handler-outside.cc 7.98 KB
Newer Older
eholk's avatar
eholk committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// PLEASE READ BEFORE CHANGING THIS FILE!
//
// This file implements the support code for the out of bounds signal handler.
// Nothing in here actually runs in the signal handler, but the code here
// manipulates data structures used by the signal handler so we still need to be
// careful. In order to minimize this risk, here are some rules to follow.
//
// 1. Avoid introducing new external dependencies. The files in src/trap-handler
//    should be as self-contained as possible to make it easy to audit the code.
//
// 2. Any changes must be reviewed by someone from the crash reporting
//    or security team. Se OWNERS for suggested reviewers.
//
// For more information, see https://goo.gl/yMeyUY.
//
// For the code that runs in the signal handler itself, see handler-inside.cc.

#include <signal.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <atomic>
#include <limits>

#include "src/trap-handler/trap-handler-internal.h"
#include "src/trap-handler/trap-handler.h"

namespace {
size_t gNextCodeObject = 0;
36 37 38 39 40 41

#if defined(DEBUG)
const bool kEnableDebug = true;
#else
const bool kEnableDebug = false;
#endif
eholk's avatar
eholk committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55
}

namespace v8 {
namespace internal {
namespace trap_handler {

const size_t kInitialCodeObjectSize = 1024;
const size_t kCodeObjectGrowthFactor = 2;

constexpr size_t HandlerDataSize(size_t num_protected_instructions) {
  return offsetof(CodeProtectionInfo, instructions) +
         num_protected_instructions * sizeof(ProtectedInstructionData);
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
namespace {
template <typename = std::enable_if<kEnableDebug>>
bool IsDisjoint(const CodeProtectionInfo* a, const CodeProtectionInfo* b) {
  if (a == nullptr || b == nullptr) {
    return true;
  }

  const auto a_base = reinterpret_cast<uintptr_t>(a->base);
  const auto b_base = reinterpret_cast<uintptr_t>(b->base);

  return a_base >= b_base + b->size || b_base >= a_base + a->size;
}

// Verify that the code range does not overlap any that have already been
// registered.
void VerifyCodeRangeIsDisjoint(const CodeProtectionInfo* code_info) {
  for (size_t i = 0; i < gNumCodeObjects; ++i) {
    DCHECK(IsDisjoint(code_info, gCodeObjects[i].code_info));
  }
}

void ValidateCodeObjects() {
  // Sanity-check the code objects
  for (unsigned i = 0; i < gNumCodeObjects; ++i) {
    const auto* data = gCodeObjects[i].code_info;

    if (data == nullptr) continue;

    // Do some sanity checks on the protected instruction data
    for (unsigned i = 0; i < data->num_protected_instructions; ++i) {
      DCHECK_GE(data->instructions[i].instr_offset, 0);
      DCHECK_LT(data->instructions[i].instr_offset, data->size);
      DCHECK_GE(data->instructions[i].landing_offset, 0);
      DCHECK_LT(data->instructions[i].landing_offset, data->size);
      DCHECK_GT(data->instructions[i].landing_offset,
                data->instructions[i].instr_offset);
    }
  }

  // Check the validity of the free list.
  size_t free_count = 0;
  for (size_t i = gNextCodeObject; i != gNumCodeObjects;
       i = gCodeObjects[i].next_free) {
    DCHECK_LT(i, gNumCodeObjects);
    ++free_count;
    // This check will fail if we encounter a cycle.
    DCHECK_LE(free_count, gNumCodeObjects);
  }

  // Check that all free entries are reachable via the free list.
  size_t free_count2 = 0;
  for (size_t i = 0; i < gNumCodeObjects; ++i) {
    if (gCodeObjects[i].code_info == nullptr) {
      ++free_count2;
    }
  }
  DCHECK_EQ(free_count, free_count2);
}
}  // namespace

eholk's avatar
eholk committed
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
CodeProtectionInfo* CreateHandlerData(
    void* base, size_t size, size_t num_protected_instructions,
    ProtectedInstructionData* protected_instructions) {
  const size_t alloc_size = HandlerDataSize(num_protected_instructions);
  CodeProtectionInfo* data =
      reinterpret_cast<CodeProtectionInfo*>(malloc(alloc_size));

  if (data == nullptr) {
    return nullptr;
  }

  data->base = base;
  data->size = size;
  data->num_protected_instructions = num_protected_instructions;

  memcpy(data->instructions, protected_instructions,
         num_protected_instructions * sizeof(ProtectedInstructionData));

  return data;
}

void UpdateHandlerDataCodePointer(int index, void* base) {
  MetadataLock lock;
  if (static_cast<size_t>(index) >= gNumCodeObjects) {
    abort();
  }
  CodeProtectionInfo* data = gCodeObjects[index].code_info;
  data->base = base;
}

int RegisterHandlerData(void* base, size_t size,
                        size_t num_protected_instructions,
                        ProtectedInstructionData* protected_instructions) {
  // TODO(eholk): in debug builds, make sure this data isn't already registered.

  CodeProtectionInfo* data = CreateHandlerData(
      base, size, num_protected_instructions, protected_instructions);

  if (data == nullptr) {
    abort();
  }

  MetadataLock lock;

160 161 162 163
  if (kEnableDebug) {
    VerifyCodeRangeIsDisjoint(data);
  }

eholk's avatar
eholk committed
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  size_t i = gNextCodeObject;

  // Explicitly convert std::numeric_limits<int>::max() to unsigned to avoid
  // compiler warnings about signed/unsigned comparisons. We aren't worried
  // about sign extension because we know std::numeric_limits<int>::max() is
  // positive.
  const size_t int_max = std::numeric_limits<int>::max();

  // We didn't find an opening in the available space, so grow.
  if (i == gNumCodeObjects) {
    size_t new_size = gNumCodeObjects > 0
                          ? gNumCodeObjects * kCodeObjectGrowthFactor
                          : kInitialCodeObjectSize;

    // Because we must return an int, there is no point in allocating space for
    // more objects than can fit in an int.
    if (new_size > int_max) {
      new_size = int_max;
    }
    if (new_size == gNumCodeObjects) {
184
      return kInvalidIndex;
eholk's avatar
eholk committed
185 186 187 188 189 190 191 192 193 194 195 196 197
    }

    // Now that we know our new size is valid, we can go ahead and realloc the
    // array.
    gCodeObjects = static_cast<CodeProtectionInfoListEntry*>(
        realloc(gCodeObjects, sizeof(*gCodeObjects) * new_size));

    if (gCodeObjects == nullptr) {
      abort();
    }

    memset(gCodeObjects + gNumCodeObjects, 0,
           sizeof(*gCodeObjects) * (new_size - gNumCodeObjects));
198 199 200
    for (size_t j = gNumCodeObjects; j < new_size; ++j) {
      gCodeObjects[j].next_free = j + 1;
    }
eholk's avatar
eholk committed
201 202 203 204 205 206
    gNumCodeObjects = new_size;
  }

  DCHECK(gCodeObjects[i].code_info == nullptr);

  // Find out where the next entry should go.
207
  gNextCodeObject = gCodeObjects[i].next_free;
eholk's avatar
eholk committed
208 209 210

  if (i <= int_max) {
    gCodeObjects[i].code_info = data;
211 212 213 214 215

    if (kEnableDebug) {
      ValidateCodeObjects();
    }

eholk's avatar
eholk committed
216 217
    return static_cast<int>(i);
  } else {
218
    return kInvalidIndex;
eholk's avatar
eholk committed
219 220 221 222
  }
}

void ReleaseHandlerData(int index) {
223 224 225 226 227
  if (index == kInvalidIndex) {
    return;
  }
  DCHECK_GE(index, 0);

eholk's avatar
eholk committed
228 229 230 231 232 233 234 235
  // Remove the data from the global list if it's there.
  CodeProtectionInfo* data = nullptr;
  {
    MetadataLock lock;

    data = gCodeObjects[index].code_info;
    gCodeObjects[index].code_info = nullptr;

236
    gCodeObjects[index].next_free = gNextCodeObject;
eholk's avatar
eholk committed
237
    gNextCodeObject = index;
238 239 240 241

    if (kEnableDebug) {
      ValidateCodeObjects();
    }
eholk's avatar
eholk committed
242 243 244
  }
  // TODO(eholk): on debug builds, ensure there are no more copies in
  // the list.
245
  DCHECK_NOT_NULL(data);  // make sure we're releasing legitimate handler data.
eholk's avatar
eholk committed
246 247 248 249 250
  free(data);
}

bool RegisterDefaultSignalHandler() {
#if V8_TRAP_HANDLER_SUPPORTED
251 252
  CHECK(!g_is_default_signal_handler_registered);

eholk's avatar
eholk committed
253 254 255 256 257 258 259
  struct sigaction action;
  action.sa_sigaction = HandleSignal;
  action.sa_flags = SA_SIGINFO;
  sigemptyset(&action.sa_mask);
  // {sigaction} installs a new custom segfault handler. On success, it returns
  // 0. If we get a nonzero value, we report an error to the caller by returning
  // false.
260
  if (sigaction(SIGSEGV, &action, &g_old_handler) != 0) {
eholk's avatar
eholk committed
261 262 263
    return false;
  }

264
  g_is_default_signal_handler_registered = true;
eholk's avatar
eholk committed
265 266 267 268 269 270
  return true;
#else
  return false;
#endif
}

271 272 273 274
size_t GetRecoveredTrapCount() {
  return gRecoveredTrapCount.load(std::memory_order_relaxed);
}

eholk's avatar
eholk committed
275 276 277
}  // namespace trap_handler
}  // namespace internal
}  // namespace v8