div-mod.js 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

28 29
// Flags: --allow-natives-syntax

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
// Test fast div and mod.

function divmod(div_func, mod_func, x, y) {
  var div_answer = (div_func)(x);
  assertEquals(x / y, div_answer, x + "/" + y);
  var mod_answer = (mod_func)(x);
  assertEquals(x % y, mod_answer, x + "%" + y);
  var minus_div_answer = (div_func)(-x);
  assertEquals(-x / y, minus_div_answer, "-" + x + "/" + y);
  var minus_mod_answer = (mod_func)(-x);
  assertEquals(-x % y, minus_mod_answer, "-" + x + "%" + y);
}


function run_tests_for(divisor) {
  print("(function(left) { return left / " + divisor + "; })");
  var div_func = this.eval("(function(left) { return left / " + divisor + "; })");
  var mod_func = this.eval("(function(left) { return left % " + divisor + "; })");
  var exp;
  // Strange number test.
  divmod(div_func, mod_func, 0, divisor);
  divmod(div_func, mod_func, 1 / 0, divisor);
  // Floating point number test.
53
  for (exp = -1024; exp <= 1024; exp += 8) {
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    divmod(div_func, mod_func, Math.pow(2, exp), divisor);
    divmod(div_func, mod_func, 0.9999999 * Math.pow(2, exp), divisor);
    divmod(div_func, mod_func, 1.0000001 * Math.pow(2, exp), divisor);
  }
  // Integer number test.
  for (exp = 0; exp <= 32; exp++) {
    divmod(div_func, mod_func, 1 << exp, divisor);
    divmod(div_func, mod_func, (1 << exp) + 1, divisor);
    divmod(div_func, mod_func, (1 << exp) - 1, divisor);
  }
  divmod(div_func, mod_func, Math.floor(0x1fffffff / 3), divisor);
  divmod(div_func, mod_func, Math.floor(-0x20000000 / 3), divisor);
}


var divisors = [
  0,
  1,
  2,
  3,
  4,
  5,
  6,
  7,
  8,
  9,
  10,
  0x1000000,
  0x40000000,
  12,
  60,
  100,
  1000 * 60 * 60 * 24];

for (var i = 0; i < divisors.length; i++) {
  run_tests_for(divisors[i]);
}
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

// Test extreme corner cases of modulo.

// Computes the modulo by slow but lossless operations.
function compute_mod(dividend, divisor) {
  // Return NaN if either operand is NaN, if divisor is 0 or
  // dividend is an infinity. Return dividend if divisor is an infinity.
  if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; }
  var sign = 1;
  if (dividend < 0) { dividend = -dividend; sign = -1; }
  if (dividend == Infinity) { return NaN; }
  if (divisor < 0) { divisor = -divisor; }
  if (divisor == Infinity) { return sign * dividend; }
  function rec_mod(a, b) {
    // Subtracts maximal possible multiplum of b from a.
    if (a >= b) {
      a = rec_mod(a, 2 * b);
      if (a >= b) { a -= b; }
    }
    return a;
  }
  return sign * rec_mod(dividend, divisor);
}

(function () {
  var large_non_smi = 1234567891234.12245;
  var small_non_smi = 43.2367243;
  var repeating_decimal = 0.3;
  var finite_decimal = 0.5;
  var smi = 43;
  var power_of_two = 64;
  var min_normal = Number.MIN_VALUE * Math.pow(2, 52);
  var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1);

  // All combinations of NaN, Infinity, normal, denormal and zero.
  var example_numbers = [
    NaN,
    0,
129 130 131 132 133

    // Due to a bug in fmod(), modulos involving denormals
    // return the wrong result for glibc <= 2.16.
    // Details: http://sourceware.org/bugzilla/show_bug.cgi?id=14048

134 135 136
    Number.MIN_VALUE,
    3 * Number.MIN_VALUE,
    max_denormal,
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    min_normal,
    repeating_decimal,
    finite_decimal,
    smi,
    power_of_two,
    small_non_smi,
    large_non_smi,
    Number.MAX_VALUE,
    Infinity
  ];

  function doTest(a, b) {
    var exp = compute_mod(a, b);
    var act = a % b;
    assertEquals(exp, act, a + " % " + b);
  }

  for (var i = 0; i < example_numbers.length; i++) {
    for (var j = 0; j < example_numbers.length; j++) {
      var a = example_numbers[i];
      var b = example_numbers[j];
      doTest(a,b);
      doTest(-a,b);
      doTest(a,-b);
      doTest(-a,-b);
    }
  }
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
})();


(function () {
  // Edge cases
  var zero = 0;
  var minsmi32 = -0x40000000;
  var minsmi64 = -0x80000000;
  var somenum = 3532;
  assertEquals(-0, zero / -1, "0 / -1");
  assertEquals(1, minsmi32 / -0x40000000, "minsmi/minsmi-32");
  assertEquals(1, minsmi64 / -0x80000000, "minsmi/minsmi-64");
  assertEquals(somenum, somenum % -0x40000000, "%minsmi-32");
  assertEquals(somenum, somenum % -0x80000000, "%minsmi-64");
})();
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200


// Side-effect-free expressions containing bit operations use
// an optimized compiler with int32 values.   Ensure that modulus
// produces negative zeros correctly.
function negative_zero_modulus_test() {
  var x = 4;
  var y = -4;
  x = x + x - x;
  y = y + y - y;
  var z = (y | y | y | y) % x;
  assertEquals(-1 / 0, 1 / z);
  z = (x | x | x | x) % x;
  assertEquals(1 / 0, 1 / z);
  z = (y | y | y | y) % y;
  assertEquals(-1 / 0, 1 / z);
  z = (x | x | x | x) % y;
  assertEquals(1 / 0, 1 / z);
}

negative_zero_modulus_test();
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307


function lithium_integer_mod() {
  var left_operands = [
    0,
    305419896,  // 0x12345678
  ];

  // Test the standard lithium code for modulo opeartions.
  var mod_func;
  for (var i = 0; i < left_operands.length; i++) {
    for (var j = 0; j < divisors.length; j++) {
      mod_func = this.eval("(function(left) { return left % " + divisors[j]+ "; })");
      assertEquals((mod_func)(left_operands[i]), left_operands[i] % divisors[j]);
      assertEquals((mod_func)(-left_operands[i]), -left_operands[i] % divisors[j]);
    }
  }

  var results_powers_of_two = [
    // 0
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    // 305419896 == 0x12345678
    [0, 0, 0, 8, 24, 56, 120, 120, 120, 632, 1656, 1656, 5752, 5752, 22136, 22136, 22136, 22136, 284280, 284280, 1332856, 3430008, 3430008, 3430008, 3430008, 36984440, 36984440, 36984440, 305419896, 305419896, 305419896],
  ];

  // Test the lithium code for modulo operations with a variable power of two
  // right hand side operand.
  for (var i = 0; i < left_operands.length; i++) {
    for (var j = 0; j < 31; j++) {
      assertEquals(results_powers_of_two[i][j], left_operands[i] % (2 << j));
      assertEquals(results_powers_of_two[i][j], left_operands[i] % -(2 << j));
      assertEquals(-results_powers_of_two[i][j], -left_operands[i] % (2 << j));
      assertEquals(-results_powers_of_two[i][j], -left_operands[i] % -(2 << j));
    }
  }

  // Test the lithium code for modulo operations with a constant power of two
  // right hand side operand.
  for (var i = 0; i < left_operands.length; i++) {
    // With positive left hand side operand.
    assertEquals(results_powers_of_two[i][0], left_operands[i] % -(2 << 0));
    assertEquals(results_powers_of_two[i][1], left_operands[i] % (2 << 1));
    assertEquals(results_powers_of_two[i][2], left_operands[i] % -(2 << 2));
    assertEquals(results_powers_of_two[i][3], left_operands[i] % (2 << 3));
    assertEquals(results_powers_of_two[i][4], left_operands[i] % -(2 << 4));
    assertEquals(results_powers_of_two[i][5], left_operands[i] % (2 << 5));
    assertEquals(results_powers_of_two[i][6], left_operands[i] % -(2 << 6));
    assertEquals(results_powers_of_two[i][7], left_operands[i] % (2 << 7));
    assertEquals(results_powers_of_two[i][8], left_operands[i] % -(2 << 8));
    assertEquals(results_powers_of_two[i][9], left_operands[i] % (2 << 9));
    assertEquals(results_powers_of_two[i][10], left_operands[i] % -(2 << 10));
    assertEquals(results_powers_of_two[i][11], left_operands[i] % (2 << 11));
    assertEquals(results_powers_of_two[i][12], left_operands[i] % -(2 << 12));
    assertEquals(results_powers_of_two[i][13], left_operands[i] % (2 << 13));
    assertEquals(results_powers_of_two[i][14], left_operands[i] % -(2 << 14));
    assertEquals(results_powers_of_two[i][15], left_operands[i] % (2 << 15));
    assertEquals(results_powers_of_two[i][16], left_operands[i] % -(2 << 16));
    assertEquals(results_powers_of_two[i][17], left_operands[i] % (2 << 17));
    assertEquals(results_powers_of_two[i][18], left_operands[i] % -(2 << 18));
    assertEquals(results_powers_of_two[i][19], left_operands[i] % (2 << 19));
    assertEquals(results_powers_of_two[i][20], left_operands[i] % -(2 << 20));
    assertEquals(results_powers_of_two[i][21], left_operands[i] % (2 << 21));
    assertEquals(results_powers_of_two[i][22], left_operands[i] % -(2 << 22));
    assertEquals(results_powers_of_two[i][23], left_operands[i] % (2 << 23));
    assertEquals(results_powers_of_two[i][24], left_operands[i] % -(2 << 24));
    assertEquals(results_powers_of_two[i][25], left_operands[i] % (2 << 25));
    assertEquals(results_powers_of_two[i][26], left_operands[i] % -(2 << 26));
    assertEquals(results_powers_of_two[i][27], left_operands[i] % (2 << 27));
    assertEquals(results_powers_of_two[i][28], left_operands[i] % -(2 << 28));
    assertEquals(results_powers_of_two[i][29], left_operands[i] % (2 << 29));
    assertEquals(results_powers_of_two[i][30], left_operands[i] % -(2 << 30));
    // With negative left hand side operand.
    assertEquals(-results_powers_of_two[i][0], -left_operands[i] % -(2 << 0));
    assertEquals(-results_powers_of_two[i][1], -left_operands[i] % (2 << 1));
    assertEquals(-results_powers_of_two[i][2], -left_operands[i] % -(2 << 2));
    assertEquals(-results_powers_of_two[i][3], -left_operands[i] % (2 << 3));
    assertEquals(-results_powers_of_two[i][4], -left_operands[i] % -(2 << 4));
    assertEquals(-results_powers_of_two[i][5], -left_operands[i] % (2 << 5));
    assertEquals(-results_powers_of_two[i][6], -left_operands[i] % -(2 << 6));
    assertEquals(-results_powers_of_two[i][7], -left_operands[i] % (2 << 7));
    assertEquals(-results_powers_of_two[i][8], -left_operands[i] % -(2 << 8));
    assertEquals(-results_powers_of_two[i][9], -left_operands[i] % (2 << 9));
    assertEquals(-results_powers_of_two[i][10], -left_operands[i] % -(2 << 10));
    assertEquals(-results_powers_of_two[i][11], -left_operands[i] % (2 << 11));
    assertEquals(-results_powers_of_two[i][12], -left_operands[i] % -(2 << 12));
    assertEquals(-results_powers_of_two[i][13], -left_operands[i] % (2 << 13));
    assertEquals(-results_powers_of_two[i][14], -left_operands[i] % -(2 << 14));
    assertEquals(-results_powers_of_two[i][15], -left_operands[i] % (2 << 15));
    assertEquals(-results_powers_of_two[i][16], -left_operands[i] % -(2 << 16));
    assertEquals(-results_powers_of_two[i][17], -left_operands[i] % (2 << 17));
    assertEquals(-results_powers_of_two[i][18], -left_operands[i] % -(2 << 18));
    assertEquals(-results_powers_of_two[i][19], -left_operands[i] % (2 << 19));
    assertEquals(-results_powers_of_two[i][20], -left_operands[i] % -(2 << 20));
    assertEquals(-results_powers_of_two[i][21], -left_operands[i] % (2 << 21));
    assertEquals(-results_powers_of_two[i][22], -left_operands[i] % -(2 << 22));
    assertEquals(-results_powers_of_two[i][23], -left_operands[i] % (2 << 23));
    assertEquals(-results_powers_of_two[i][24], -left_operands[i] % -(2 << 24));
    assertEquals(-results_powers_of_two[i][25], -left_operands[i] % (2 << 25));
    assertEquals(-results_powers_of_two[i][26], -left_operands[i] % -(2 << 26));
    assertEquals(-results_powers_of_two[i][27], -left_operands[i] % (2 << 27));
    assertEquals(-results_powers_of_two[i][28], -left_operands[i] % -(2 << 28));
    assertEquals(-results_powers_of_two[i][29], -left_operands[i] % (2 << 29));
    assertEquals(-results_powers_of_two[i][30], -left_operands[i] % -(2 << 30));
  }

}

308
%PrepareFunctionForOptimization(lithium_integer_mod);
309 310 311
lithium_integer_mod();
%OptimizeFunctionOnNextCall(lithium_integer_mod)
lithium_integer_mod();