marking.h 11 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_MARKING_H
#define V8_MARKING_H

#include "src/utils.h"

namespace v8 {
namespace internal {

class MarkBit {
 public:
  typedef uint32_t CellType;

  inline MarkBit(CellType* cell, CellType mask) : cell_(cell), mask_(mask) {}

#ifdef DEBUG
  bool operator==(const MarkBit& other) {
    return cell_ == other.cell_ && mask_ == other.mask_;
  }
#endif

 private:
  inline CellType* cell() { return cell_; }
  inline CellType mask() { return mask_; }

  inline MarkBit Next() {
    CellType new_mask = mask_ << 1;
    if (new_mask == 0) {
      return MarkBit(cell_ + 1, 1);
    } else {
      return MarkBit(cell_, new_mask);
    }
  }

  inline void Set() { *cell_ |= mask_; }
  inline bool Get() { return (*cell_ & mask_) != 0; }
  inline void Clear() { *cell_ &= ~mask_; }

  CellType* cell_;
  CellType mask_;

  friend class IncrementalMarking;
  friend class Marking;
};

// Bitmap is a sequence of cells each containing fixed number of bits.
class Bitmap {
 public:
  static const uint32_t kBitsPerCell = 32;
  static const uint32_t kBitsPerCellLog2 = 5;
  static const uint32_t kBitIndexMask = kBitsPerCell - 1;
  static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte;
  static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2;

  static const size_t kLength = (1 << kPageSizeBits) >> (kPointerSizeLog2);

  static const size_t kSize = (1 << kPageSizeBits) >>
                              (kPointerSizeLog2 + kBitsPerByteLog2);

  static int CellsForLength(int length) {
    return (length + kBitsPerCell - 1) >> kBitsPerCellLog2;
  }

  int CellsCount() { return CellsForLength(kLength); }

  static int SizeFor(int cells_count) {
    return sizeof(MarkBit::CellType) * cells_count;
  }

  INLINE(static uint32_t IndexToCell(uint32_t index)) {
    return index >> kBitsPerCellLog2;
  }

  V8_INLINE static uint32_t IndexInCell(uint32_t index) {
    return index & kBitIndexMask;
  }

  INLINE(static uint32_t CellToIndex(uint32_t index)) {
    return index << kBitsPerCellLog2;
  }

  INLINE(static uint32_t CellAlignIndex(uint32_t index)) {
    return (index + kBitIndexMask) & ~kBitIndexMask;
  }

  INLINE(MarkBit::CellType* cells()) {
    return reinterpret_cast<MarkBit::CellType*>(this);
  }

  INLINE(Address address()) { return reinterpret_cast<Address>(this); }

  INLINE(static Bitmap* FromAddress(Address addr)) {
    return reinterpret_cast<Bitmap*>(addr);
  }

  inline MarkBit MarkBitFromIndex(uint32_t index) {
    MarkBit::CellType mask = 1u << IndexInCell(index);
    MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2);
    return MarkBit(cell, mask);
  }

  void Clear() {
    for (int i = 0; i < CellsCount(); i++) cells()[i] = 0;
  }

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  // Sets all bits in the range [start_index, end_index).
  void SetRange(uint32_t start_index, uint32_t end_index) {
    unsigned int start_cell_index = start_index >> Bitmap::kBitsPerCellLog2;
    MarkBit::CellType start_index_mask = 1u << Bitmap::IndexInCell(start_index);

    unsigned int end_cell_index = end_index >> Bitmap::kBitsPerCellLog2;
    MarkBit::CellType end_index_mask = 1u << Bitmap::IndexInCell(end_index);

    if (start_cell_index != end_cell_index) {
      // Firstly, fill all bits from the start address to the end of the first
      // cell with 1s.
      cells()[start_cell_index] |= ~(start_index_mask - 1);
      // Then fill all in between cells with 1s.
      for (unsigned int i = start_cell_index + 1; i < end_cell_index; i++) {
        cells()[i] = ~0u;
      }
      // Finally, fill all bits until the end address in the last cell with 1s.
      cells()[end_cell_index] |= (end_index_mask - 1);
    } else {
      cells()[start_cell_index] |= end_index_mask - start_index_mask;
    }
  }

  // Clears all bits in the range [start_index, end_index).
  void ClearRange(uint32_t start_index, uint32_t end_index) {
    unsigned int start_cell_index = start_index >> Bitmap::kBitsPerCellLog2;
    MarkBit::CellType start_index_mask = 1u << Bitmap::IndexInCell(start_index);

    unsigned int end_cell_index = end_index >> Bitmap::kBitsPerCellLog2;
    MarkBit::CellType end_index_mask = 1u << Bitmap::IndexInCell(end_index);

    if (start_cell_index != end_cell_index) {
      // Firstly, fill all bits from the start address to the end of the first
      // cell with 0s.
      cells()[start_cell_index] &= (start_index_mask - 1);
      // Then fill all in between cells with 0s.
      for (unsigned int i = start_cell_index + 1; i < end_cell_index; i++) {
        cells()[i] = 0;
      }
      // Finally, set all bits until the end address in the last cell with 0s.
      cells()[end_cell_index] &= ~(end_index_mask - 1);
    } else {
      cells()[start_cell_index] &= ~(end_index_mask - start_index_mask);
    }
  }

  // Returns true if all bits in the range [start_index, end_index) are set.
  bool AllBitsSetInRange(uint32_t start_index, uint32_t end_index) {
    unsigned int start_cell_index = start_index >> Bitmap::kBitsPerCellLog2;
    MarkBit::CellType start_index_mask = 1u << Bitmap::IndexInCell(start_index);

    unsigned int end_cell_index = end_index >> Bitmap::kBitsPerCellLog2;
    MarkBit::CellType end_index_mask = 1u << Bitmap::IndexInCell(end_index);

    MarkBit::CellType matching_mask;
    if (start_cell_index != end_cell_index) {
      matching_mask = ~(start_index_mask - 1);
      if ((cells()[start_cell_index] & matching_mask) != matching_mask) {
        return false;
      }
      for (unsigned int i = start_cell_index + 1; i < end_cell_index; i++) {
        if (cells()[i] != ~0u) return false;
      }
      matching_mask = (end_index_mask - 1);
      return ((cells()[end_cell_index] & matching_mask) == matching_mask);
    } else {
      matching_mask = end_index_mask - start_index_mask;
      return (cells()[end_cell_index] & matching_mask) == matching_mask;
    }
  }

  // Returns true if all bits in the range [start_index, end_index) are cleared.
  bool AllBitsClearInRange(uint32_t start_index, uint32_t end_index) {
    unsigned int start_cell_index = start_index >> Bitmap::kBitsPerCellLog2;
    MarkBit::CellType start_index_mask = 1u << Bitmap::IndexInCell(start_index);

    unsigned int end_cell_index = end_index >> Bitmap::kBitsPerCellLog2;
    MarkBit::CellType end_index_mask = 1u << Bitmap::IndexInCell(end_index);

    MarkBit::CellType matching_mask;
    if (start_cell_index != end_cell_index) {
      matching_mask = ~(start_index_mask - 1);
      if ((cells()[start_cell_index] & matching_mask)) return false;
      for (unsigned int i = start_cell_index + 1; i < end_cell_index; i++) {
        if (cells()[i]) return false;
      }
      matching_mask = (end_index_mask - 1);
      return !(cells()[end_cell_index] & matching_mask);
    } else {
      matching_mask = end_index_mask - start_index_mask;
      return !(cells()[end_cell_index] & matching_mask);
    }
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  }

  static void PrintWord(uint32_t word, uint32_t himask = 0) {
    for (uint32_t mask = 1; mask != 0; mask <<= 1) {
      if ((mask & himask) != 0) PrintF("[");
      PrintF((mask & word) ? "1" : "0");
      if ((mask & himask) != 0) PrintF("]");
    }
  }

  class CellPrinter {
   public:
    CellPrinter() : seq_start(0), seq_type(0), seq_length(0) {}

    void Print(uint32_t pos, uint32_t cell) {
      if (cell == seq_type) {
        seq_length++;
        return;
      }

      Flush();

      if (IsSeq(cell)) {
        seq_start = pos;
        seq_length = 0;
        seq_type = cell;
        return;
      }

      PrintF("%d: ", pos);
      PrintWord(cell);
      PrintF("\n");
    }

    void Flush() {
      if (seq_length > 0) {
        PrintF("%d: %dx%d\n", seq_start, seq_type == 0 ? 0 : 1,
               seq_length * kBitsPerCell);
        seq_length = 0;
      }
    }

    static bool IsSeq(uint32_t cell) { return cell == 0 || cell == 0xFFFFFFFF; }

   private:
    uint32_t seq_start;
    uint32_t seq_type;
    uint32_t seq_length;
  };

  void Print() {
    CellPrinter printer;
    for (int i = 0; i < CellsCount(); i++) {
      printer.Print(i, cells()[i]);
    }
    printer.Flush();
    PrintF("\n");
  }

  bool IsClean() {
    for (int i = 0; i < CellsCount(); i++) {
      if (cells()[i] != 0) {
        return false;
      }
    }
    return true;
  }
};

class Marking : public AllStatic {
 public:
  // Impossible markbits: 01
  static const char* kImpossibleBitPattern;
  INLINE(static bool IsImpossible(MarkBit mark_bit)) {
    return !mark_bit.Get() && mark_bit.Next().Get();
  }

  // Black markbits: 11
  static const char* kBlackBitPattern;
  INLINE(static bool IsBlack(MarkBit mark_bit)) {
    return mark_bit.Get() && mark_bit.Next().Get();
  }

  // White markbits: 00 - this is required by the mark bit clearer.
  static const char* kWhiteBitPattern;
  INLINE(static bool IsWhite(MarkBit mark_bit)) {
    DCHECK(!IsImpossible(mark_bit));
    return !mark_bit.Get();
  }

  // Grey markbits: 10
  static const char* kGreyBitPattern;
  INLINE(static bool IsGrey(MarkBit mark_bit)) {
    return mark_bit.Get() && !mark_bit.Next().Get();
  }

  // IsBlackOrGrey assumes that the first bit is set for black or grey
  // objects.
  INLINE(static bool IsBlackOrGrey(MarkBit mark_bit)) { return mark_bit.Get(); }

  INLINE(static void MarkBlack(MarkBit mark_bit)) {
    mark_bit.Set();
    mark_bit.Next().Set();
  }

  INLINE(static void MarkWhite(MarkBit mark_bit)) {
    mark_bit.Clear();
    mark_bit.Next().Clear();
  }

  INLINE(static void BlackToWhite(MarkBit markbit)) {
    DCHECK(IsBlack(markbit));
    markbit.Clear();
    markbit.Next().Clear();
  }

  INLINE(static void GreyToWhite(MarkBit markbit)) {
    DCHECK(IsGrey(markbit));
    markbit.Clear();
    markbit.Next().Clear();
  }

  INLINE(static void BlackToGrey(MarkBit markbit)) {
    DCHECK(IsBlack(markbit));
    markbit.Next().Clear();
  }

  INLINE(static void WhiteToGrey(MarkBit markbit)) {
    DCHECK(IsWhite(markbit));
    markbit.Set();
  }

  INLINE(static void WhiteToBlack(MarkBit markbit)) {
    DCHECK(IsWhite(markbit));
    markbit.Set();
    markbit.Next().Set();
  }

  INLINE(static void GreyToBlack(MarkBit markbit)) {
    DCHECK(IsGrey(markbit));
    markbit.Next().Set();
  }

  INLINE(static void AnyToGrey(MarkBit markbit)) {
    markbit.Set();
    markbit.Next().Clear();
  }

  enum ObjectColor {
    BLACK_OBJECT,
    WHITE_OBJECT,
    GREY_OBJECT,
    IMPOSSIBLE_COLOR
  };

  static const char* ColorName(ObjectColor color) {
    switch (color) {
      case BLACK_OBJECT:
        return "black";
      case WHITE_OBJECT:
        return "white";
      case GREY_OBJECT:
        return "grey";
      case IMPOSSIBLE_COLOR:
        return "impossible";
    }
    return "error";
  }

  static ObjectColor Color(MarkBit mark_bit) {
    if (IsBlack(mark_bit)) return BLACK_OBJECT;
    if (IsWhite(mark_bit)) return WHITE_OBJECT;
    if (IsGrey(mark_bit)) return GREY_OBJECT;
    UNREACHABLE();
    return IMPOSSIBLE_COLOR;
  }

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(Marking);
};

}  // namespace internal
}  // namespace v8

#endif  // V8_MARKING_H_