runtime-numbers.cc 17.1 KB
Newer Older
1 2 3 4 5 6 7
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#include "src/arguments.h"
8
#include "src/base/bits.h"
9
#include "src/bootstrapper.h"
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#include "src/codegen.h"
#include "src/runtime/runtime-utils.h"


#ifndef _STLP_VENDOR_CSTD
// STLPort doesn't import fpclassify and isless into the std namespace.
using std::fpclassify;
using std::isless;
#endif

namespace v8 {
namespace internal {

RUNTIME_FUNCTION(Runtime_NumberToRadixString) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);
  CONVERT_SMI_ARG_CHECKED(radix, 1);
  RUNTIME_ASSERT(2 <= radix && radix <= 36);

  // Fast case where the result is a one character string.
  if (args[0]->IsSmi()) {
    int value = args.smi_at(0);
    if (value >= 0 && value < radix) {
      // Character array used for conversion.
      static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
      return *isolate->factory()->LookupSingleCharacterStringFromCode(
          kCharTable[value]);
    }
  }

  // Slow case.
  CONVERT_DOUBLE_ARG_CHECKED(value, 0);
  if (std::isnan(value)) {
    return isolate->heap()->nan_string();
  }
  if (std::isinf(value)) {
    if (value < 0) {
      return isolate->heap()->minus_infinity_string();
    }
    return isolate->heap()->infinity_string();
  }
  char* str = DoubleToRadixCString(value, radix);
  Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
  DeleteArray(str);
  return *result;
}


RUNTIME_FUNCTION(Runtime_NumberToFixed) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_DOUBLE_ARG_CHECKED(value, 0);
  CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
  int f = FastD2IChecked(f_number);
  // See DoubleToFixedCString for these constants:
  RUNTIME_ASSERT(f >= 0 && f <= 20);
  RUNTIME_ASSERT(!Double(value).IsSpecial());
  char* str = DoubleToFixedCString(value, f);
  Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
  DeleteArray(str);
  return *result;
}


RUNTIME_FUNCTION(Runtime_NumberToExponential) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_DOUBLE_ARG_CHECKED(value, 0);
  CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
  int f = FastD2IChecked(f_number);
  RUNTIME_ASSERT(f >= -1 && f <= 20);
  RUNTIME_ASSERT(!Double(value).IsSpecial());
  char* str = DoubleToExponentialCString(value, f);
  Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
  DeleteArray(str);
  return *result;
}


RUNTIME_FUNCTION(Runtime_NumberToPrecision) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_DOUBLE_ARG_CHECKED(value, 0);
  CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
  int f = FastD2IChecked(f_number);
  RUNTIME_ASSERT(f >= 1 && f <= 21);
  RUNTIME_ASSERT(!Double(value).IsSpecial());
  char* str = DoubleToPrecisionCString(value, f);
  Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
  DeleteArray(str);
  return *result;
}


RUNTIME_FUNCTION(Runtime_IsValidSmi) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 1);

  CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
  return isolate->heap()->ToBoolean(Smi::IsValid(number));
}


static bool AreDigits(const uint8_t* s, int from, int to) {
  for (int i = from; i < to; i++) {
    if (s[i] < '0' || s[i] > '9') return false;
  }

  return true;
}


static int ParseDecimalInteger(const uint8_t* s, int from, int to) {
  DCHECK(to - from < 10);  // Overflow is not possible.
  DCHECK(from < to);
  int d = s[from] - '0';

  for (int i = from + 1; i < to; i++) {
    d = 10 * d + (s[i] - '0');
  }

  return d;
}


RUNTIME_FUNCTION(Runtime_StringToNumber) {
  HandleScope handle_scope(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
  subject = String::Flatten(subject);

  // Fast case: short integer or some sorts of junk values.
  if (subject->IsSeqOneByteString()) {
    int len = subject->length();
    if (len == 0) return Smi::FromInt(0);

    DisallowHeapAllocation no_gc;
    uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
    bool minus = (data[0] == '-');
    int start_pos = (minus ? 1 : 0);

    if (start_pos == len) {
      return isolate->heap()->nan_value();
    } else if (data[start_pos] > '9') {
      // Fast check for a junk value. A valid string may start from a
      // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
      // or the 'I' character ('Infinity'). All of that have codes not greater
      // than '9' except 'I' and &nbsp;.
      if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
        return isolate->heap()->nan_value();
      }
    } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
      // The maximal/minimal smi has 10 digits. If the string has less digits
      // we know it will fit into the smi-data type.
      int d = ParseDecimalInteger(data, start_pos, len);
      if (minus) {
        if (d == 0) return isolate->heap()->minus_zero_value();
        d = -d;
      } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
                 (len == 1 || data[0] != '0')) {
        // String hash is not calculated yet but all the data are present.
        // Update the hash field to speed up sequential convertions.
        uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
#ifdef DEBUG
        subject->Hash();  // Force hash calculation.
        DCHECK_EQ(static_cast<int>(subject->hash_field()),
                  static_cast<int>(hash));
#endif
        subject->set_hash_field(hash);
      }
      return Smi::FromInt(d);
    }
  }

  // Slower case.
  int flags = ALLOW_HEX;
  if (FLAG_harmony_numeric_literals) {
    // The current spec draft has not updated "ToNumber Applied to the String
    // Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584
    flags |= ALLOW_OCTAL | ALLOW_BINARY;
  }

  return *isolate->factory()->NewNumber(
196
      StringToDouble(isolate->unicode_cache(), subject, flags));
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
}


RUNTIME_FUNCTION(Runtime_StringParseInt) {
  HandleScope handle_scope(isolate);
  DCHECK(args.length() == 2);
  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
  CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]);
  RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));

  subject = String::Flatten(subject);
  double value;

  {
    DisallowHeapAllocation no_gc;
    String::FlatContent flat = subject->GetFlatContent();

    // ECMA-262 section 15.1.2.3, empty string is NaN
    if (flat.IsOneByte()) {
      value =
          StringToInt(isolate->unicode_cache(), flat.ToOneByteVector(), radix);
    } else {
      value = StringToInt(isolate->unicode_cache(), flat.ToUC16Vector(), radix);
    }
  }

  return *isolate->factory()->NewNumber(value);
}


RUNTIME_FUNCTION(Runtime_StringParseFloat) {
  HandleScope shs(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);

232 233 234
  double value =
      StringToDouble(isolate->unicode_cache(), subject, ALLOW_TRAILING_JUNK,
                     std::numeric_limits<double>::quiet_NaN());
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

  return *isolate->factory()->NewNumber(value);
}


RUNTIME_FUNCTION(Runtime_NumberToStringRT) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);
  CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);

  return *isolate->factory()->NumberToString(number);
}


RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);
  CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);

  return *isolate->factory()->NumberToString(number, false);
}


RUNTIME_FUNCTION(Runtime_NumberToInteger) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);

  CONVERT_DOUBLE_ARG_CHECKED(number, 0);
  return *isolate->factory()->NewNumber(DoubleToInteger(number));
}


RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);

  CONVERT_DOUBLE_ARG_CHECKED(number, 0);
  double double_value = DoubleToInteger(number);
  // Map both -0 and +0 to +0.
  if (double_value == 0) double_value = 0;

  return *isolate->factory()->NewNumber(double_value);
}


RUNTIME_FUNCTION(Runtime_NumberToJSUint32) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);

  CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
  return *isolate->factory()->NewNumberFromUint(number);
}


RUNTIME_FUNCTION(Runtime_NumberToJSInt32) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);

  CONVERT_DOUBLE_ARG_CHECKED(number, 0);
  return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number));
}


// Converts a Number to a Smi, if possible. Returns NaN if the number is not
// a small integer.
RUNTIME_FUNCTION(Runtime_NumberToSmi) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_CHECKED(Object, obj, 0);
  if (obj->IsSmi()) {
    return obj;
  }
  if (obj->IsHeapNumber()) {
    double value = HeapNumber::cast(obj)->value();
    int int_value = FastD2I(value);
    if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
      return Smi::FromInt(int_value);
    }
  }
  return isolate->heap()->nan_value();
}


RUNTIME_FUNCTION(Runtime_NumberAdd) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
  return *isolate->factory()->NewNumber(x + y);
}


RUNTIME_FUNCTION(Runtime_NumberSub) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
  return *isolate->factory()->NewNumber(x - y);
}


RUNTIME_FUNCTION(Runtime_NumberMul) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
  return *isolate->factory()->NewNumber(x * y);
}


RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);

  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
  return *isolate->factory()->NewNumber(-x);
}


RUNTIME_FUNCTION(Runtime_NumberDiv) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
  return *isolate->factory()->NewNumber(x / y);
}


RUNTIME_FUNCTION(Runtime_NumberMod) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
  return *isolate->factory()->NewNumber(modulo(x, y));
}


RUNTIME_FUNCTION(Runtime_NumberImul) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  // We rely on implementation-defined behavior below, but at least not on
  // undefined behavior.
  CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]);
  int32_t product = static_cast<int32_t>(x * y);
  return *isolate->factory()->NewNumberFromInt(product);
}


RUNTIME_FUNCTION(Runtime_NumberOr) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return *isolate->factory()->NewNumberFromInt(x | y);
}


RUNTIME_FUNCTION(Runtime_NumberAnd) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return *isolate->factory()->NewNumberFromInt(x & y);
}


RUNTIME_FUNCTION(Runtime_NumberXor) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return *isolate->factory()->NewNumberFromInt(x ^ y);
}


RUNTIME_FUNCTION(Runtime_NumberShl) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f));
}


RUNTIME_FUNCTION(Runtime_NumberShr) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f));
}


RUNTIME_FUNCTION(Runtime_NumberSar) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return *isolate->factory()->NewNumberFromInt(
      ArithmeticShiftRight(x, y & 0x1f));
}


RUNTIME_FUNCTION(Runtime_NumberEquals) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 2);

  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
  if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL);
  if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL);
  if (x == y) return Smi::FromInt(EQUAL);
  Object* result;
  if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
    result = Smi::FromInt(EQUAL);
  } else {
    result = Smi::FromInt(NOT_EQUAL);
  }
  return result;
}


RUNTIME_FUNCTION(Runtime_NumberCompare) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 3);

  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
  CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2)
  if (std::isnan(x) || std::isnan(y)) return *uncomparable_result;
  if (x == y) return Smi::FromInt(EQUAL);
  if (isless(x, y)) return Smi::FromInt(LESS);
  return Smi::FromInt(GREATER);
}


// Compare two Smis as if they were converted to strings and then
// compared lexicographically.
RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 2);
  CONVERT_SMI_ARG_CHECKED(x_value, 0);
  CONVERT_SMI_ARG_CHECKED(y_value, 1);

  // If the integers are equal so are the string representations.
  if (x_value == y_value) return Smi::FromInt(EQUAL);

  // If one of the integers is zero the normal integer order is the
  // same as the lexicographic order of the string representations.
  if (x_value == 0 || y_value == 0)
    return Smi::FromInt(x_value < y_value ? LESS : GREATER);

  // If only one of the integers is negative the negative number is
  // smallest because the char code of '-' is less than the char code
  // of any digit.  Otherwise, we make both values positive.

  // Use unsigned values otherwise the logic is incorrect for -MIN_INT on
  // architectures using 32-bit Smis.
  uint32_t x_scaled = x_value;
  uint32_t y_scaled = y_value;
  if (x_value < 0 || y_value < 0) {
    if (y_value >= 0) return Smi::FromInt(LESS);
    if (x_value >= 0) return Smi::FromInt(GREATER);
    x_scaled = -x_value;
    y_scaled = -y_value;
  }

  static const uint32_t kPowersOf10[] = {
      1,                 10,                100,         1000,
      10 * 1000,         100 * 1000,        1000 * 1000, 10 * 1000 * 1000,
      100 * 1000 * 1000, 1000 * 1000 * 1000};

  // If the integers have the same number of decimal digits they can be
  // compared directly as the numeric order is the same as the
  // lexicographic order.  If one integer has fewer digits, it is scaled
  // by some power of 10 to have the same number of digits as the longer
  // integer.  If the scaled integers are equal it means the shorter
  // integer comes first in the lexicographic order.

  // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
528
  int x_log2 = 31 - base::bits::CountLeadingZeros32(x_scaled);
529 530 531
  int x_log10 = ((x_log2 + 1) * 1233) >> 12;
  x_log10 -= x_scaled < kPowersOf10[x_log10];

532
  int y_log2 = 31 - base::bits::CountLeadingZeros32(y_scaled);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
  int y_log10 = ((y_log2 + 1) * 1233) >> 12;
  y_log10 -= y_scaled < kPowersOf10[y_log10];

  int tie = EQUAL;

  if (x_log10 < y_log10) {
    // X has fewer digits.  We would like to simply scale up X but that
    // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
    // be scaled up to 9_000_000_000. So we scale up by the next
    // smallest power and scale down Y to drop one digit. It is OK to
    // drop one digit from the longer integer since the final digit is
    // past the length of the shorter integer.
    x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
    y_scaled /= 10;
    tie = LESS;
  } else if (y_log10 < x_log10) {
    y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
    x_scaled /= 10;
    tie = GREATER;
  }

  if (x_scaled < y_scaled) return Smi::FromInt(LESS);
  if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
  return Smi::FromInt(tie);
}


560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
RUNTIME_FUNCTION(Runtime_GetRootNaN) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 0);
  RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
  return isolate->heap()->nan_value();
}


RUNTIME_FUNCTION(Runtime_MaxSmi) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 0);
  return Smi::FromInt(Smi::kMaxValue);
}


575
RUNTIME_FUNCTION(Runtime_NumberToString) {
576 577 578
  SealHandleScope shs(isolate);
  return __RT_impl_Runtime_NumberToStringRT(args, isolate);
}
579 580


581
RUNTIME_FUNCTION(Runtime_IsSmi) {
582 583 584 585 586 587 588
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_CHECKED(Object, obj, 0);
  return isolate->heap()->ToBoolean(obj->IsSmi());
}


589
RUNTIME_FUNCTION(Runtime_IsNonNegativeSmi) {
590 591 592 593 594 595
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_CHECKED(Object, obj, 0);
  return isolate->heap()->ToBoolean(obj->IsSmi() &&
                                    Smi::cast(obj)->value() >= 0);
}
596 597
}
}  // namespace v8::internal