intl.cc 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_INTL_SUPPORT
#error Internationalization is expected to be enabled.
#endif  // V8_INTL_SUPPORT

#include "src/intl.h"

#include <memory>

#include "src/factory.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/string-case.h"
#include "unicode/calendar.h"
#include "unicode/gregocal.h"
#include "unicode/timezone.h"
20
#include "unicode/ustring.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#include "unicode/uvernum.h"
#include "unicode/uversion.h"

namespace v8 {
namespace internal {

namespace {
inline bool IsASCIIUpper(uint16_t ch) { return ch >= 'A' && ch <= 'Z'; }

const uint8_t kToLower[256] = {
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
    0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
    0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23,
    0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F,
    0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B,
    0x3C, 0x3D, 0x3E, 0x3F, 0x40, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
    0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73,
    0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F,
    0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B,
    0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
    0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, 0x80, 0x81, 0x82, 0x83,
    0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F,
    0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B,
    0x9C, 0x9D, 0x9E, 0x9F, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
    0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3,
    0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xBB, 0xBC, 0xBD, 0xBE, 0xBF,
    0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB,
    0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xD7,
    0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xDF, 0xE0, 0xE1, 0xE2, 0xE3,
    0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF,
    0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB,
    0xFC, 0xFD, 0xFE, 0xFF,
};

inline uint16_t ToLatin1Lower(uint16_t ch) {
  return static_cast<uint16_t>(kToLower[ch]);
}

inline uint16_t ToASCIIUpper(uint16_t ch) {
  return ch & ~((ch >= 'a' && ch <= 'z') << 5);
}

// Does not work for U+00DF (sharp-s), U+00B5 (micron), U+00FF.
inline uint16_t ToLatin1Upper(uint16_t ch) {
  DCHECK(ch != 0xDF && ch != 0xB5 && ch != 0xFF);
  return ch &
         ~(((ch >= 'a' && ch <= 'z') || (((ch & 0xE0) == 0xE0) && ch != 0xF7))
           << 5);
}

template <typename Char>
bool ToUpperFastASCII(const Vector<const Char>& src,
                      Handle<SeqOneByteString> result) {
  // Do a faster loop for the case where all the characters are ASCII.
  uint16_t ored = 0;
  int32_t index = 0;
  for (auto it = src.begin(); it != src.end(); ++it) {
    uint16_t ch = static_cast<uint16_t>(*it);
    ored |= ch;
    result->SeqOneByteStringSet(index++, ToASCIIUpper(ch));
  }
  return !(ored & ~0x7F);
}

const uint16_t sharp_s = 0xDF;

template <typename Char>
bool ToUpperOneByte(const Vector<const Char>& src, uint8_t* dest,
                    int* sharp_s_count) {
  // Still pretty-fast path for the input with non-ASCII Latin-1 characters.

  // There are two special cases.
  //  1. U+00B5 and U+00FF are mapped to a character beyond U+00FF.
  //  2. Lower case sharp-S converts to "SS" (two characters)
  *sharp_s_count = 0;
  for (auto it = src.begin(); it != src.end(); ++it) {
    uint16_t ch = static_cast<uint16_t>(*it);
    if (V8_UNLIKELY(ch == sharp_s)) {
      ++(*sharp_s_count);
      continue;
    }
    if (V8_UNLIKELY(ch == 0xB5 || ch == 0xFF)) {
      // Since this upper-cased character does not fit in an 8-bit string, we
      // need to take the 16-bit path.
      return false;
    }
    *dest++ = ToLatin1Upper(ch);
  }

  return true;
}

template <typename Char>
void ToUpperWithSharpS(const Vector<const Char>& src,
                       Handle<SeqOneByteString> result) {
  int32_t dest_index = 0;
  for (auto it = src.begin(); it != src.end(); ++it) {
    uint16_t ch = static_cast<uint16_t>(*it);
    if (ch == sharp_s) {
      result->SeqOneByteStringSet(dest_index++, 'S');
      result->SeqOneByteStringSet(dest_index++, 'S');
    } else {
      result->SeqOneByteStringSet(dest_index++, ToLatin1Upper(ch));
    }
  }
}

128
inline int FindFirstUpperOrNonAscii(String* s, int length) {
129 130 131 132 133 134 135 136 137 138 139
  for (int index = 0; index < length; ++index) {
    uint16_t ch = s->Get(index);
    if (V8_UNLIKELY(IsASCIIUpper(ch) || ch & ~0x7F)) {
      return index;
    }
  }
  return length;
}

}  // namespace

140 141
const uint8_t* ToLatin1LowerTable() { return &kToLower[0]; }

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
const UChar* GetUCharBufferFromFlat(const String::FlatContent& flat,
                                    std::unique_ptr<uc16[]>* dest,
                                    int32_t length) {
  DCHECK(flat.IsFlat());
  if (flat.IsOneByte()) {
    if (!*dest) {
      dest->reset(NewArray<uc16>(length));
      CopyChars(dest->get(), flat.ToOneByteVector().start(), length);
    }
    return reinterpret_cast<const UChar*>(dest->get());
  } else {
    return reinterpret_cast<const UChar*>(flat.ToUC16Vector().start());
  }
}

MUST_USE_RESULT Object* LocaleConvertCase(Handle<String> s, Isolate* isolate,
                                          bool is_to_upper, const char* lang) {
  auto case_converter = is_to_upper ? u_strToUpper : u_strToLower;
  int32_t src_length = s->length();
  int32_t dest_length = src_length;
  UErrorCode status;
  Handle<SeqTwoByteString> result;
  std::unique_ptr<uc16[]> sap;

  if (dest_length == 0) return isolate->heap()->empty_string();

  // This is not a real loop. It'll be executed only once (no overflow) or
  // twice (overflow).
  for (int i = 0; i < 2; ++i) {
    // Case conversion can increase the string length (e.g. sharp-S => SS) so
    // that we have to handle RangeError exceptions here.
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
        isolate, result, isolate->factory()->NewRawTwoByteString(dest_length));
    DisallowHeapAllocation no_gc;
    DCHECK(s->IsFlat());
    String::FlatContent flat = s->GetFlatContent();
    const UChar* src = GetUCharBufferFromFlat(flat, &sap, src_length);
    status = U_ZERO_ERROR;
    dest_length = case_converter(reinterpret_cast<UChar*>(result->GetChars()),
                                 dest_length, src, src_length, lang, &status);
    if (status != U_BUFFER_OVERFLOW_ERROR) break;
  }

  // In most cases, the output will fill the destination buffer completely
  // leading to an unterminated string (U_STRING_NOT_TERMINATED_WARNING).
  // Only in rare cases, it'll be shorter than the destination buffer and
  // |result| has to be truncated.
  DCHECK(U_SUCCESS(status));
  if (V8_LIKELY(status == U_STRING_NOT_TERMINATED_WARNING)) {
    DCHECK(dest_length == result->length());
    return *result;
  }
  if (U_SUCCESS(status)) {
    DCHECK(dest_length < result->length());
    return *Handle<SeqTwoByteString>::cast(
        SeqString::Truncate(result, dest_length));
  }
  return *s;
}

202
// A stripped-down version of ConvertToLower that can only handle flat one-byte
203 204
// strings and does not allocate. Note that {src} could still be, e.g., a
// one-byte sliced string with a two-byte parent string.
205 206 207 208
// Called from TF builtins.
MUST_USE_RESULT Object* ConvertOneByteToLower(String* src, String* dst,
                                              Isolate* isolate) {
  DCHECK_EQ(src->length(), dst->length());
209
  DCHECK(src->HasOnlyOneByteChars());
210 211 212 213 214 215
  DCHECK(src->IsFlat());
  DCHECK(dst->IsSeqOneByteString());

  DisallowHeapAllocation no_gc;

  const int length = src->length();
216
  String::FlatContent src_flat = src->GetFlatContent();
217 218
  uint8_t* dst_data = SeqOneByteString::cast(dst)->GetChars();

219 220
  if (src_flat.IsOneByte()) {
    const uint8_t* src_data = src_flat.ToOneByteVector().start();
221

222 223 224 225 226 227 228 229 230
    bool has_changed_character = false;
    int index_to_first_unprocessed =
        FastAsciiConvert<true>(reinterpret_cast<char*>(dst_data),
                               reinterpret_cast<const char*>(src_data), length,
                               &has_changed_character);

    if (index_to_first_unprocessed == length) {
      return has_changed_character ? dst : src;
    }
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    // If not ASCII, we keep the result up to index_to_first_unprocessed and
    // process the rest.
    for (int index = index_to_first_unprocessed; index < length; ++index) {
      dst_data[index] = ToLatin1Lower(static_cast<uint16_t>(src_data[index]));
    }
  } else {
    DCHECK(src_flat.IsTwoByte());
    int index_to_first_unprocessed = FindFirstUpperOrNonAscii(src, length);
    if (index_to_first_unprocessed == length) return src;

    const uint16_t* src_data = src_flat.ToUC16Vector().start();
    CopyChars(dst_data, src_data, index_to_first_unprocessed);
    for (int index = index_to_first_unprocessed; index < length; ++index) {
      dst_data[index] = ToLatin1Lower(static_cast<uint16_t>(src_data[index]));
    }
247 248 249 250 251
  }

  return dst;
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
MUST_USE_RESULT Object* ConvertToLower(Handle<String> s, Isolate* isolate) {
  if (!s->HasOnlyOneByteChars()) {
    // Use a slower implementation for strings with characters beyond U+00FF.
    return LocaleConvertCase(s, isolate, false, "");
  }

  int length = s->length();

  // We depend here on the invariant that the length of a Latin1
  // string is invariant under ToLowerCase, and the result always
  // fits in the Latin1 range in the *root locale*. It does not hold
  // for ToUpperCase even in the root locale.

  // Scan the string for uppercase and non-ASCII characters for strings
  // shorter than a machine-word without any memory allocation overhead.
  // TODO(jshin): Apply this to a longer input by breaking FastAsciiConvert()
  // to two parts, one for scanning the prefix with no change and the other for
  // handling ASCII-only characters.
270 271

  bool is_short = length < static_cast<int>(sizeof(uintptr_t));
272
  if (is_short) {
273 274
    bool is_lower_ascii = FindFirstUpperOrNonAscii(*s, length) == length;
    if (is_lower_ascii) return *s;
275 276 277 278 279
  }

  Handle<SeqOneByteString> result =
      isolate->factory()->NewRawOneByteString(length).ToHandleChecked();

280
  return ConvertOneByteToLower(*s, *result, isolate);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
}

MUST_USE_RESULT Object* ConvertToUpper(Handle<String> s, Isolate* isolate) {
  int32_t length = s->length();
  if (s->HasOnlyOneByteChars() && length > 0) {
    Handle<SeqOneByteString> result =
        isolate->factory()->NewRawOneByteString(length).ToHandleChecked();

    DCHECK(s->IsFlat());
    int sharp_s_count;
    bool is_result_single_byte;
    {
      DisallowHeapAllocation no_gc;
      String::FlatContent flat = s->GetFlatContent();
      uint8_t* dest = result->GetChars();
      if (flat.IsOneByte()) {
        Vector<const uint8_t> src = flat.ToOneByteVector();
        bool has_changed_character = false;
        int index_to_first_unprocessed =
            FastAsciiConvert<false>(reinterpret_cast<char*>(result->GetChars()),
                                    reinterpret_cast<const char*>(src.start()),
                                    length, &has_changed_character);
        if (index_to_first_unprocessed == length)
          return has_changed_character ? *result : *s;
        // If not ASCII, we keep the result up to index_to_first_unprocessed and
        // process the rest.
        is_result_single_byte =
            ToUpperOneByte(src.SubVector(index_to_first_unprocessed, length),
                           dest + index_to_first_unprocessed, &sharp_s_count);
      } else {
        DCHECK(flat.IsTwoByte());
        Vector<const uint16_t> src = flat.ToUC16Vector();
        if (ToUpperFastASCII(src, result)) return *result;
        is_result_single_byte = ToUpperOneByte(src, dest, &sharp_s_count);
      }
    }

    // Go to the full Unicode path if there are characters whose uppercase
    // is beyond the Latin-1 range (cannot be represented in OneByteString).
    if (V8_UNLIKELY(!is_result_single_byte)) {
      return LocaleConvertCase(s, isolate, true, "");
    }

    if (sharp_s_count == 0) return *result;

    // We have sharp_s_count sharp-s characters, but the result is still
    // in the Latin-1 range.
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
        isolate, result,
        isolate->factory()->NewRawOneByteString(length + sharp_s_count));
    DisallowHeapAllocation no_gc;
    String::FlatContent flat = s->GetFlatContent();
    if (flat.IsOneByte()) {
      ToUpperWithSharpS(flat.ToOneByteVector(), result);
    } else {
      ToUpperWithSharpS(flat.ToUC16Vector(), result);
    }

    return *result;
  }

  return LocaleConvertCase(s, isolate, true, "");
}

MUST_USE_RESULT Object* ConvertCase(Handle<String> s, bool is_upper,
                                    Isolate* isolate) {
  return is_upper ? ConvertToUpper(s, isolate) : ConvertToLower(s, isolate);
}

ICUTimezoneCache::ICUTimezoneCache() : timezone_(nullptr) { Clear(); }

ICUTimezoneCache::~ICUTimezoneCache() { Clear(); }

const char* ICUTimezoneCache::LocalTimezone(double time_ms) {
  bool is_dst = DaylightSavingsOffset(time_ms) != 0;
  char* name = is_dst ? dst_timezone_name_ : timezone_name_;
  if (name[0] == '\0') {
    icu::UnicodeString result;
    GetTimeZone()->getDisplayName(is_dst, icu::TimeZone::LONG, result);
    result += '\0';

    icu::CheckedArrayByteSink byte_sink(name, kMaxTimezoneChars);
    result.toUTF8(byte_sink);
    CHECK(!byte_sink.Overflowed());
  }
  return const_cast<const char*>(name);
}

icu::TimeZone* ICUTimezoneCache::GetTimeZone() {
  if (timezone_ == nullptr) {
    timezone_ = icu::TimeZone::createDefault();
  }
  return timezone_;
}

bool ICUTimezoneCache::GetOffsets(double time_ms, int32_t* raw_offset,
                                  int32_t* dst_offset) {
  UErrorCode status = U_ZERO_ERROR;
  GetTimeZone()->getOffset(time_ms, false, *raw_offset, *dst_offset, status);
  return U_SUCCESS(status);
}

double ICUTimezoneCache::DaylightSavingsOffset(double time_ms) {
  int32_t raw_offset, dst_offset;
  if (!GetOffsets(time_ms, &raw_offset, &dst_offset)) return 0;
  return dst_offset;
}

double ICUTimezoneCache::LocalTimeOffset() {
  int32_t raw_offset, dst_offset;
  if (!GetOffsets(icu::Calendar::getNow(), &raw_offset, &dst_offset)) return 0;
  return raw_offset;
}

void ICUTimezoneCache::Clear() {
  delete timezone_;
  timezone_ = nullptr;
  timezone_name_[0] = '\0';
  dst_timezone_name_[0] = '\0';
}

}  // namespace internal
}  // namespace v8