOperand(sp));
360
    __ JumpIfRoot(r3, RootIndex::kTheHoleValue, &do_throw);
361 362 363 364 365

    __ bind(&leave_frame);
    // Restore smi-tagged arguments count from the frame.
    __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
    // Leave construct frame.
366
  }
367 368 369 370 371 372 373 374

  // Remove caller arguments from the stack and return.
  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);

  __ SmiToPtrArrayOffset(r4, r4);
  __ add(sp, sp, r4);
  __ addi(sp, sp, Operand(kPointerSize));
  __ blr();
375 376
}

377
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
378
  Generate_JSBuiltinsConstructStubHelper(masm);
379 380
}

381 382 383 384 385 386 387 388 389 390 391 392
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
                                          Register sfi_data,
                                          Register scratch1) {
  Label done;

  __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
  __ bne(&done);
  __ LoadP(sfi_data,
           FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
  __ bind(&done);
}

393 394 395 396 397 398 399
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the value to pass to the generator
  //  -- r4 : the JSGeneratorObject to resume
  //  -- lr : return address
  // -----------------------------------
400
  __ AssertGeneratorObject(r4);
401 402

  // Store input value into generator object.
403 404 405 406
  __ StoreP(r3, FieldMemOperand(r4, JSGeneratorObject::kInputOrDebugPosOffset),
            r0);
  __ RecordWriteField(r4, JSGeneratorObject::kInputOrDebugPosOffset, r3, r6,
                      kLRHasNotBeenSaved, kDontSaveFPRegs);
407 408 409

  // Load suspended function and context.
  __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
410
  __ LoadP(cp, FieldMemOperand(r7, JSFunction::kContextOffset));
411 412

  // Flood function if we are stepping.
413 414
  Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
  Label stepping_prepared;
415 416
  ExternalReference debug_hook =
      ExternalReference::debug_hook_on_function_call_address(masm->isolate());
417
  __ Move(ip, debug_hook);
418 419
  __ LoadByte(ip, MemOperand(ip), r0);
  __ extsb(ip, ip);
420
  __ CmpSmiLiteral(ip, Smi::zero(), r0);
421
  __ bne(&prepare_step_in_if_stepping);
422 423 424 425 426 427

  // Flood function if we need to continue stepping in the suspended generator.

  ExternalReference debug_suspended_generator =
      ExternalReference::debug_suspended_generator_address(masm->isolate());

428
  __ Move(ip, debug_suspended_generator);
429 430 431 432
  __ LoadP(ip, MemOperand(ip));
  __ cmp(ip, r4);
  __ beq(&prepare_step_in_suspended_generator);
  __ bind(&stepping_prepared);
433

434 435 436
  // Check the stack for overflow. We are not trying to catch interruptions
  // (i.e. debug break and preemption) here, so check the "real stack limit".
  Label stack_overflow;
437
  __ CompareRoot(sp, RootIndex::kRealStackLimit);
438 439
  __ blt(&stack_overflow);

440 441 442 443 444 445 446 447 448 449 450 451
  // Push receiver.
  __ LoadP(ip, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset));
  __ Push(ip);

  // ----------- S t a t e -------------
  //  -- r4    : the JSGeneratorObject to resume
  //  -- r7    : generator function
  //  -- cp    : generator context
  //  -- lr    : return address
  //  -- sp[0] : generator receiver
  // -----------------------------------

452
  // Copy the function arguments from the generator object's register file.
453
  __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
454
  __ LoadHalfWord(
455 456 457
      r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset));
  __ LoadP(r5, FieldMemOperand(
                   r4, JSGeneratorObject::kParametersAndRegistersOffset));
458 459
  {
    Label loop, done_loop;
460 461 462 463 464 465 466 467
    __ cmpi(r6, Operand::Zero());
    __ ble(&done_loop);

    // setup r9 to first element address - kPointerSize
    __ addi(r9, r5,
            Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));

    __ mtctr(r6);
468
    __ bind(&loop);
469
    __ LoadPU(ip, MemOperand(r9, kPointerSize));
470 471
    __ push(ip);
    __ bdnz(&loop);
472

473 474 475
    __ bind(&done_loop);
  }

476 477
  // Underlying function needs to have bytecode available.
  if (FLAG_debug_code) {
478
    __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
479
    __ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kFunctionDataOffset));
480
    GetSharedFunctionInfoBytecode(masm, r6, r3);
481
    __ CompareObjectType(r6, r6, r6, BYTECODE_ARRAY_TYPE);
482
    __ Assert(eq, AbortReason::kMissingBytecodeArray);
483
  }
484

485
  // Resume (Ignition/TurboFan) generator object.
486
  {
487 488 489 490 491
    // We abuse new.target both to indicate that this is a resume call and to
    // pass in the generator object.  In ordinary calls, new.target is always
    // undefined because generator functions are non-constructable.
    __ mr(r6, r4);
    __ mr(r4, r7);
492 493
    static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
    __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset));
494
    __ JumpCodeObject(r5);
495 496
  }

497 498 499
  __ bind(&prepare_step_in_if_stepping);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
500
    __ Push(r4, r7);
501
    // Push hole as receiver since we do not use it for stepping.
502
    __ PushRoot(RootIndex::kTheHoleValue);
503
    __ CallRuntime(Runtime::kDebugOnFunctionCall);
504
    __ Pop(r4);
505 506 507 508 509 510 511
    __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
  }
  __ b(&stepping_prepared);

  __ bind(&prepare_step_in_suspended_generator);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
512
    __ Push(r4);
513
    __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
514
    __ Pop(r4);
515 516 517
    __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
  }
  __ b(&stepping_prepared);
518 519 520 521 522 523 524

  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ bkpt(0);  // This should be unreachable.
  }
525
}
526

527 528 529
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
  FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
  __ push(r4);
530
  __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
531 532
}

533 534 535
namespace {

// Called with the native C calling convention. The corresponding function
536
// signature is either:
537
//
538 539 540 541 542 543
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, Address new_target, Address target,
//       Address receiver, intptr_t argc, Address** args)>;
// or
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, MicrotaskQueue* microtask_queue)>;
544 545
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
                             Builtins::Name entry_trampoline) {
546 547 548 549 550 551 552 553 554 555
  // The register state is either:
  //   r3: root_register_value
  //   r4: code entry
  //   r5: function
  //   r6: receiver
  //   r7: argc
  //   r8: argv
  // or
  //   r3: root_register_value
  //   r4: microtask_queue
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

  Label invoke, handler_entry, exit;

  {
    NoRootArrayScope no_root_array(masm);

    // PPC LINUX ABI:
    // preserve LR in pre-reserved slot in caller's frame
    __ mflr(r0);
    __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));

    // Save callee saved registers on the stack.
    __ MultiPush(kCalleeSaved);

    // Save callee-saved double registers.
    __ MultiPushDoubles(kCalleeSavedDoubles);
    // Set up the reserved register for 0.0.
    __ LoadDoubleLiteral(kDoubleRegZero, Double(0.0), r0);

    // Initialize the root register.
576 577
    // C calling convention. The first argument is passed in r3.
    __ mr(kRootRegister, r3);
578 579 580
  }

  // Push a frame with special values setup to mark it as an entry frame.
581 582 583 584 585
  // r4: code entry
  // r5: function
  // r6: receiver
  // r7: argc
  // r8: argv
586 587 588 589 590 591 592 593 594 595
  __ li(r0, Operand(-1));  // Push a bad frame pointer to fail if it is used.
  __ push(r0);
  if (FLAG_enable_embedded_constant_pool) {
    __ li(kConstantPoolRegister, Operand::Zero());
    __ push(kConstantPoolRegister);
  }
  __ mov(r0, Operand(StackFrame::TypeToMarker(type)));
  __ push(r0);
  __ push(r0);
  // Save copies of the top frame descriptor on the stack.
596 597 598
  __ Move(r3, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                        masm->isolate()));
  __ LoadP(r0, MemOperand(r3));
599 600 601 602 603 604 605 606 607 608
  __ push(r0);

  // Set up frame pointer for the frame to be pushed.
  __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));

  // If this is the outermost JS call, set js_entry_sp value.
  Label non_outermost_js;
  ExternalReference js_entry_sp =
      ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress,
                                masm->isolate());
609 610
  __ Move(r3, js_entry_sp);
  __ LoadP(r9, MemOperand(r3));
611 612
  __ cmpi(r9, Operand::Zero());
  __ bne(&non_outermost_js);
613
  __ StoreP(fp, MemOperand(r3));
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
  __ mov(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
  Label cont;
  __ b(&cont);
  __ bind(&non_outermost_js);
  __ mov(ip, Operand(StackFrame::INNER_JSENTRY_FRAME));
  __ bind(&cont);
  __ push(ip);  // frame-type

  // Jump to a faked try block that does the invoke, with a faked catch
  // block that sets the pending exception.
  __ b(&invoke);

  // Block literal pool emission whilst taking the position of the handler
  // entry. This avoids making the assumption that literal pools are always
  // emitted after an instruction is emitted, rather than before.
  {
    ConstantPoolUnavailableScope constant_pool_unavailable(masm);
    __ bind(&handler_entry);

    // Store the current pc as the handler offset. It's used later to create the
    // handler table.
    masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());

    // Caught exception: Store result (exception) in the pending exception
    // field in the JSEnv and return a failure sentinel.  Coming in here the
    // fp will be invalid because the PushStackHandler below sets it to 0 to
    // signal the existence of the JSEntry frame.
    __ Move(ip,
        ExternalReference::Create(IsolateAddressId::kPendingExceptionAddress,
                                  masm->isolate()));
  }

  __ StoreP(r3, MemOperand(ip));
  __ LoadRoot(r3, RootIndex::kException);
  __ b(&exit);

  // Invoke: Link this frame into the handler chain.
  __ bind(&invoke);
652
  // Must preserve r4-r8.
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  __ PushStackHandler();
  // If an exception not caught by another handler occurs, this handler
  // returns control to the code after the b(&invoke) above, which
  // restores all kCalleeSaved registers (including cp and fp) to their
  // saved values before returning a failure to C.

  // Invoke the function by calling through JS entry trampoline builtin.
  // Notice that we cannot store a reference to the trampoline code directly in
  // this stub, because runtime stubs are not traversed when doing GC.

  // Invoke the function by calling through JS entry trampoline builtin and
  // pop the faked function when we return.
  Handle<Code> trampoline_code =
      masm->isolate()->builtins()->builtin_handle(entry_trampoline);
  __ Call(trampoline_code, RelocInfo::CODE_TARGET);

  // Unlink this frame from the handler chain.
  __ PopStackHandler();

  __ bind(&exit);  // r3 holds result
  // Check if the current stack frame is marked as the outermost JS frame.
  Label non_outermost_js_2;
  __ pop(r8);
  __ cmpi(r8, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
  __ bne(&non_outermost_js_2);
  __ mov(r9, Operand::Zero());
  __ Move(r8, js_entry_sp);
  __ StoreP(r9, MemOperand(r8));
  __ bind(&non_outermost_js_2);

  // Restore the top frame descriptors from the stack.
  __ pop(r6);
  __ Move(ip, ExternalReference::Create(
                 IsolateAddressId::kCEntryFPAddress, masm->isolate()));
  __ StoreP(r6, MemOperand(ip));

  // Reset the stack to the callee saved registers.
  __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));

  // Restore callee-saved double registers.
  __ MultiPopDoubles(kCalleeSavedDoubles);

  // Restore callee-saved registers.
  __ MultiPop(kCalleeSaved);

  // Return
  __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
  __ mtlr(r0);
  __ blr();
}

}  // namespace

void Builtins::Generate_JSEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::ENTRY,
                          Builtins::kJSEntryTrampoline);
}

void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
                          Builtins::kJSConstructEntryTrampoline);
}

void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
717 718
  Generate_JSEntryVariant(masm, StackFrame::ENTRY,
                          Builtins::kRunMicrotasksTrampoline);
719 720
}

721 722 723
// Clobbers scratch1 and scratch2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
                                        Register scratch1, Register scratch2) {
724 725 726 727
  // Check the stack for overflow. We are not trying to catch
  // interruptions (e.g. debug break and preemption) here, so the "real stack
  // limit" is checked.
  Label okay;
728 729 730 731
  __ LoadRoot(scratch1, RootIndex::kRealStackLimit);
  // Make scratch1 the space we have left. The stack might already be overflowed
  // here which will cause scratch1 to become negative.
  __ sub(scratch1, sp, scratch1);
732
  // Check if the arguments will overflow the stack.
733 734
  __ ShiftLeftImm(scratch2, argc, Operand(kPointerSizeLog2));
  __ cmp(scratch1, scratch2);
735 736 737
  __ bgt(&okay);  // Signed comparison.

  // Out of stack space.
738
  __ CallRuntime(Runtime::kThrowStackOverflow);
739 740 741 742

  __ bind(&okay);
}

743 744 745
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  // Called from Generate_JS_Entry
746 747 748 749 750 751
  // r4: new.target
  // r5: function
  // r6: receiver
  // r7: argc
  // r8: argv
  // r0,r3,r9, cp may be clobbered
752 753 754 755 756

  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

757
    // Setup the context (we need to use the caller context from the isolate).
758 759
    ExternalReference context_address = ExternalReference::Create(
        IsolateAddressId::kContextAddress, masm->isolate());
760
    __ Move(cp, context_address);
761
    __ LoadP(cp, MemOperand(cp));
762 763

    // Push the function and the receiver onto the stack.
764
    __ Push(r5, r6);
765

766
    // Check if we have enough stack space to push all arguments.
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    // Clobbers r3 and r6.
    Generate_CheckStackOverflow(masm, r7, r3, r6);

    // r4: new.target
    // r5: function
    // r7: argc
    // r8: argv
    // r0,r3,r6,r9, cp may be clobbered

    // Setup new.target, argc and function.
    __ mr(r3, r7);
    __ mr(r6, r4);
    __ mr(r4, r5);

    // r3: argc
    // r4: function
    // r6: new.target
    // r8: argv
785

786 787
    // Copy arguments to the stack in a loop.
    // r4: function
788 789
    // r3: argc
    // r8: argv, i.e. points to first arg
790
    Label loop, entry;
791 792
    __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
    __ add(r5, r8, r0);
793 794 795
    // r5 points past last arg.
    __ b(&entry);
    __ bind(&loop);
796 797 798
    __ LoadP(r9, MemOperand(r8));  // read next parameter
    __ addi(r8, r8, Operand(kPointerSize));
    __ LoadP(r0, MemOperand(r9));  // dereference handle
799 800
    __ push(r0);                   // push parameter
    __ bind(&entry);
801
    __ cmp(r8, r5);
802 803
    __ bne(&loop);

804 805 806
    // r3: argc
    // r4: function
    // r6: new.target
807

808 809
    // Initialize all JavaScript callee-saved registers, since they will be seen
    // by the garbage collector as part of handlers.
810
    __ LoadRoot(r7, RootIndex::kUndefinedValue);
811
    __ mr(r8, r7);
812 813 814 815 816
    __ mr(r14, r7);
    __ mr(r15, r7);
    __ mr(r16, r7);
    __ mr(r17, r7);

817 818
    // Invoke the code.
    Handle<Code> builtin = is_construct
819
                               ? BUILTIN_CODE(masm->isolate(), Construct)
820 821 822
                               : masm->isolate()->builtins()->Call();
    __ Call(builtin, RelocInfo::CODE_TARGET);

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
    // Exit the JS frame and remove the parameters (except function), and
    // return.
  }
  __ blr();

  // r3: result
}

void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
}

void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}

839
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
840 841 842 843 844
  // This expects two C++ function parameters passed by Invoke() in
  // execution.cc.
  //   r3: root_register_value
  //   r4: microtask_queue

845 846 847 848
  __ mr(RunMicrotasksDescriptor::MicrotaskQueueRegister(), r4);
  __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}

849 850
static void ReplaceClosureCodeWithOptimizedCode(
    MacroAssembler* masm, Register optimized_code, Register closure,
851 852
    Register scratch1, Register scratch2, Register scratch3) {
  // Store code entry in the closure.
853 854 855 856 857 858
  __ StoreP(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset),
            r0);
  __ mr(scratch1, optimized_code);  // Write barrier clobbers scratch1 below.
  __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
                      kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
859 860
}

861 862 863 864 865 866 867 868 869 870
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
  Register args_count = scratch;

  // Get the arguments + receiver count.
  __ LoadP(args_count,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ lwz(args_count,
         FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));

  // Leave the frame (also dropping the register file).
871
  __ LeaveFrame(StackFrame::INTERPRETED);
872 873 874

  __ add(sp, sp, args_count);
}
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
                                          Register smi_entry,
                                          OptimizationMarker marker,
                                          Runtime::FunctionId function_id) {
  Label no_match;
  __ CmpSmiLiteral(smi_entry, Smi::FromEnum(marker), r0);
  __ bne(&no_match);
  GenerateTailCallToReturnedCode(masm, function_id);
  __ bind(&no_match);
}

static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
                                           Register feedback_vector,
                                           Register scratch1, Register scratch2,
                                           Register scratch3) {
  // ----------- S t a t e -------------
  //  -- r0 : argument count (preserved for callee if needed, and caller)
  //  -- r3 : new target (preserved for callee if needed, and caller)
  //  -- r1 : target function (preserved for callee if needed, and caller)
  //  -- feedback vector (preserved for caller if needed)
  // -----------------------------------
  DCHECK(
      !AreAliased(feedback_vector, r3, r4, r6, scratch1, scratch2, scratch3));

901
  Label optimized_code_slot_is_weak_ref, fallthrough;
902 903 904 905

  Register closure = r4;
  Register optimized_code_entry = scratch1;

906 907 908
  __ LoadP(
      optimized_code_entry,
      FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
909 910

  // Check if the code entry is a Smi. If yes, we interpret it as an
911
  // optimisation marker. Otherwise, interpret it as a weak reference to a code
912
  // object.
913
  __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
914 915 916 917 918 919 920 921 922

  {
    // Optimized code slot is a Smi optimization marker.

    // Fall through if no optimization trigger.
    __ CmpSmiLiteral(optimized_code_entry,
                     Smi::FromEnum(OptimizationMarker::kNone), r0);
    __ beq(&fallthrough);

923 924 925
    TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
                                  OptimizationMarker::kLogFirstExecution,
                                  Runtime::kFunctionFirstExecution);
926 927 928 929 930 931 932 933 934
    TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
                                  OptimizationMarker::kCompileOptimized,
                                  Runtime::kCompileOptimized_NotConcurrent);
    TailCallRuntimeIfMarkerEquals(
        masm, optimized_code_entry,
        OptimizationMarker::kCompileOptimizedConcurrent,
        Runtime::kCompileOptimized_Concurrent);

    {
935 936
      // Otherwise, the marker is InOptimizationQueue, so fall through hoping
      // that an interrupt will eventually update the slot with optimized code.
937 938 939 940
      if (FLAG_debug_code) {
        __ CmpSmiLiteral(
            optimized_code_entry,
            Smi::FromEnum(OptimizationMarker::kInOptimizationQueue), r0);
941
        __ Assert(eq, AbortReason::kExpectedOptimizationSentinel);
942
      }
943
      __ b(&fallthrough);
944 945 946 947
    }
  }

  {
948 949
    // Optimized code slot is a weak reference.
    __ bind(&optimized_code_slot_is_weak_ref);
950

951
    __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough);
952 953 954 955

    // Check if the optimized code is marked for deopt. If it is, call the
    // runtime to clear it.
    Label found_deoptimized_code;
956 957
    __ LoadP(scratch2, FieldMemOperand(optimized_code_entry,
                                       Code::kCodeDataContainerOffset));
958 959
    __ LoadWordArith(
        scratch2,
960
        FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset));
961 962 963 964 965 966 967
    __ TestBit(scratch2, Code::kMarkedForDeoptimizationBit, r0);
    __ bne(&found_deoptimized_code, cr0);

    // Optimized code is good, get it into the closure and link the closure into
    // the optimized functions list, then tail call the optimized code.
    // The feedback vector is no longer used, so re-use it as a scratch
    // register.
968 969
    ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
                                        scratch2, scratch3, feedback_vector);
970
    static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
971
    __ LoadCodeObjectEntry(r5, optimized_code_entry);
972
    __ Jump(r5);
973 974 975 976 977 978 979 980 981 982 983 984

    // Optimized code slot contains deoptimized code, evict it and re-enter the
    // closure's code.
    __ bind(&found_deoptimized_code);
    GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
  }

  // Fall-through if the optimized code cell is clear and there is no
  // optimization marker.
  __ bind(&fallthrough);
}

985
// Advance the current bytecode offset. This simulates what all bytecode
986 987 988 989 990 991 992
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
                                          Register bytecode_array,
                                          Register bytecode_offset,
                                          Register bytecode, Register scratch1,
                                          Label* if_return) {
993
  Register bytecode_size_table = scratch1;
994
  Register scratch2 = bytecode;
995 996
  DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
                     bytecode));
997 998
  __ Move(bytecode_size_table,
          ExternalReference::bytecode_size_table_address());
999 1000

  // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
1001
  Label process_bytecode, extra_wide;
1002 1003
  STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
  STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
1004 1005 1006 1007
  STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
  STATIC_ASSERT(3 ==
                static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
  __ cmpi(bytecode, Operand(0x3));
1008
  __ bgt(&process_bytecode);
1009 1010
  __ andi(r0, bytecode, Operand(0x1));
  __ bne(&extra_wide, cr0);
1011 1012 1013 1014 1015 1016

  // Load the next bytecode and update table to the wide scaled table.
  __ addi(bytecode_offset, bytecode_offset, Operand(1));
  __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset));
  __ addi(bytecode_size_table, bytecode_size_table,
          Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
1017
  __ b(&process_bytecode);
1018 1019 1020 1021 1022 1023 1024 1025 1026

  __ bind(&extra_wide);
  // Load the next bytecode and update table to the extra wide scaled table.
  __ addi(bytecode_offset, bytecode_offset, Operand(1));
  __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset));
  __ addi(bytecode_size_table, bytecode_size_table,
          Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));

  // Load the size of the current bytecode.
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
  __ bind(&process_bytecode);

// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME)                                           \
  __ cmpi(bytecode,                                                   \
          Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
  __ beq(if_return);
  RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL

  // Otherwise, load the size of the current bytecode and advance the offset.
1038 1039 1040 1041
  __ ShiftLeftImm(scratch2, bytecode, Operand(2));
  __ lwzx(scratch2, MemOperand(bytecode_size_table, scratch2));
  __ add(bytecode_offset, bytecode_offset, scratch2);
}
1042 1043 1044 1045 1046 1047 1048
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.  The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
//   o r4: the JS function object being called.
1049
//   o r6: the incoming new target or generator object
1050 1051 1052 1053 1054 1055
//   o cp: our context
//   o pp: the caller's constant pool pointer (if enabled)
//   o fp: the caller's frame pointer
//   o sp: stack pointer
//   o lr: return address
//
1056 1057
// The function builds an interpreter frame.  See InterpreterFrameConstants in
// frames.h for its layout.
1058
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
1059 1060 1061
  Register closure = r4;
  Register feedback_vector = r5;

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
  // Get the bytecode array from the function object and load it into
  // kInterpreterBytecodeArrayRegister.
  __ LoadP(r3, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
  // Load original bytecode array or the debug copy.
  __ LoadP(kInterpreterBytecodeArrayRegister,
           FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset));
  GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r7);

  // The bytecode array could have been flushed from the shared function info,
  // if so, call into CompileLazy.
  Label compile_lazy;
  __ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg,
                       BYTECODE_ARRAY_TYPE);
  __ bne(&compile_lazy);

1077 1078
  // Load the feedback vector from the closure.
  __ LoadP(feedback_vector,
1079
           FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
1080 1081 1082 1083 1084 1085
  __ LoadP(feedback_vector,
           FieldMemOperand(feedback_vector, Cell::kValueOffset));
  // Read off the optimized code slot in the feedback vector, and if there
  // is optimized code or an optimization marker, call that instead.
  MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r7, r9, r8);

1086
  // Increment invocation count for the function.
1087 1088 1089 1090
  __ LoadWord(
      r8,
      FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset),
      r0);
1091
  __ addi(r8, r8, Operand(1));
1092
  __ StoreWord(
1093
      r8,
1094
      FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset),
1095
      r0);
1096

1097 1098 1099 1100 1101
  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done below).
  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ PushStandardFrame(closure);
1102

1103 1104 1105 1106 1107 1108
  // Reset code age.
  __ mov(r8, Operand(BytecodeArray::kNoAgeBytecodeAge));
  __ StoreByte(r8, FieldMemOperand(kInterpreterBytecodeArrayRegister,
                                   BytecodeArray::kBytecodeAgeOffset),
               r0);

1109 1110 1111 1112
  // Load initial bytecode offset.
  __ mov(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));

1113
  // Push bytecode array and Smi tagged bytecode array offset.
1114
  __ SmiTag(r3, kInterpreterBytecodeOffsetRegister);
1115
  __ Push(kInterpreterBytecodeArrayRegister, r3);
1116

1117 1118
  // Allocate the local and temporary register file on the stack.
  {
1119 1120 1121
    // Load frame size (word) from the BytecodeArray object.
    __ lwz(r5, FieldMemOperand(kInterpreterBytecodeArrayRegister,
                               BytecodeArray::kFrameSizeOffset));
1122 1123 1124

    // Do a stack check to ensure we don't go over the limit.
    Label ok;
1125
    __ sub(r8, sp, r5);
1126
    __ LoadRoot(r0, RootIndex::kRealStackLimit);
1127
    __ cmpl(r8, r0);
1128
    __ bge(&ok);
1129
    __ CallRuntime(Runtime::kThrowStackOverflow);
1130 1131 1132 1133
    __ bind(&ok);

    // If ok, push undefined as the initial value for all register file entries.
    // TODO(rmcilroy): Consider doing more than one push per loop iteration.
1134
    Label loop, no_args;
1135
    __ LoadRoot(r8, RootIndex::kUndefinedValue);
1136 1137
    __ ShiftRightImm(r5, r5, Operand(kPointerSizeLog2), SetRC);
    __ beq(&no_args, cr0);
1138
    __ mtctr(r5);
1139
    __ bind(&loop);
1140
    __ push(r8);
1141 1142
    __ bdnz(&loop);
    __ bind(&no_args);
1143 1144
  }

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
  // If the bytecode array has a valid incoming new target or generator object
  // register, initialize it with incoming value which was passed in r6.
  Label no_incoming_new_target_or_generator_register;
  __ LoadWordArith(
      r8, FieldMemOperand(
              kInterpreterBytecodeArrayRegister,
              BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
  __ cmpi(r8, Operand::Zero());
  __ beq(&no_incoming_new_target_or_generator_register);
  __ ShiftLeftImm(r8, r8, Operand(kPointerSizeLog2));
  __ StorePX(r6, MemOperand(fp, r8));
  __ bind(&no_incoming_new_target_or_generator_register);

1158
  // Load accumulator with undefined.
1159
  __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1160 1161 1162 1163
  // Load the dispatch table into a register and dispatch to the bytecode
  // handler at the current bytecode offset.
  Label do_dispatch;
  __ bind(&do_dispatch);
1164 1165 1166
  __ Move(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1167 1168 1169 1170 1171 1172
  __ lbzx(r6, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
  __ ShiftLeftImm(r6, r6, Operand(kPointerSizeLog2));
  __ LoadPX(kJavaScriptCallCodeStartRegister,
            MemOperand(kInterpreterDispatchTableRegister, r6));
  __ Call(kJavaScriptCallCodeStartRegister);
1173

1174 1175
  masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());

1176 1177 1178
  // Any returns to the entry trampoline are either due to the return bytecode
  // or the interpreter tail calling a builtin and then a dispatch.

1179 1180 1181 1182 1183 1184 1185
  // Get bytecode array and bytecode offset from the stack frame.
  __ LoadP(kInterpreterBytecodeArrayRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ LoadP(kInterpreterBytecodeOffsetRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

1186
  // Either return, or advance to the next bytecode and dispatch.
1187 1188 1189
  Label do_return;
  __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
1190 1191 1192
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, r4, r5,
                                &do_return);
1193
  __ b(&do_dispatch);
1194

1195 1196 1197 1198
  __ bind(&do_return);
  // The return value is in r3.
  LeaveInterpreterFrame(masm, r5);
  __ blr();
1199 1200 1201 1202

  __ bind(&compile_lazy);
  GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
  __ bkpt(0);  // Should not return.
1203 1204
}

1205 1206
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
                                         Register num_args, Register index,
1207
                                         Register count, Register scratch) {
1208 1209 1210
  Label loop, skip;
  __ cmpi(count, Operand::Zero());
  __ beq(&skip);
1211 1212 1213 1214 1215 1216
  __ addi(index, index, Operand(kPointerSize));  // Bias up for LoadPU
  __ mtctr(count);
  __ bind(&loop);
  __ LoadPU(scratch, MemOperand(index, -kPointerSize));
  __ push(scratch);
  __ bdnz(&loop);
1217
  __ bind(&skip);
1218 1219
}

1220
// static
1221
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
1222
    MacroAssembler* masm, ConvertReceiverMode receiver_mode,
1223
    InterpreterPushArgsMode mode) {
1224
  DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
1225 1226 1227 1228 1229 1230
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r5 : the address of the first argument to be pushed. Subsequent
  //          arguments should be consecutive above this, in the same order as
  //          they are to be pushed onto the stack.
  //  -- r4 : the target to call (can be any Object).
1231
  // -----------------------------------
1232
  Label stack_overflow;
1233 1234 1235 1236

  // Calculate number of arguments (add one for receiver).
  __ addi(r6, r3, Operand(1));

1237 1238 1239 1240
  Generate_StackOverflowCheck(masm, r6, ip, &stack_overflow);

  // Push "undefined" as the receiver arg if we need to.
  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
1241
    __ PushRoot(RootIndex::kUndefinedValue);
1242 1243 1244
    __ mr(r6, r3);  // Argument count is correct.
  }

1245
  // Push the arguments. r5, r6, r7 will be modified.
1246
  Generate_InterpreterPushArgs(masm, r6, r5, r6, r7);
1247

1248 1249 1250 1251 1252
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Pop(r5);                   // Pass the spread in a register
    __ subi(r3, r3, Operand(1));  // Subtract one for spread
  }

1253
  // Call the target.
1254
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1255
    __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
1256
            RelocInfo::CODE_TARGET);
1257
  } else {
1258
    __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
1259 1260
            RelocInfo::CODE_TARGET);
  }
1261 1262 1263 1264 1265 1266 1267

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable Code.
    __ bkpt(0);
  }
1268 1269
}

1270
// static
1271
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1272
    MacroAssembler* masm, InterpreterPushArgsMode mode) {
1273 1274
  // ----------- S t a t e -------------
  // -- r3 : argument count (not including receiver)
1275
  // -- r6 : new target
1276
  // -- r4 : constructor to call
1277 1278
  // -- r5 : allocation site feedback if available, undefined otherwise.
  // -- r7 : address of the first argument
1279
  // -----------------------------------
1280
  Label stack_overflow;
1281

1282
  // Push a slot for the receiver to be constructed.
1283 1284
  __ li(r0, Operand::Zero());
  __ push(r0);
1285

1286 1287 1288 1289
  // Push the arguments (skip if none).
  Label skip;
  __ cmpi(r3, Operand::Zero());
  __ beq(&skip);
1290
  Generate_StackOverflowCheck(masm, r3, ip, &stack_overflow);
1291
  // Push the arguments. r8, r7, r9 will be modified.
1292
  Generate_InterpreterPushArgs(masm, r3, r7, r3, r9);
1293
  __ bind(&skip);
1294 1295 1296 1297 1298 1299
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Pop(r5);                   // Pass the spread in a register
    __ subi(r3, r3, Operand(1));  // Subtract one for spread
  } else {
    __ AssertUndefinedOrAllocationSite(r5, r8);
  }
1300
  if (mode == InterpreterPushArgsMode::kArrayFunction) {
1301 1302
    __ AssertFunction(r4);

1303
    // Tail call to the array construct stub (still in the caller
1304
    // context at this point).
1305 1306
    Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
    __ Jump(code, RelocInfo::CODE_TARGET);
1307
  } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1308
    // Call the constructor with r3, r4, and r6 unmodified.
1309
    __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1310
            RelocInfo::CODE_TARGET);
1311
  } else {
1312
    DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1313
    // Call the constructor with r3, r4, and r6 unmodified.
1314
    __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1315
  }
1316 1317 1318 1319 1320 1321 1322

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable Code.
    __ bkpt(0);
  }
1323 1324
}

1325
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1326 1327
  // Set the return address to the correct point in the interpreter entry
  // trampoline.
1328
  Label builtin_trampoline, trampoline_loaded;
1329
  Smi interpreter_entry_return_pc_offset(
1330
      masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1331
  DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
1332

1333 1334 1335 1336
  // If the SFI function_data is an InterpreterData, the function will have a
  // custom copy of the interpreter entry trampoline for profiling. If so,
  // get the custom trampoline, otherwise grab the entry address of the global
  // trampoline.
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
  __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
  __ LoadP(r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset));
  __ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset));
  __ CompareObjectType(r5, kInterpreterDispatchTableRegister,
                       kInterpreterDispatchTableRegister,
                       INTERPRETER_DATA_TYPE);
  __ bne(&builtin_trampoline);

  __ LoadP(r5,
           FieldMemOperand(r5, InterpreterData::kInterpreterTrampolineOffset));
1347
  __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag));
1348 1349 1350
  __ b(&trampoline_loaded);

  __ bind(&builtin_trampoline);
1351 1352 1353 1354
  __ Move(r5, ExternalReference::
                  address_of_interpreter_entry_trampoline_instruction_start(
                      masm->isolate()));
  __ LoadP(r5, MemOperand(r5));
1355 1356

  __ bind(&trampoline_loaded);
1357
  __ addi(r0, r5, Operand(interpreter_entry_return_pc_offset->value()));
1358
  __ mtlr(r0);
1359

1360
  // Initialize the dispatch table register.
1361 1362 1363
  __ Move(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1364 1365

  // Get the bytecode array pointer from the frame.
1366
  __ LoadP(kInterpreterBytecodeArrayRegister,
1367
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1368 1369 1370 1371

  if (FLAG_debug_code) {
    // Check function data field is actually a BytecodeArray object.
    __ TestIfSmi(kInterpreterBytecodeArrayRegister, r0);
1372 1373 1374
    __ Assert(ne,
              AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
              cr0);
1375 1376
    __ CompareObjectType(kInterpreterBytecodeArrayRegister, r4, no_reg,
                         BYTECODE_ARRAY_TYPE);
1377 1378
    __ Assert(
        eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1379 1380 1381 1382
  }

  // Get the target bytecode offset from the frame.
  __ LoadP(kInterpreterBytecodeOffsetRegister,
1383
           MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1384 1385 1386
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

  // Dispatch to the target bytecode.
1387 1388 1389 1390 1391 1392
  __ lbzx(ip, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
  __ ShiftLeftImm(ip, ip, Operand(kPointerSizeLog2));
  __ LoadPX(kJavaScriptCallCodeStartRegister,
            MemOperand(kInterpreterDispatchTableRegister, ip));
  __ Jump(kJavaScriptCallCodeStartRegister);
1393 1394
}

1395
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1396 1397 1398 1399
  // Get bytecode array and bytecode offset from the stack frame.
  __ LoadP(kInterpreterBytecodeArrayRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ LoadP(kInterpreterBytecodeOffsetRegister,
1400
           MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1401 1402
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

1403 1404 1405 1406
  // Load the current bytecode.
  __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));

1407
  // Advance to the next bytecode.
1408 1409 1410 1411
  Label if_return;
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, r4, r5,
                                &if_return);
1412 1413 1414

  // Convert new bytecode offset to a Smi and save in the stackframe.
  __ SmiTag(r5, kInterpreterBytecodeOffsetRegister);
1415 1416 1417 1418
  __ StoreP(r5,
            MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  Generate_InterpreterEnterBytecode(masm);
1419 1420 1421 1422

  // We should never take the if_return path.
  __ bind(&if_return);
  __ Abort(AbortReason::kInvalidBytecodeAdvance);
1423 1424 1425 1426 1427 1428
}

void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
  Generate_InterpreterEnterBytecode(masm);
}

1429 1430 1431 1432 1433 1434 1435 1436 1437
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : argument count (preserved for callee)
  //  -- r4 : new target (preserved for callee)
  //  -- r6 : target function (preserved for callee)
  // -----------------------------------
  Label failed;
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
1438
    // Preserve argument count for later compare.
1439
    __ Move(r7, r3);
1440 1441 1442 1443 1444 1445
    // Push a copy of the target function and the new target.
    // Push function as parameter to the runtime call.
    __ SmiTag(r3);
    __ Push(r3, r4, r6, r4);

    // Copy arguments from caller (stdlib, foreign, heap).
1446 1447 1448 1449
    Label args_done;
    for (int j = 0; j < 4; ++j) {
      Label over;
      if (j < 3) {
1450
        __ cmpi(r7, Operand(j));
1451 1452 1453
        __ bne(&over);
      }
      for (int i = j - 1; i >= 0; --i) {
1454
        __ LoadP(r7, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
1455
                                        i * kPointerSize));
1456
        __ push(r7);
1457 1458
      }
      for (int i = 0; i < 3 - j; ++i) {
1459
        __ PushRoot(RootIndex::kUndefinedValue);
1460 1461 1462 1463 1464
      }
      if (j < 3) {
        __ jmp(&args_done);
        __ bind(&over);
      }
1465
    }
1466 1467
    __ bind(&args_done);

1468 1469 1470 1471
    // Call runtime, on success unwind frame, and parent frame.
    __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
    // A smi 0 is returned on failure, an object on success.
    __ JumpIfSmi(r3, &failed);
1472 1473

    __ Drop(2);
1474 1475
    __ pop(r7);
    __ SmiUntag(r7);
1476
    scope.GenerateLeaveFrame();
1477

1478 1479
    __ addi(r7, r7, Operand(1));
    __ Drop(r7);
1480 1481 1482 1483 1484 1485 1486
    __ Ret();

    __ bind(&failed);
    // Restore target function and new target.
    __ Pop(r3, r4, r6);
    __ SmiUntag(r3);
  }
1487 1488
  // On failure, tail call back to regular js by re-calling the function
  // which has be reset to the compile lazy builtin.
1489 1490
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
  __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset));
1491
  __ JumpCodeObject(r5);
1492
}
1493

1494 1495 1496 1497
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
                                      bool java_script_builtin,
                                      bool with_result) {
1498
  const RegisterConfiguration* config(RegisterConfiguration::Default());
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
  int allocatable_register_count = config->num_allocatable_general_registers();
  if (with_result) {
    // Overwrite the hole inserted by the deoptimizer with the return value from
    // the LAZY deopt point.
    __ StoreP(
        r3, MemOperand(
                sp, config->num_allocatable_general_registers() * kPointerSize +
                        BuiltinContinuationFrameConstants::kFixedFrameSize));
  }
  for (int i = allocatable_register_count - 1; i >= 0; --i) {
    int code = config->GetAllocatableGeneralCode(i);
    __ Pop(Register::from_code(code));
    if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
      __ SmiUntag(Register::from_code(code));
    }
  }
  __ LoadP(
      fp,
      MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
  __ Pop(ip);
  __ addi(sp, sp,
          Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
  __ Pop(r0);
  __ mtlr(r0);
  __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ Jump(ip);
}
}  // namespace

void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, false);
}

void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, true);
}

void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, false);
}

void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, true);
}

1546
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1547
  {
1548
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1549
    __ CallRuntime(Runtime::kNotifyDeoptimized);
1550 1551
  }

1552
  DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r3.code());
1553 1554
  __ LoadP(r3, MemOperand(sp, 0 * kPointerSize));
  __ addi(sp, sp, Operand(1 * kPointerSize));
1555 1556 1557
  __ Ret();
}

1558
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
1559
  // Lookup the function in the JavaScript frame.
1560 1561
  __ LoadP(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ LoadP(r3, MemOperand(r3, JavaScriptFrameConstants::kFunctionOffset));
1562

1563
  {
1564
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1565 1566
    // Pass function as argument.
    __ push(r3);
1567
    __ CallRuntime(Runtime::kCompileForOnStackReplacement);
1568 1569
  }

1570
  // If the code object is null, just return to the caller.
1571
  Label skip;
1572
  __ CmpSmiLiteral(r3, Smi::zero(), r0);
1573 1574 1575 1576 1577
  __ bne(&skip);
  __ Ret();

  __ bind(&skip);

1578
  // Drop the handler frame that is be sitting on top of the actual
1579
  // JavaScript frame. This is the case then OSR is triggered from bytecode.
1580
  __ LeaveFrame(StackFrame::STUB);
1581

1582 1583 1584 1585 1586
  // Load deoptimization data from the code object.
  // <deopt_data> = <code>[#deoptimization_data_offset]
  __ LoadP(r4, FieldMemOperand(r3, Code::kDeoptimizationDataOffset));

  {
1587
    ConstantPoolUnavailableScope constant_pool_unavailable(masm);
1588
    __ addi(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start
1589

1590 1591 1592 1593
    if (FLAG_enable_embedded_constant_pool) {
      __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r3);
    }

1594 1595
    // Load the OSR entrypoint offset from the deoptimization data.
    // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1596 1597 1598
    __ LoadP(r4,
             FieldMemOperand(r4, FixedArray::OffsetOfElementAt(
                                     DeoptimizationData::kOsrPcOffsetIndex)));
1599 1600
    __ SmiUntag(r4);

1601 1602
    // Compute the target address = code start + osr_offset
    __ add(r0, r3, r4);
1603 1604

    // And "return" to the OSR entry point of the function.
1605 1606
    __ mtlr(r0);
    __ blr();
1607 1608 1609
  }
}

1610
// static
1611
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1612 1613 1614 1615 1616 1617
  // ----------- S t a t e -------------
  //  -- r3    : argc
  //  -- sp[0] : argArray
  //  -- sp[4] : thisArg
  //  -- sp[8] : receiver
  // -----------------------------------
1618

1619
  // 1. Load receiver into r4, argArray into r5 (if present), remove all
1620 1621 1622 1623
  // arguments from the stack (including the receiver), and push thisArg (if
  // present) instead.
  {
    Label skip;
1624
    Register arg_size = r8;
1625 1626 1627 1628
    Register new_sp = r6;
    Register scratch = r7;
    __ ShiftLeftImm(arg_size, r3, Operand(kPointerSizeLog2));
    __ add(new_sp, sp, arg_size);
1629
    __ LoadRoot(scratch, RootIndex::kUndefinedValue);
1630
    __ mr(r5, scratch);
1631 1632 1633 1634 1635
    __ LoadP(r4, MemOperand(new_sp, 0));  // receiver
    __ cmpi(arg_size, Operand(kPointerSize));
    __ blt(&skip);
    __ LoadP(scratch, MemOperand(new_sp, 1 * -kPointerSize));  // thisArg
    __ beq(&skip);
1636
    __ LoadP(r5, MemOperand(new_sp, 2 * -kPointerSize));  // argArray
1637 1638 1639 1640
    __ bind(&skip);
    __ mr(sp, new_sp);
    __ StoreP(scratch, MemOperand(sp, 0));
  }
1641

1642
  // ----------- S t a t e -------------
1643
  //  -- r5    : argArray
1644 1645 1646
  //  -- r4    : receiver
  //  -- sp[0] : thisArg
  // -----------------------------------
1647

1648 1649 1650
  // 2. We don't need to check explicitly for callable receiver here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.
1651

1652 1653
  // 3. Tail call with no arguments if argArray is null or undefined.
  Label no_arguments;
1654 1655
  __ JumpIfRoot(r5, RootIndex::kNullValue, &no_arguments);
  __ JumpIfRoot(r5, RootIndex::kUndefinedValue, &no_arguments);
1656

1657
  // 4a. Apply the receiver to the given argArray.
1658
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1659
          RelocInfo::CODE_TARGET);
1660

1661 1662 1663
  // 4b. The argArray is either null or undefined, so we tail call without any
  // arguments to the receiver.
  __ bind(&no_arguments);
1664
  {
1665 1666 1667
    __ li(r3, Operand::Zero());
    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
  }
1668 1669
}

1670 1671 1672 1673 1674 1675 1676 1677
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
  // 1. Make sure we have at least one argument.
  // r3: actual number of arguments
  {
    Label done;
    __ cmpi(r3, Operand::Zero());
    __ bne(&done);
1678
    __ PushRoot(RootIndex::kUndefinedValue);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
    __ addi(r3, r3, Operand(1));
    __ bind(&done);
  }

  // 2. Get the callable to call (passed as receiver) from the stack.
  // r3: actual number of arguments
  __ ShiftLeftImm(r5, r3, Operand(kPointerSizeLog2));
  __ LoadPX(r4, MemOperand(sp, r5));

  // 3. Shift arguments and return address one slot down on the stack
  //    (overwriting the original receiver).  Adjust argument count to make
  //    the original first argument the new receiver.
  // r3: actual number of arguments
  // r4: callable
  {
    Label loop;
    // Calculate the copy start address (destination). Copy end address is sp.
    __ add(r5, sp, r5);

    __ mtctr(r3);
    __ bind(&loop);
    __ LoadP(ip, MemOperand(r5, -kPointerSize));
    __ StoreP(ip, MemOperand(r5));
    __ subi(r5, r5, Operand(kPointerSize));
    __ bdnz(&loop);
    // Adjust the actual number of arguments and remove the top element
    // (which is a copy of the last argument).
    __ subi(r3, r3, Operand(1));
    __ pop();
  }

  // 4. Call the callable.
  __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}

1714 1715 1716 1717 1718 1719 1720 1721
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3     : argc
  //  -- sp[0]  : argumentsList
  //  -- sp[4]  : thisArgument
  //  -- sp[8]  : target
  //  -- sp[12] : receiver
  // -----------------------------------
1722

1723
  // 1. Load target into r4 (if present), argumentsList into r5 (if present),
1724 1725
  // remove all arguments from the stack (including the receiver), and push
  // thisArgument (if present) instead.
1726
  {
1727
    Label skip;
1728
    Register arg_size = r8;
1729 1730 1731 1732
    Register new_sp = r6;
    Register scratch = r7;
    __ ShiftLeftImm(arg_size, r3, Operand(kPointerSizeLog2));
    __ add(new_sp, sp, arg_size);
1733
    __ LoadRoot(r4, RootIndex::kUndefinedValue);
1734
    __ mr(scratch, r4);
1735
    __ mr(r5, r4);
1736 1737 1738 1739 1740 1741 1742
    __ cmpi(arg_size, Operand(kPointerSize));
    __ blt(&skip);
    __ LoadP(r4, MemOperand(new_sp, 1 * -kPointerSize));  // target
    __ beq(&skip);
    __ LoadP(scratch, MemOperand(new_sp, 2 * -kPointerSize));  // thisArgument
    __ cmpi(arg_size, Operand(2 * kPointerSize));
    __ beq(&skip);
1743
    __ LoadP(r5, MemOperand(new_sp, 3 * -kPointerSize));  // argumentsList
1744 1745 1746 1747
    __ bind(&skip);
    __ mr(sp, new_sp);
    __ StoreP(scratch, MemOperand(sp, 0));
  }
1748

1749
  // ----------- S t a t e -------------
1750
  //  -- r5    : argumentsList
1751 1752 1753
  //  -- r4    : target
  //  -- sp[0] : thisArgument
  // -----------------------------------
1754

1755 1756 1757
  // 2. We don't need to check explicitly for callable target here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.
1758

1759
  // 3. Apply the target to the given argumentsList.
1760
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1761
          RelocInfo::CODE_TARGET);
1762 1763
}

1764 1765 1766 1767 1768 1769 1770 1771
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3     : argc
  //  -- sp[0]  : new.target (optional)
  //  -- sp[4]  : argumentsList
  //  -- sp[8]  : target
  //  -- sp[12] : receiver
  // -----------------------------------
1772

1773
  // 1. Load target into r4 (if present), argumentsList into r5 (if present),
1774 1775 1776 1777 1778
  // new.target into r6 (if present, otherwise use target), remove all
  // arguments from the stack (including the receiver), and push thisArgument
  // (if present) instead.
  {
    Label skip;
1779
    Register arg_size = r8;
1780 1781 1782
    Register new_sp = r7;
    __ ShiftLeftImm(arg_size, r3, Operand(kPointerSizeLog2));
    __ add(new_sp, sp, arg_size);
1783
    __ LoadRoot(r4, RootIndex::kUndefinedValue);
1784
    __ mr(r5, r4);
1785 1786 1787 1788 1789 1790 1791
    __ mr(r6, r4);
    __ StoreP(r4, MemOperand(new_sp, 0));  // receiver (undefined)
    __ cmpi(arg_size, Operand(kPointerSize));
    __ blt(&skip);
    __ LoadP(r4, MemOperand(new_sp, 1 * -kPointerSize));  // target
    __ mr(r6, r4);  // new.target defaults to target
    __ beq(&skip);
1792
    __ LoadP(r5, MemOperand(new_sp, 2 * -kPointerSize));  // argumentsList
1793 1794 1795 1796 1797 1798
    __ cmpi(arg_size, Operand(2 * kPointerSize));
    __ beq(&skip);
    __ LoadP(r6, MemOperand(new_sp, 3 * -kPointerSize));  // new.target
    __ bind(&skip);
    __ mr(sp, new_sp);
  }
1799

1800
  // ----------- S t a t e -------------
1801
  //  -- r5    : argumentsList
1802 1803 1804 1805
  //  -- r6    : new.target
  //  -- r4    : target
  //  -- sp[0] : receiver (undefined)
  // -----------------------------------
1806

1807 1808 1809
  // 2. We don't need to check explicitly for constructor target here,
  // since that's the first thing the Construct/ConstructWithArrayLike
  // builtins will do.
1810

1811 1812 1813
  // 3. We don't need to check explicitly for constructor new.target here,
  // since that's the second thing the Construct/ConstructWithArrayLike
  // builtins will do.
1814

1815
  // 4. Construct the target with the given new.target and argumentsList.
1816
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
1817
          RelocInfo::CODE_TARGET);
1818 1819
}

1820 1821
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
  __ SmiTag(r3);
1822
  __ mov(r7, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1823 1824
  __ mflr(r0);
  __ push(r0);
1825 1826 1827 1828 1829
  if (FLAG_enable_embedded_constant_pool) {
    __ Push(fp, kConstantPoolRegister, r7, r4, r3);
  } else {
    __ Push(fp, r7, r4, r3);
  }
1830
  __ Push(Smi::zero());  // Padding.
1831 1832
  __ addi(fp, sp,
          Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
1833 1834 1835 1836 1837 1838 1839 1840
}

static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : result being passed through
  // -----------------------------------
  // Get the number of arguments passed (as a smi), tear down the frame and
  // then tear down the parameters.
1841
  __ LoadP(r4, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1842 1843 1844 1845 1846 1847
  int stack_adjustment = kPointerSize;  // adjust for receiver
  __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment);
  __ SmiToPtrArrayOffset(r0, r4);
  __ add(sp, sp, r0);
}

1848
// static
1849 1850
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
                                               Handle<Code> code) {
1851
  // ----------- S t a t e -------------
1852 1853 1854 1855 1856
  //  -- r4 : target
  //  -- r3 : number of parameters on the stack (not including the receiver)
  //  -- r5 : arguments list (a FixedArray)
  //  -- r7 : len (number of elements to push from args)
  //  -- r6 : new.target (for [[Construct]])
1857 1858
  // -----------------------------------

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
  Register scratch = ip;

  if (masm->emit_debug_code()) {
    // Allow r5 to be a FixedArray, or a FixedDoubleArray if r7 == 0.
    Label ok, fail;
    __ AssertNotSmi(r5);
    __ LoadP(scratch, FieldMemOperand(r5, HeapObject::kMapOffset));
    __ LoadHalfWord(scratch,
                    FieldMemOperand(scratch, Map::kInstanceTypeOffset));
    __ cmpi(scratch, Operand(FIXED_ARRAY_TYPE));
    __ beq(&ok);
    __ cmpi(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE));
    __ bne(&fail);
    __ cmpi(r7, Operand::Zero());
    __ beq(&ok);
    // Fall through.
    __ bind(&fail);
    __ Abort(AbortReason::kOperandIsNotAFixedArray);

    __ bind(&ok);
  }

1881
  // Check for stack overflow.
1882 1883
  Label stack_overflow;
  Generate_StackOverflowCheck(masm, r7, ip, &stack_overflow);
1884 1885 1886

  // Push arguments onto the stack (thisArgument is already on the stack).
  {
1887
    Label loop, no_args, skip;
1888
    __ cmpi(r7, Operand::Zero());
1889
    __ beq(&no_args);
1890
    __ addi(r5, r5,
1891
            Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
1892
    __ mtctr(r7);
1893
    __ bind(&loop);
1894
    __ LoadPU(ip, MemOperand(r5, kPointerSize));
1895
    __ CompareRoot(ip, RootIndex::kTheHoleValue);
1896
    __ bne(&skip);
1897
    __ LoadRoot(ip, RootIndex::kUndefinedValue);
1898 1899
    __ bind(&skip);
    __ push(ip);
1900 1901
    __ bdnz(&loop);
    __ bind(&no_args);
1902
    __ add(r3, r3, r7);
1903 1904
  }

1905 1906
  // Tail-call to the actual Call or Construct builtin.
  __ Jump(code, RelocInfo::CODE_TARGET);
1907 1908 1909

  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
1910 1911
}

1912
// static
1913
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
1914
                                                      CallOrConstructMode mode,
1915
                                                      Handle<Code> code) {
1916
  // ----------- S t a t e -------------
1917 1918 1919 1920
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r6 : the new.target (for [[Construct]] calls)
  //  -- r4 : the target to call (can be any Object)
  //  -- r5 : start index (to support rest parameters)
1921 1922
  // -----------------------------------

1923 1924 1925 1926 1927 1928 1929
  Register scratch = r9;

  if (mode == CallOrConstructMode::kConstruct) {
    Label new_target_constructor, new_target_not_constructor;
    __ JumpIfSmi(r6, &new_target_not_constructor);
    __ LoadP(scratch, FieldMemOperand(r6, HeapObject::kMapOffset));
    __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
1930
    __ TestBit(scratch, Map::IsConstructorBit::kShift, r0);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    __ bne(&new_target_constructor, cr0);
    __ bind(&new_target_not_constructor);
    {
      FrameScope scope(masm, StackFrame::MANUAL);
      __ EnterFrame(StackFrame::INTERNAL);
      __ Push(r6);
      __ CallRuntime(Runtime::kThrowNotConstructor);
    }
    __ bind(&new_target_constructor);
  }

1942 1943
  // Check if we have an arguments adaptor frame below the function frame.
  Label arguments_adaptor, arguments_done;
1944 1945
  __ LoadP(r7, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ LoadP(ip, MemOperand(r7, CommonFrameConstants::kContextOrFrameTypeOffset));
1946
  __ cmpi(ip, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1947 1948
  __ beq(&arguments_adaptor);
  {
1949 1950
    __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
    __ LoadP(r8, FieldMemOperand(r8, JSFunction::kSharedFunctionInfoOffset));
1951
    __ LoadHalfWord(
1952 1953 1954
        r8,
        FieldMemOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset));
    __ mr(r7, fp);
1955 1956 1957 1958 1959
  }
  __ b(&arguments_done);
  __ bind(&arguments_adaptor);
  {
    // Load the length from the ArgumentsAdaptorFrame.
1960 1961
    __ LoadP(r8, MemOperand(r7, ArgumentsAdaptorFrameConstants::kLengthOffset));
    __ SmiUntag(r8);
1962 1963 1964
  }
  __ bind(&arguments_done);

1965 1966 1967 1968
  Label stack_done, stack_overflow;
  __ sub(r8, r8, r5);
  __ cmpi(r8, Operand::Zero());
  __ ble(&stack_done);
1969 1970
  {
    // Check for stack overflow.
1971
    Generate_StackOverflowCheck(masm, r8, r5, &stack_overflow);
1972 1973 1974 1975

    // Forward the arguments from the caller frame.
    {
      Label loop;
1976 1977
      __ addi(r7, r7, Operand(kPointerSize));
      __ add(r3, r3, r8);
1978 1979
      __ bind(&loop);
      {
1980 1981
        __ ShiftLeftImm(ip, r8, Operand(kPointerSizeLog2));
        __ LoadPX(ip, MemOperand(r7, ip));
1982
        __ push(ip);
1983 1984
        __ subi(r8, r8, Operand(1));
        __ cmpi(r8, Operand::Zero());
1985 1986 1987 1988 1989 1990 1991 1992 1993
        __ bne(&loop);
      }
    }
  }
  __ b(&stack_done);
  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
  __ bind(&stack_done);

1994
  // Tail-call to the {code} handler.
1995 1996 1997
  __ Jump(code, RelocInfo::CODE_TARGET);
}

1998
// static
1999
void Builtins::Generate_CallFunction(MacroAssembler* masm,
2000
                                     ConvertReceiverMode mode) {
2001 2002 2003 2004 2005
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSFunction)
  // -----------------------------------
  __ AssertFunction(r4);
2006 2007 2008 2009

  // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
  // Check that the function is not a "classConstructor".
  Label class_constructor;
2010
  __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2011
  __ lwz(r6, FieldMemOperand(r5, SharedFunctionInfo::kFlagsOffset));
2012
  __ TestBitMask(r6, SharedFunctionInfo::IsClassConstructorBit::kMask, r0);
2013
  __ bne(&class_constructor, cr0);
2014

2015 2016 2017 2018 2019
  // Enter the context of the function; ToObject has to run in the function
  // context, and we also need to take the global proxy from the function
  // context in case of conversion.
  __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
  // We need to convert the receiver for non-native sloppy mode functions.
2020
  Label done_convert;
2021 2022 2023
  __ andi(r0, r6,
          Operand(SharedFunctionInfo::IsStrictBit::kMask |
                  SharedFunctionInfo::IsNativeBit::kMask));
2024 2025 2026 2027 2028 2029 2030 2031 2032
  __ bne(&done_convert, cr0);
  {
    // ----------- S t a t e -------------
    //  -- r3 : the number of arguments (not including the receiver)
    //  -- r4 : the function to call (checked to be a JSFunction)
    //  -- r5 : the shared function info.
    //  -- cp : the function context.
    // -----------------------------------

2033
    if (mode == ConvertReceiverMode::kNullOrUndefined) {
2034 2035
      // Patch receiver to global proxy.
      __ LoadGlobalProxy(r6);
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    } else {
      Label convert_to_object, convert_receiver;
      __ ShiftLeftImm(r6, r3, Operand(kPointerSizeLog2));
      __ LoadPX(r6, MemOperand(sp, r6));
      __ JumpIfSmi(r6, &convert_to_object);
      STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
      __ CompareObjectType(r6, r7, r7, FIRST_JS_RECEIVER_TYPE);
      __ bge(&done_convert);
      if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
        Label convert_global_proxy;
2046 2047
        __ JumpIfRoot(r6, RootIndex::kUndefinedValue, &convert_global_proxy);
        __ JumpIfNotRoot(r6, RootIndex::kNullValue, &convert_to_object);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
        __ bind(&convert_global_proxy);
        {
          // Patch receiver to global proxy.
          __ LoadGlobalProxy(r6);
        }
        __ b(&convert_receiver);
      }
      __ bind(&convert_to_object);
      {
        // Convert receiver using ToObject.
        // TODO(bmeurer): Inline the allocation here to avoid building the frame
        // in the fast case? (fall back to AllocateInNewSpace?)
        FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
        __ SmiTag(r3);
        __ Push(r3, r4);
        __ mr(r3, r6);
2064
        __ Push(cp);
2065
        __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
2066
                RelocInfo::CODE_TARGET);
2067
        __ Pop(cp);
2068 2069 2070 2071 2072 2073
        __ mr(r6, r3);
        __ Pop(r3, r4);
        __ SmiUntag(r3);
      }
      __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
      __ bind(&convert_receiver);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
    }
    __ ShiftLeftImm(r7, r3, Operand(kPointerSizeLog2));
    __ StorePX(r6, MemOperand(sp, r7));
  }
  __ bind(&done_convert);

  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSFunction)
  //  -- r5 : the shared function info.
  //  -- cp : the function context.
  // -----------------------------------

2087
  __ LoadHalfWord(
2088 2089 2090
      r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
  ParameterCount actual(r3);
  ParameterCount expected(r5);
2091
  __ InvokeFunctionCode(r4, no_reg, expected, actual, JUMP_FUNCTION);
2092 2093 2094 2095 2096

  // The function is a "classConstructor", need to raise an exception.
  __ bind(&class_constructor);
  {
    FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL);
2097
    __ push(r4);
2098
    __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
2099
  }
2100 2101
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
namespace {

void Generate_PushBoundArguments(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : target (checked to be a JSBoundFunction)
  //  -- r6 : new.target (only in case of [[Construct]])
  // -----------------------------------

  // Load [[BoundArguments]] into r5 and length of that into r7.
  Label no_bound_arguments;
  __ LoadP(r5, FieldMemOperand(r4, JSBoundFunction::kBoundArgumentsOffset));
  __ LoadP(r7, FieldMemOperand(r5, FixedArray::kLengthOffset));
  __ SmiUntag(r7, SetRC);
  __ beq(&no_bound_arguments, cr0);
  {
    // ----------- S t a t e -------------
    //  -- r3 : the number of arguments (not including the receiver)
    //  -- r4 : target (checked to be a JSBoundFunction)
    //  -- r5 : the [[BoundArguments]] (implemented as FixedArray)
    //  -- r6 : new.target (only in case of [[Construct]])
    //  -- r7 : the number of [[BoundArguments]]
    // -----------------------------------

    // Reserve stack space for the [[BoundArguments]].
    {
      Label done;
      __ mr(r9, sp);  // preserve previous stack pointer
      __ ShiftLeftImm(r10, r7, Operand(kPointerSizeLog2));
      __ sub(sp, sp, r10);
      // Check the stack for overflow. We are not trying to catch interruptions
      // (i.e. debug break and preemption) here, so check the "real stack
      // limit".
2135
      __ CompareRoot(sp, RootIndex::kRealStackLimit);
2136 2137 2138 2139 2140 2141
      __ bgt(&done);  // Signed comparison.
      // Restore the stack pointer.
      __ mr(sp, r9);
      {
        FrameScope scope(masm, StackFrame::MANUAL);
        __ EnterFrame(StackFrame::INTERNAL);
2142
        __ CallRuntime(Runtime::kThrowStackOverflow);
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
      }
      __ bind(&done);
    }

    // Relocate arguments down the stack.
    //  -- r3 : the number of arguments (not including the receiver)
    //  -- r9 : the previous stack pointer
    //  -- r10: the size of the [[BoundArguments]]
    {
      Label skip, loop;
      __ li(r8, Operand::Zero());
      __ cmpi(r3, Operand::Zero());
      __ beq(&skip);
      __ mtctr(r3);
      __ bind(&loop);
      __ LoadPX(r0, MemOperand(r9, r8));
      __ StorePX(r0, MemOperand(sp, r8));
      __ addi(r8, r8, Operand(kPointerSize));
      __ bdnz(&loop);
      __ bind(&skip);
    }

    // Copy [[BoundArguments]] to the stack (below the arguments).
    {
      Label loop;
      __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
      __ add(r5, r5, r10);
      __ mtctr(r7);
      __ bind(&loop);
      __ LoadPU(r0, MemOperand(r5, -kPointerSize));
      __ StorePX(r0, MemOperand(sp, r8));
      __ addi(r8, r8, Operand(kPointerSize));
      __ bdnz(&loop);
      __ add(r3, r3, r7);
    }
  }
  __ bind(&no_bound_arguments);
}

}  // namespace

// static
2185
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSBoundFunction)
  // -----------------------------------
  __ AssertBoundFunction(r4);

  // Patch the receiver to [[BoundThis]].
  __ LoadP(ip, FieldMemOperand(r4, JSBoundFunction::kBoundThisOffset));
  __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
  __ StorePX(ip, MemOperand(sp, r0));

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Call the [[BoundTargetFunction]] via the Call builtin.
  __ LoadP(r4,
           FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset));
2203 2204
  __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
          RelocInfo::CODE_TARGET);
2205 2206
}

2207
// static
2208
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2209 2210 2211 2212 2213
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the target to call (can be any Object).
  // -----------------------------------

2214 2215
  Label non_callable, non_function, non_smi;
  __ JumpIfSmi(r4, &non_callable);
2216
  __ bind(&non_smi);
2217
  __ CompareObjectType(r4, r7, r8, JS_FUNCTION_TYPE);
2218
  __ Jump(masm->isolate()->builtins()->CallFunction(mode),
2219
          RelocInfo::CODE_TARGET, eq);
2220
  __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE));
2221
  __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2222
          RelocInfo::CODE_TARGET, eq);
2223 2224 2225

  // Check if target has a [[Call]] internal method.
  __ lbz(r7, FieldMemOperand(r7, Map::kBitFieldOffset));
2226
  __ TestBit(r7, Map::IsCallableBit::kShift, r0);
2227 2228
  __ beq(&non_callable, cr0);

2229
  // Check if target is a proxy and call CallProxy external builtin
2230
  __ cmpi(r8, Operand(JS_PROXY_TYPE));
2231
  __ bne(&non_function);
2232
  __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
2233 2234 2235 2236

  // 2. Call to something else, which might have a [[Call]] internal method (if
  // not we raise an exception).
  __ bind(&non_function);
2237 2238 2239 2240
  // Overwrite the original receiver the (original) target.
  __ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2));
  __ StorePX(r4, MemOperand(sp, r8));
  // Let the "call_as_function_delegate" take care of the rest.
2241
  __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r4);
2242
  __ Jump(masm->isolate()->builtins()->CallFunction(
2243
              ConvertReceiverMode::kNotNullOrUndefined),
2244
          RelocInfo::CODE_TARGET);
2245 2246 2247

  // 3. Call to something that is not callable.
  __ bind(&non_callable);
2248 2249
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2250
    __ Push(r4);
2251
    __ CallRuntime(Runtime::kThrowCalledNonCallable);
2252 2253 2254
  }
}

2255 2256 2257 2258 2259
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the constructor to call (checked to be a JSFunction)
2260
  //  -- r6 : the new target (checked to be a constructor)
2261
  // -----------------------------------
2262
  __ AssertConstructor(r4);
2263 2264 2265 2266
  __ AssertFunction(r4);

  // Calling convention for function specific ConstructStubs require
  // r5 to contain either an AllocationSite or undefined.
2267
  __ LoadRoot(r5, RootIndex::kUndefinedValue);
2268

2269 2270 2271
  Label call_generic_stub;

  // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2272
  __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2273
  __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset));
2274 2275 2276 2277 2278 2279 2280 2281
  __ mov(ip, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
  __ and_(r7, r7, ip, SetRC);
  __ beq(&call_generic_stub, cr0);

  __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
          RelocInfo::CODE_TARGET);

  __ bind(&call_generic_stub);
2282
  __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2283
          RelocInfo::CODE_TARGET);
2284 2285
}

2286 2287 2288 2289 2290 2291 2292
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSBoundFunction)
  //  -- r6 : the new target (checked to be a constructor)
  // -----------------------------------
2293
  __ AssertConstructor(r4);
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
  __ AssertBoundFunction(r4);

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
  Label skip;
  __ cmp(r4, r6);
  __ bne(&skip);
  __ LoadP(r6,
           FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset));
  __ bind(&skip);

  // Construct the [[BoundTargetFunction]] via the Construct builtin.
  __ LoadP(r4,
           FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset));
2310
  __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2311 2312
}

2313 2314 2315 2316 2317
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the constructor to call (can be any Object)
2318
  //  -- r6 : the new target (either the same as the constructor or
2319 2320 2321
  //          the JSFunction on which new was invoked initially)
  // -----------------------------------

2322
  // Check if target is a Smi.
2323
  Label non_constructor, non_proxy;
2324 2325
  __ JumpIfSmi(r4, &non_constructor);

2326
  // Check if target has a [[Construct]] internal method.
2327
  __ LoadP(r7, FieldMemOperand(r4, HeapObject::kMapOffset));
2328
  __ lbz(r5, FieldMemOperand(r7, Map::kBitFieldOffset));
2329
  __ TestBit(r5, Map::IsConstructorBit::kShift, r0);
2330 2331
  __ beq(&non_constructor, cr0);

2332 2333 2334 2335 2336
  // Dispatch based on instance type.
  __ CompareInstanceType(r7, r8, JS_FUNCTION_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
          RelocInfo::CODE_TARGET, eq);

2337 2338 2339
  // Only dispatch to bound functions after checking whether they are
  // constructors.
  __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE));
2340
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2341 2342
          RelocInfo::CODE_TARGET, eq);

2343 2344
  // Only dispatch to proxies after checking whether they are constructors.
  __ cmpi(r8, Operand(JS_PROXY_TYPE));
2345
  __ bne(&non_proxy);
2346 2347
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
          RelocInfo::CODE_TARGET);
2348

2349
  // Called Construct on an exotic Object with a [[Construct]] internal method.
2350
  __ bind(&non_proxy);
2351 2352 2353 2354 2355
  {
    // Overwrite the original receiver with the (original) target.
    __ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2));
    __ StorePX(r4, MemOperand(sp, r8));
    // Let the "call_as_constructor_delegate" take care of the rest.
2356
    __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r4);
2357 2358 2359
    __ Jump(masm->isolate()->builtins()->CallFunction(),
            RelocInfo::CODE_TARGET);
  }
2360

2361 2362 2363
  // Called Construct on an Object that doesn't have a [[Construct]] internal
  // method.
  __ bind(&non_constructor);
2364
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2365
          RelocInfo::CODE_TARGET);
2366 2367
}

2368 2369 2370 2371 2372
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : actual number of arguments
  //  -- r4 : function (passed through to callee)
  //  -- r5 : expected number of arguments
2373
  //  -- r6 : new target (passed through to callee)
2374 2375
  // -----------------------------------

2376
  Label invoke, dont_adapt_arguments, stack_overflow;
2377 2378

  Label enough, too_few;
2379 2380
  __ cmpli(r5, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
  __ beq(&dont_adapt_arguments);
2381 2382 2383 2384 2385 2386
  __ cmp(r3, r5);
  __ blt(&too_few);

  {  // Enough parameters: actual >= expected
    __ bind(&enough);
    EnterArgumentsAdaptorFrame(masm);
2387
    Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow);
2388

2389
    // Calculate copy start address into r3 and copy end address into r7.
2390 2391 2392
    // r3: actual number of arguments as a smi
    // r4: function
    // r5: expected number of arguments
2393
    // r6: new target (passed through to callee)
2394 2395 2396 2397
    __ SmiToPtrArrayOffset(r3, r3);
    __ add(r3, r3, fp);
    // adjust for return address and receiver
    __ addi(r3, r3, Operand(2 * kPointerSize));
2398 2399
    __ ShiftLeftImm(r7, r5, Operand(kPointerSizeLog2));
    __ sub(r7, r3, r7);
2400 2401 2402 2403

    // Copy the arguments (including the receiver) to the new stack frame.
    // r3: copy start address
    // r4: function
2404
    // r5: expected number of arguments
2405 2406
    // r6: new target (passed through to callee)
    // r7: copy end address
2407 2408 2409 2410 2411

    Label copy;
    __ bind(&copy);
    __ LoadP(r0, MemOperand(r3, 0));
    __ push(r0);
2412
    __ cmp(r3, r7);  // Compare before moving to next argument.
2413 2414 2415 2416 2417 2418 2419 2420
    __ subi(r3, r3, Operand(kPointerSize));
    __ bne(&copy);

    __ b(&invoke);
  }

  {  // Too few parameters: Actual < expected
    __ bind(&too_few);
2421

2422
    EnterArgumentsAdaptorFrame(masm);
2423
    Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow);
2424 2425 2426 2427 2428

    // Calculate copy start address into r0 and copy end address is fp.
    // r3: actual number of arguments as a smi
    // r4: function
    // r5: expected number of arguments
2429
    // r6: new target (passed through to callee)
2430 2431 2432 2433 2434 2435 2436
    __ SmiToPtrArrayOffset(r3, r3);
    __ add(r3, r3, fp);

    // Copy the arguments (including the receiver) to the new stack frame.
    // r3: copy start address
    // r4: function
    // r5: expected number of arguments
2437
    // r6: new target (passed through to callee)
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
    Label copy;
    __ bind(&copy);
    // Adjust load for return address and receiver.
    __ LoadP(r0, MemOperand(r3, 2 * kPointerSize));
    __ push(r0);
    __ cmp(r3, fp);  // Compare before moving to next argument.
    __ subi(r3, r3, Operand(kPointerSize));
    __ bne(&copy);

    // Fill the remaining expected arguments with undefined.
    // r4: function
    // r5: expected number of arguments
2450
    // r6: new target (passed through to callee)
2451
    __ LoadRoot(r0, RootIndex::kUndefinedValue);
2452 2453
    __ ShiftLeftImm(r7, r5, Operand(kPointerSizeLog2));
    __ sub(r7, fp, r7);
2454
    // Adjust for frame.
2455 2456 2457
    __ subi(r7, r7,
            Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
                    kPointerSize));
2458 2459 2460 2461

    Label fill;
    __ bind(&fill);
    __ push(r0);
2462
    __ cmp(sp, r7);
2463 2464 2465 2466 2467
    __ bne(&fill);
  }

  // Call the entry point.
  __ bind(&invoke);
2468 2469 2470
  __ mr(r3, r5);
  // r3 : expected number of arguments
  // r4 : function (passed through to callee)
2471
  // r6 : new target (passed through to callee)
2472 2473
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
  __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset));
2474
  __ CallCodeObject(r5);
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

  // Store offset of return address for deoptimizer.
  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());

  // Exit frame and return.
  LeaveArgumentsAdaptorFrame(masm);
  __ blr();

  // -------------------------------------------
  // Dont adapt arguments.
  // -------------------------------------------
  __ bind(&dont_adapt_arguments);
2487 2488
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
  __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset));
2489
  __ JumpCodeObject(r5);
2490 2491 2492 2493

  __ bind(&stack_overflow);
  {
    FrameScope frame(masm, StackFrame::MANUAL);
2494
    __ CallRuntime(Runtime::kThrowStackOverflow);
2495 2496 2497 2498
    __ bkpt(0);
  }
}

2499
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2500
  // The function index was put in a register by the jump table trampoline.
2501
  // Convert to Smi for the runtime call.
2502 2503
  __ SmiTag(kWasmCompileLazyFuncIndexRegister,
            kWasmCompileLazyFuncIndexRegister);
2504
  {
2505
    HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2506
    FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
2507 2508 2509 2510

    // Save all parameter registers (see wasm-linkage.cc). They might be
    // overwritten in the runtime call below. We don't have any callee-saved
    // registers in wasm, so no need to store anything else.
2511 2512
    constexpr RegList gp_regs =
        Register::ListOf<r3, r4, r5, r6, r7, r8, r9, r10>();
2513 2514
    constexpr RegList fp_regs =
        DoubleRegister::ListOf<d1, d2, d3, d4, d5, d6, d7, d8>();
2515 2516 2517
    __ MultiPush(gp_regs);
    __ MultiPushDoubles(fp_regs);

2518 2519
    // Pass instance and function index as explicit arguments to the runtime
    // function.
2520
    __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister);
2521 2522 2523
    // Load the correct CEntry builtin from the instance object.
    __ LoadP(r5, FieldMemOperand(kWasmInstanceRegister,
                                 WasmInstanceObject::kCEntryStubOffset));
2524
    // Initialize the JavaScript context with 0. CEntry will use it to
2525
    // set the current context on the isolate.
2526
    __ LoadSmiLiteral(cp, Smi::zero());
2527
    __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, r5);
2528
    // The entrypoint address is the return value.
2529
    __ mr(r11, kReturnRegister0);
2530 2531 2532 2533 2534

    // Restore registers.
    __ MultiPopDoubles(fp_regs);
    __ MultiPop(gp_regs);
  }
2535
  // Finally, jump to the entrypoint.
2536
  __ Jump(r11);
2537 2538
}

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
                               SaveFPRegsMode save_doubles, ArgvMode argv_mode,
                               bool builtin_exit_frame) {
  // Called from JavaScript; parameters are on stack as if calling JS function.
  // r3: number of arguments including receiver
  // r4: pointer to builtin function
  // fp: frame pointer  (restored after C call)
  // sp: stack pointer  (restored as callee's sp after C call)
  // cp: current context  (C callee-saved)
  //
  // If argv_mode == kArgvInRegister:
  // r5: pointer to the first argument

  __ mr(r15, r4);

  if (argv_mode == kArgvInRegister) {
    // Move argv into the correct register.
    __ mr(r4, r5);
  } else {
    // Compute the argv pointer.
    __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
    __ add(r4, r4, sp);
    __ subi(r4, r4, Operand(kPointerSize));
  }

  // Enter the exit frame that transitions from JavaScript to C++.
  FrameScope scope(masm, StackFrame::MANUAL);

  // Need at least one extra slot for return address location.
  int arg_stack_space = 1;

  // Pass buffer for return value on stack if necessary
  bool needs_return_buffer =
      (result_size == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
  if (needs_return_buffer) {
    arg_stack_space += result_size;
  }

  __ EnterExitFrame(
      save_doubles, arg_stack_space,
      builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);

  // Store a copy of argc in callee-saved registers for later.
  __ mr(r14, r3);

  // r3, r14: number of arguments including receiver  (C callee-saved)
  // r4: pointer to the first argument
  // r15: pointer to builtin function  (C callee-saved)

  // Result returned in registers or stack, depending on result size and ABI.

  Register isolate_reg = r5;
  if (needs_return_buffer) {
    // The return value is a non-scalar value.
    // Use frame storage reserved by calling function to pass return
    // buffer as implicit first argument.
    __ mr(r5, r4);
    __ mr(r4, r3);
    __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
    isolate_reg = r6;
  }

  // Call C built-in.
  __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate()));

  Register target = r15;
2605
  __ StoreReturnAddressAndCall(target);
2606 2607 2608 2609 2610 2611 2612 2613 2614

  // If return value is on the stack, pop it to registers.
  if (needs_return_buffer) {
    __ LoadP(r4, MemOperand(r3, kPointerSize));
    __ LoadP(r3, MemOperand(r3));
  }

  // Check result for exception sentinel.
  Label exception_returned;
2615
  __ CompareRoot(r3, RootIndex::kException);
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
  __ beq(&exception_returned);

  // Check that there is no pending exception, otherwise we
  // should have returned the exception sentinel.
  if (FLAG_debug_code) {
    Label okay;
    ExternalReference pending_exception_address = ExternalReference::Create(
        IsolateAddressId::kPendingExceptionAddress, masm->isolate());

    __ Move(r6, pending_exception_address);
    __ LoadP(r6, MemOperand(r6));
2627
    __ CompareRoot(r6, RootIndex::kTheHoleValue);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
    // Cannot use check here as it attempts to generate call into runtime.
    __ beq(&okay);
    __ stop("Unexpected pending exception");
    __ bind(&okay);
  }

  // Exit C frame and return.
  // r3:r4: result
  // sp: stack pointer
  // fp: frame pointer
  Register argc = argv_mode == kArgvInRegister
                      // We don't want to pop arguments so set argc to no_reg.
                      ? no_reg
                      // r14: still holds argc (callee-saved).
                      : r14;
  __ LeaveExitFrame(save_doubles, argc);
  __ blr();

  // Handling of exception.
  __ bind(&exception_returned);

  ExternalReference pending_handler_context_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
  ExternalReference pending_handler_entrypoint_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
  ExternalReference pending_handler_constant_pool_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerConstantPoolAddress,
          masm->isolate());
  ExternalReference pending_handler_fp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
  ExternalReference pending_handler_sp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());

  // Ask the runtime for help to determine the handler. This will set r3 to
  // contain the current pending exception, don't clobber it.
  ExternalReference find_handler =
      ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
  {
    FrameScope scope(masm, StackFrame::MANUAL);
    __ PrepareCallCFunction(3, 0, r3);
    __ li(r3, Operand::Zero());
    __ li(r4, Operand::Zero());
    __ Move(r5, ExternalReference::isolate_address(masm->isolate()));
    __ CallCFunction(find_handler, 3);
  }

  // Retrieve the handler context, SP and FP.
  __ Move(cp, pending_handler_context_address);
  __ LoadP(cp, MemOperand(cp));
  __ Move(sp, pending_handler_sp_address);
  __ LoadP(sp, MemOperand(sp));
  __ Move(fp, pending_handler_fp_address);
  __ LoadP(fp, MemOperand(fp));

  // If the handler is a JS frame, restore the context to the frame. Note that
  // the context will be set to (cp == 0) for non-JS frames.
  Label skip;
  __ cmpi(cp, Operand::Zero());
  __ beq(&skip);
  __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  __ bind(&skip);

2692 2693 2694 2695 2696
  // Reset the masking register. This is done independent of the underlying
  // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work
  // with both configurations. It is safe to always do this, because the
  // underlying register is caller-saved and can be arbitrarily clobbered.
  __ ResetSpeculationPoisonRegister();
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

  // Compute the handler entry address and jump to it.
  ConstantPoolUnavailableScope constant_pool_unavailable(masm);
  __ Move(ip, pending_handler_entrypoint_address);
  __ LoadP(ip, MemOperand(ip));
  if (FLAG_enable_embedded_constant_pool) {
    __ Move(kConstantPoolRegister, pending_handler_constant_pool_address);
    __ LoadP(kConstantPoolRegister, MemOperand(kConstantPoolRegister));
  }
  __ Jump(ip);
}

2709 2710 2711 2712
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
  Label out_of_range, only_low, negate, done, fastpath_done;
  Register result_reg = r3;

2713
  HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2714

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
  // Immediate values for this stub fit in instructions, so it's safe to use ip.
  Register scratch = GetRegisterThatIsNotOneOf(result_reg);
  Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch);
  Register scratch_high =
      GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low);
  DoubleRegister double_scratch = kScratchDoubleReg;

  __ Push(result_reg, scratch);
  // Account for saved regs.
  int argument_offset = 2 * kPointerSize;

  // Load double input.
  __ lfd(double_scratch, MemOperand(sp, argument_offset));

  // Do fast-path convert from double to int.
  __ ConvertDoubleToInt64(double_scratch,
#if !V8_TARGET_ARCH_PPC64
                          scratch,
#endif
                          result_reg, d0);

// Test for overflow
#if V8_TARGET_ARCH_PPC64
  __ TestIfInt32(result_reg, r0);
#else
  __ TestIfInt32(scratch, result_reg, r0);
#endif
  __ beq(&fastpath_done);

  __ Push(scratch_high, scratch_low);
  // Account for saved regs.
  argument_offset += 2 * kPointerSize;

  __ lwz(scratch_high,
         MemOperand(sp, argument_offset + Register::kExponentOffset));
  __ lwz(scratch_low,
         MemOperand(sp, argument_offset + Register::kMantissaOffset));

  __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
  // Load scratch with exponent - 1. This is faster than loading
  // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
  STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
  __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
  // If exponent is greater than or equal to 84, the 32 less significant
  // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
  // the result is 0.
  // Compare exponent with 84 (compare exponent - 1 with 83).
  __ cmpi(scratch, Operand(83));
  __ bge(&out_of_range);

  // If we reach this code, 31 <= exponent <= 83.
  // So, we don't have to handle cases where 0 <= exponent <= 20 for
  // which we would need to shift right the high part of the mantissa.
  // Scratch contains exponent - 1.
  // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
  __ subfic(scratch, scratch, Operand(51));
  __ cmpi(scratch, Operand::Zero());
  __ ble(&only_low);
  // 21 <= exponent <= 51, shift scratch_low and scratch_high
  // to generate the result.
  __ srw(scratch_low, scratch_low, scratch);
  // Scratch contains: 52 - exponent.
  // We needs: exponent - 20.
  // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
  __ subfic(scratch, scratch, Operand(32));
  __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
  // Set the implicit 1 before the mantissa part in scratch_high.
  STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
  __ oris(result_reg, result_reg,
          Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
  __ slw(r0, result_reg, scratch);
  __ orx(result_reg, scratch_low, r0);
  __ b(&negate);

  __ bind(&out_of_range);
  __ mov(result_reg, Operand::Zero());
  __ b(&done);

  __ bind(&only_low);
  // 52 <= exponent <= 83, shift only scratch_low.
  // On entry, scratch contains: 52 - exponent.
  __ neg(scratch, scratch);
  __ slw(result_reg, scratch_low, scratch);

  __ bind(&negate);
  // If input was positive, scratch_high ASR 31 equals 0 and
  // scratch_high LSR 31 equals zero.
  // New result = (result eor 0) + 0 = result.
  // If the input was negative, we have to negate the result.
  // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1.
  // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
  __ srawi(r0, scratch_high, 31);
#if V8_TARGET_ARCH_PPC64
  __ srdi(r0, r0, Operand(32));
#endif
  __ xor_(result_reg, result_reg, r0);
  __ srwi(r0, scratch_high, Operand(31));
  __ add(result_reg, result_reg, r0);

  __ bind(&done);
  __ Pop(scratch_high, scratch_low);
  // Account for saved regs.
  argument_offset -= 2 * kPointerSize;

  __ bind(&fastpath_done);
  __ StoreP(result_reg, MemOperand(sp, argument_offset));
  __ Pop(result_reg, scratch);

  __ Ret();
}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : argc
  //  -- r4 : constructor
  //  -- sp[0] : return address
  //  -- sp[4] : last argument
  // -----------------------------------

  if (FLAG_debug_code) {
    // The array construct code is only set for the global and natives
    // builtin Array functions which always have maps.

    // Initial map for the builtin Array function should be a map.
    __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a nullptr and a Smi.
    __ TestIfSmi(r6, r0);
    __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0);
    __ CompareObjectType(r6, r6, r7, MAP_TYPE);
    __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);

2846 2847 2848 2849 2850 2851
    // Figure out the right elements kind
    __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
    // Load the map's "bit field 2" into |result|.
    __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
    // Retrieve elements_kind from bit field 2.
    __ DecodeField<Map::ElementsKindBits>(r6);
2852

2853
    // Initial elements kind should be packed elements.
2854
    __ cmpi(r6, Operand(PACKED_ELEMENTS));
2855
    __ Assert(eq, AbortReason::kInvalidElementsKindForInternalPackedArray);
2856

2857 2858 2859 2860
    // No arguments should be passed.
    __ cmpi(r3, Operand(0));
    __ Assert(eq, AbortReason::kWrongNumberOfArgumentsForInternalPackedArray);
  }
2861

2862 2863 2864
  __ Jump(
      BUILTIN_CODE(masm->isolate(), InternalArrayNoArgumentConstructor_Packed),
      RelocInfo::CODE_TARGET);
2865 2866
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
namespace {

static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
  return ref0.address() - ref1.address();
}


// Calls an API function.  Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.  Restores context.  stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
                                     Register function_address,
                                     ExternalReference thunk_ref,
                                     int stack_space,
                                     MemOperand* stack_space_operand,
                                     MemOperand return_value_operand) {
  Isolate* isolate = masm->isolate();
  ExternalReference next_address =
      ExternalReference::handle_scope_next_address(isolate);
  const int kNextOffset = 0;
  const int kLimitOffset = AddressOffset(
      ExternalReference::handle_scope_limit_address(isolate), next_address);
  const int kLevelOffset = AddressOffset(
      ExternalReference::handle_scope_level_address(isolate), next_address);

  // Additional parameter is the address of the actual callback.
  DCHECK(function_address == r4 || function_address == r5);
  Register scratch = r6;

  __ Move(scratch, ExternalReference::is_profiling_address(isolate));
  __ lbz(scratch, MemOperand(scratch, 0));
  __ cmpi(scratch, Operand::Zero());

  if (CpuFeatures::IsSupported(ISELECT)) {
    __ Move(scratch, thunk_ref);
    __ isel(eq, scratch, function_address, scratch);
  } else {
    Label profiler_disabled;
    Label end_profiler_check;
    __ beq(&profiler_disabled);
    __ Move(scratch, thunk_ref);
    __ b(&end_profiler_check);
    __ bind(&profiler_disabled);
    __ mr(scratch, function_address);
    __ bind(&end_profiler_check);
  }

  // Allocate HandleScope in callee-save registers.
  // r17 - next_address
  // r14 - next_address->kNextOffset
  // r15 - next_address->kLimitOffset
  // r16 - next_address->kLevelOffset
  __ Move(r17, next_address);
  __ LoadP(r14, MemOperand(r17, kNextOffset));
  __ LoadP(r15, MemOperand(r17, kLimitOffset));
  __ lwz(r16, MemOperand(r17, kLevelOffset));
  __ addi(r16, r16, Operand(1));
  __ stw(r16, MemOperand(r17, kLevelOffset));

  if (FLAG_log_timer_events) {
    FrameScope frame(masm, StackFrame::MANUAL);
    __ PushSafepointRegisters();
    __ PrepareCallCFunction(1, r3);
    __ Move(r3, ExternalReference::isolate_address(isolate));
    __ CallCFunction(ExternalReference::log_enter_external_function(), 1);
    __ PopSafepointRegisters();
  }

2936
  __ StoreReturnAddressAndCall(scratch);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006

  if (FLAG_log_timer_events) {
    FrameScope frame(masm, StackFrame::MANUAL);
    __ PushSafepointRegisters();
    __ PrepareCallCFunction(1, r3);
    __ Move(r3, ExternalReference::isolate_address(isolate));
    __ CallCFunction(ExternalReference::log_leave_external_function(), 1);
    __ PopSafepointRegisters();
  }

  Label promote_scheduled_exception;
  Label delete_allocated_handles;
  Label leave_exit_frame;
  Label return_value_loaded;

  // load value from ReturnValue
  __ LoadP(r3, return_value_operand);
  __ bind(&return_value_loaded);
  // No more valid handles (the result handle was the last one). Restore
  // previous handle scope.
  __ StoreP(r14, MemOperand(r17, kNextOffset));
  if (__ emit_debug_code()) {
    __ lwz(r4, MemOperand(r17, kLevelOffset));
    __ cmp(r4, r16);
    __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
  }
  __ subi(r16, r16, Operand(1));
  __ stw(r16, MemOperand(r17, kLevelOffset));
  __ LoadP(r0, MemOperand(r17, kLimitOffset));
  __ cmp(r15, r0);
  __ bne(&delete_allocated_handles);

  // Leave the API exit frame.
  __ bind(&leave_exit_frame);
  // LeaveExitFrame expects unwind space to be in a register.
  if (stack_space_operand != nullptr) {
    __ LoadP(r14, *stack_space_operand);
  } else {
    __ mov(r14, Operand(stack_space));
  }
  __ LeaveExitFrame(false, r14, stack_space_operand != nullptr);

  // Check if the function scheduled an exception.
  __ LoadRoot(r14, RootIndex::kTheHoleValue);
  __ Move(r15, ExternalReference::scheduled_exception_address(isolate));
  __ LoadP(r15, MemOperand(r15));
  __ cmp(r14, r15);
  __ bne(&promote_scheduled_exception);

  __ blr();

  // Re-throw by promoting a scheduled exception.
  __ bind(&promote_scheduled_exception);
  __ TailCallRuntime(Runtime::kPromoteScheduledException);

  // HandleScope limit has changed. Delete allocated extensions.
  __ bind(&delete_allocated_handles);
  __ StoreP(r15, MemOperand(r17, kLimitOffset));
  __ mr(r14, r3);
  __ PrepareCallCFunction(1, r15);
  __ Move(r3, ExternalReference::isolate_address(isolate));
  __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
  __ mr(r3, r14);
  __ b(&leave_exit_frame);
}

}  // namespace

void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
  // ----------- S t a t e -------------
3007 3008 3009 3010 3011
  //  -- cp                  : context
  //  -- r4                  : api function address
  //  -- r5                  : arguments count (not including the receiver)
  //  -- r6                  : call data
  //  -- r3                  : holder
3012 3013 3014 3015 3016 3017 3018 3019
  //  -- sp[0]               : last argument
  //  -- ...
  //  -- sp[(argc - 1)* 4]   : first argument
  //  -- sp[(argc + 0) * 4]  : receiver
  // -----------------------------------

  Register api_function_address = r4;
  Register argc = r5;
3020 3021
  Register call_data = r6;
  Register holder = r3;
3022
  Register scratch = r7;
3023
  DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch));
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048

  typedef FunctionCallbackArguments FCA;

  STATIC_ASSERT(FCA::kArgsLength == 6);
  STATIC_ASSERT(FCA::kNewTargetIndex == 5);
  STATIC_ASSERT(FCA::kDataIndex == 4);
  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
  STATIC_ASSERT(FCA::kIsolateIndex == 1);
  STATIC_ASSERT(FCA::kHolderIndex == 0);

  // Set up FunctionCallbackInfo's implicit_args on the stack as follows:
  //
  // Target state:
  //   sp[0 * kPointerSize]: kHolder
  //   sp[1 * kPointerSize]: kIsolate
  //   sp[2 * kPointerSize]: undefined (kReturnValueDefaultValue)
  //   sp[3 * kPointerSize]: undefined (kReturnValue)
  //   sp[4 * kPointerSize]: kData
  //   sp[5 * kPointerSize]: undefined (kNewTarget)

  // Reserve space on the stack.
  __ subi(sp, sp, Operand(FCA::kArgsLength * kPointerSize));

  // kHolder.
3049
  __ StoreP(holder, MemOperand(sp, 0 * kPointerSize));
3050 3051 3052 3053 3054

  // kIsolate.
  __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
  __ StoreP(scratch, MemOperand(sp, 1 * kPointerSize));

3055
  // kReturnValueDefaultValue and kReturnValue.
3056 3057 3058 3059 3060
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ StoreP(scratch, MemOperand(sp, 2 * kPointerSize));
  __ StoreP(scratch, MemOperand(sp, 3 * kPointerSize));

  // kData.
3061 3062 3063 3064
  __ StoreP(call_data, MemOperand(sp, 4 * kPointerSize));

  // kNewTarget.
  __ StoreP(scratch, MemOperand(sp, 5 * kPointerSize));
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

  // Keep a pointer to kHolder (= implicit_args) in a scratch register.
  // We use it below to set up the FunctionCallbackInfo object.
  __ mr(scratch, sp);

  // Allocate the v8::Arguments structure in the arguments' space since
  // it's not controlled by GC.
  // PPC LINUX ABI:
  //
  // Create 4 extra slots on stack:
  //    [0] space for DirectCEntryStub's LR save
  //    [1-3] FunctionCallbackInfo
  //    [4] number of bytes to drop from the stack after returning
  static constexpr int kApiStackSpace = 5;
  static constexpr bool kDontSaveDoubles = false;

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace);

  // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
  // Arguments are after the return address (pushed by EnterExitFrame()).
  __ StoreP(scratch,
            MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));

  // FunctionCallbackInfo::values_ (points at the first varargs argument passed
  // on the stack).
  __ addi(scratch, scratch, Operand((FCA::kArgsLength - 1) * kPointerSize));
  __ ShiftLeftImm(ip, argc, Operand(kPointerSizeLog2));
  __ add(scratch, scratch, ip);
  __ StoreP(scratch,
            MemOperand(sp, (kStackFrameExtraParamSlot + 2) * kPointerSize));

  // FunctionCallbackInfo::length_.
3098
  __ stw(argc, MemOperand(sp, (kStackFrameExtraParamSlot + 3) * kPointerSize));
3099 3100 3101 3102

  // We also store the number of bytes to drop from the stack after returning
  // from the API function here.
  __ mov(scratch,
3103
         Operand((FCA::kArgsLength + 1 /* receiver */) * kPointerSize));
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
  __ ShiftLeftImm(ip, argc, Operand(kPointerSizeLog2));
  __ add(scratch, scratch, ip);
  __ StoreP(scratch,
            MemOperand(sp, (kStackFrameExtraParamSlot + 4) * kPointerSize));

  // v8::InvocationCallback's argument.
  __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));

  ExternalReference thunk_ref = ExternalReference::invoke_function_callback();

  // There are two stack slots above the arguments we constructed on the stack.
  // TODO(jgruber): Document what these arguments are.
  static constexpr int kStackSlotsAboveFCA = 2;
  MemOperand return_value_operand(
      fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kPointerSize);

  static constexpr int kUseStackSpaceOperand = 0;
  MemOperand stack_space_operand(
      sp, (kStackFrameExtraParamSlot + 4) * kPointerSize);

  AllowExternalCallThatCantCauseGC scope(masm);
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kUseStackSpaceOperand, &stack_space_operand,
                           return_value_operand);
}


void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
  int arg0Slot = 0;
  int accessorInfoSlot = 0;
  int apiStackSpace = 0;
  // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
  // name below the exit frame to make GC aware of them.
  STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
  STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);

  Register receiver = ApiGetterDescriptor::ReceiverRegister();
  Register holder = ApiGetterDescriptor::HolderRegister();
  Register callback = ApiGetterDescriptor::CallbackRegister();
  Register scratch = r7;
  DCHECK(!AreAliased(receiver, holder, callback, scratch));

  Register api_function_address = r5;

  __ push(receiver);
  // Push data from AccessorInfo.
  __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
  __ push(scratch);
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ Push(scratch, scratch);
  __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
  __ Push(scratch, holder);
  __ Push(Smi::zero());  // should_throw_on_error -> false
  __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
  __ push(scratch);

  // v8::PropertyCallbackInfo::args_ array and name handle.
  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;

  // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
  __ mr(r3, sp);                               // r3 = Handle<Name>
  __ addi(r4, r3, Operand(1 * kPointerSize));  // r4 = v8::PCI::args_

// If ABI passes Handles (pointer-sized struct) in a register:
//
// Create 2 extra slots on stack:
//    [0] space for DirectCEntryStub's LR save
//    [1] AccessorInfo&
//
// Otherwise:
//
// Create 3 extra slots on stack:
//    [0] space for DirectCEntryStub's LR save
//    [1] copy of Handle (first arg)
//    [2] AccessorInfo&
  if (ABI_PASSES_HANDLES_IN_REGS) {
    accessorInfoSlot = kStackFrameExtraParamSlot + 1;
    apiStackSpace = 2;
  } else {
    arg0Slot = kStackFrameExtraParamSlot + 1;
    accessorInfoSlot = arg0Slot + 1;
    apiStackSpace = 3;
  }

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(false, apiStackSpace);

  if (!ABI_PASSES_HANDLES_IN_REGS) {
    // pass 1st arg by reference
    __ StoreP(r3, MemOperand(sp, arg0Slot * kPointerSize));
    __ addi(r3, sp, Operand(arg0Slot * kPointerSize));
  }

  // Create v8::PropertyCallbackInfo object on the stack and initialize
  // it's args_ field.
  __ StoreP(r4, MemOperand(sp, accessorInfoSlot * kPointerSize));
  __ addi(r4, sp, Operand(accessorInfoSlot * kPointerSize));
  // r4 = v8::PropertyCallbackInfo&

  ExternalReference thunk_ref =
      ExternalReference::invoke_accessor_getter_callback();

  __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
  __ LoadP(api_function_address,
        FieldMemOperand(scratch, Foreign::kForeignAddressOffset));

  // +3 is to skip prolog, return address and name handle.
  MemOperand return_value_operand(
      fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
  MemOperand* const kUseStackSpaceConstant = nullptr;
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kStackUnwindSpace, kUseStackSpaceConstant,
                           return_value_operand);
}

3225 3226 3227 3228 3229
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
  // Unused.
  __ stop(0);
}

3230
#undef __
3231 3232
}  // namespace internal
}  // namespace v8
3233 3234

#endif  // V8_TARGET_ARCH_PPC