constants-mips.h 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef  V8_MIPS_CONSTANTS_H_
#define  V8_MIPS_CONSTANTS_H_

#include "checks.h"

// UNIMPLEMENTED_ macro for MIPS.
#define UNIMPLEMENTED_MIPS()                                                  \
  v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n",    \
                       __FILE__, __LINE__, __func__)
#define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")


// Defines constants and accessor classes to assemble, disassemble and
// simulate MIPS32 instructions.
//
// See: MIPS32 Architecture For Programmers
//      Volume II: The MIPS32 Instruction Set
// Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.

namespace assembler {
namespace mips {

// -----------------------------------------------------------------------------
// Registers and FPURegister.

// Number of general purpose registers.
static const int kNumRegisters = 32;
static const int kInvalidRegister = -1;

// Number of registers with HI, LO, and pc.
static const int kNumSimuRegisters = 35;

// In the simulator, the PC register is simulated as the 34th register.
static const int kPCRegister = 34;

// Number coprocessor registers.
static const int kNumFPURegister = 32;
static const int kInvalidFPURegister = -1;

// Helper functions for converting between register numbers and names.
class Registers {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int reg;
    const char *name;
  };

  static const int32_t kMaxValue = 0x7fffffff;
  static const int32_t kMinValue = 0x80000000;

 private:

  static const char* names_[kNumSimuRegisters];
  static const RegisterAlias aliases_[];
};

// Helper functions for converting between register numbers and names.
class FPURegister {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int creg;
    const char *name;
  };

 private:

  static const char* names_[kNumFPURegister];
  static const RegisterAlias aliases_[];
};


// -----------------------------------------------------------------------------
// Instructions encoding constants.

// On MIPS all instructions are 32 bits.
typedef int32_t Instr;

typedef unsigned char byte_;

// Special Software Interrupt codes when used in the presence of the MIPS
// simulator.
enum SoftwareInterruptCodes {
  // Transition to C code.
  call_rt_redirected = 0xfffff
};

// ----- Fields offset and length.
static const int kOpcodeShift   = 26;
static const int kOpcodeBits    = 6;
static const int kRsShift       = 21;
static const int kRsBits        = 5;
static const int kRtShift       = 16;
static const int kRtBits        = 5;
static const int kRdShift       = 11;
static const int kRdBits        = 5;
static const int kSaShift       = 6;
static const int kSaBits        = 5;
static const int kFunctionShift = 0;
static const int kFunctionBits  = 6;

static const int kImm16Shift = 0;
static const int kImm16Bits  = 16;
static const int kImm26Shift = 0;
static const int kImm26Bits  = 26;

static const int kFsShift       = 11;
static const int kFsBits        = 5;
static const int kFtShift       = 16;
static const int kFtBits        = 5;

// ----- Miscellianous useful masks.
// Instruction bit masks.
static const int  kOpcodeMask   = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
static const int  kImm16Mask    = ((1 << kImm16Bits) - 1) << kImm16Shift;
static const int  kImm26Mask    = ((1 << kImm26Bits) - 1) << kImm26Shift;
static const int  kRsFieldMask  = ((1 << kRsBits) - 1) << kRsShift;
static const int  kRtFieldMask  = ((1 << kRtBits) - 1) << kRtShift;
static const int  kRdFieldMask  = ((1 << kRdBits) - 1) << kRdShift;
static const int  kSaFieldMask  = ((1 << kSaBits) - 1) << kSaShift;
static const int  kFunctionFieldMask =
    ((1 << kFunctionBits) - 1) << kFunctionShift;
// Misc masks.
static const int  HIMask        =   0xffff << 16;
static const int  LOMask        =   0xffff;
static const int  signMask      =   0x80000000;


// ----- MIPS Opcodes and Function Fields.
// We use this presentation to stay close to the table representation in
// MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
enum Opcode {
  SPECIAL   =   0 << kOpcodeShift,
  REGIMM    =   1 << kOpcodeShift,

  J         =   ((0 << 3) + 2) << kOpcodeShift,
  JAL       =   ((0 << 3) + 3) << kOpcodeShift,
  BEQ       =   ((0 << 3) + 4) << kOpcodeShift,
  BNE       =   ((0 << 3) + 5) << kOpcodeShift,
  BLEZ      =   ((0 << 3) + 6) << kOpcodeShift,
  BGTZ      =   ((0 << 3) + 7) << kOpcodeShift,

  ADDI      =   ((1 << 3) + 0) << kOpcodeShift,
  ADDIU     =   ((1 << 3) + 1) << kOpcodeShift,
  SLTI      =   ((1 << 3) + 2) << kOpcodeShift,
  SLTIU     =   ((1 << 3) + 3) << kOpcodeShift,
  ANDI      =   ((1 << 3) + 4) << kOpcodeShift,
  ORI       =   ((1 << 3) + 5) << kOpcodeShift,
  XORI      =   ((1 << 3) + 6) << kOpcodeShift,
  LUI       =   ((1 << 3) + 7) << kOpcodeShift,

  COP1      =   ((2 << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class
  BEQL      =   ((2 << 3) + 4) << kOpcodeShift,
  BNEL      =   ((2 << 3) + 5) << kOpcodeShift,
  BLEZL     =   ((2 << 3) + 6) << kOpcodeShift,
  BGTZL     =   ((2 << 3) + 7) << kOpcodeShift,

  SPECIAL2  =   ((3 << 3) + 4) << kOpcodeShift,

  LB        =   ((4 << 3) + 0) << kOpcodeShift,
  LW        =   ((4 << 3) + 3) << kOpcodeShift,
  LBU       =   ((4 << 3) + 4) << kOpcodeShift,
  SB        =   ((5 << 3) + 0) << kOpcodeShift,
  SW        =   ((5 << 3) + 3) << kOpcodeShift,

  LWC1      =   ((6 << 3) + 1) << kOpcodeShift,
  LDC1      =   ((6 << 3) + 5) << kOpcodeShift,

  SWC1      =   ((7 << 3) + 1) << kOpcodeShift,
  SDC1      =   ((7 << 3) + 5) << kOpcodeShift
};

enum SecondaryField {
  // SPECIAL Encoding of Function Field.
  SLL       =   ((0 << 3) + 0),
  SRL       =   ((0 << 3) + 2),
  SRA       =   ((0 << 3) + 3),
  SLLV      =   ((0 << 3) + 4),
  SRLV      =   ((0 << 3) + 6),
  SRAV      =   ((0 << 3) + 7),

  JR        =   ((1 << 3) + 0),
  JALR      =   ((1 << 3) + 1),
  BREAK     =   ((1 << 3) + 5),

  MFHI      =   ((2 << 3) + 0),
  MFLO      =   ((2 << 3) + 2),

  MULT      =   ((3 << 3) + 0),
  MULTU     =   ((3 << 3) + 1),
  DIV       =   ((3 << 3) + 2),
  DIVU      =   ((3 << 3) + 3),

  ADD       =   ((4 << 3) + 0),
  ADDU      =   ((4 << 3) + 1),
  SUB       =   ((4 << 3) + 2),
  SUBU      =   ((4 << 3) + 3),
  AND       =   ((4 << 3) + 4),
  OR        =   ((4 << 3) + 5),
  XOR       =   ((4 << 3) + 6),
  NOR       =   ((4 << 3) + 7),

  SLT       =   ((5 << 3) + 2),
  SLTU      =   ((5 << 3) + 3),

  TGE       =   ((6 << 3) + 0),
  TGEU      =   ((6 << 3) + 1),
  TLT       =   ((6 << 3) + 2),
  TLTU      =   ((6 << 3) + 3),
  TEQ       =   ((6 << 3) + 4),
  TNE       =   ((6 << 3) + 6),

  // SPECIAL2 Encoding of Function Field.
  MUL       =   ((0 << 3) + 2),

  // REGIMM  encoding of rt Field.
  BLTZ      =   ((0 << 3) + 0) << 16,
  BGEZ      =   ((0 << 3) + 1) << 16,
  BLTZAL    =   ((2 << 3) + 0) << 16,
  BGEZAL    =   ((2 << 3) + 1) << 16,

  // COP1 Encoding of rs Field.
  MFC1      =   ((0 << 3) + 0) << 21,
  MFHC1     =   ((0 << 3) + 3) << 21,
  MTC1      =   ((0 << 3) + 4) << 21,
  MTHC1     =   ((0 << 3) + 7) << 21,
  BC1       =   ((1 << 3) + 0) << 21,
  S         =   ((2 << 3) + 0) << 21,
  D         =   ((2 << 3) + 1) << 21,
  W         =   ((2 << 3) + 4) << 21,
  L         =   ((2 << 3) + 5) << 21,
  PS        =   ((2 << 3) + 6) << 21,
  // COP1 Encoding of Function Field When rs=S.
  CVT_D_S   =   ((4 << 3) + 1),
  CVT_W_S   =   ((4 << 3) + 4),
  CVT_L_S   =   ((4 << 3) + 5),
  CVT_PS_S  =   ((4 << 3) + 6),
  // COP1 Encoding of Function Field When rs=D.
  CVT_S_D   =   ((4 << 3) + 0),
  CVT_W_D   =   ((4 << 3) + 4),
  CVT_L_D   =   ((4 << 3) + 5),
  // COP1 Encoding of Function Field When rs=W or L.
  CVT_S_W   =   ((4 << 3) + 0),
  CVT_D_W   =   ((4 << 3) + 1),
  CVT_S_L   =   ((4 << 3) + 0),
  CVT_D_L   =   ((4 << 3) + 1),
  // COP1 Encoding of Function Field When rs=PS.

  NULLSF    =   0
};


// ----- Emulated conditions.
// On MIPS we use this enum to abstract from conditionnal branch instructions.
// the 'U' prefix is used to specify unsigned comparisons.
enum Condition {
  // Any value < 0 is considered no_condition.
  no_condition  = -1,

  overflow      =  0,
  no_overflow   =  1,
  Uless         =  2,
  Ugreater_equal=  3,
  equal         =  4,
  not_equal     =  5,
  Uless_equal   =  6,
  Ugreater      =  7,
  negative      =  8,
  positive      =  9,
  parity_even   = 10,
  parity_odd    = 11,
  less          = 12,
  greater_equal = 13,
  less_equal    = 14,
  greater       = 15,

  cc_always     = 16,

  // aliases
  carry         = Uless,
  not_carry     = Ugreater_equal,
  zero          = equal,
  eq            = equal,
  not_zero      = not_equal,
  ne            = not_equal,
  sign          = negative,
  not_sign      = positive,

  cc_default    = no_condition
};

// ----- Coprocessor conditions.
enum FPUCondition {
  F,    // False
  UN,   // Unordered
  EQ,   // Equal
  UEQ,  // Unordered or Equal
  OLT,  // Ordered or Less Than
  ULT,  // Unordered or Less Than
  OLE,  // Ordered or Less Than or Equal
  ULE   // Unordered or Less Than or Equal
};


// Break 0xfffff, reserved for redirected real time call.
const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
// A nop instruction. (Encoding of sll 0 0 0).
const Instr nopInstr = 0;

class Instruction {
 public:
  enum {
    kInstructionSize = 4,
    kInstructionSizeLog2 = 2,
    // On MIPS PC cannot actually be directly accessed. We behave as if PC was
    // always the value of the current instruction being exectued.
    kPCReadOffset = 0
  };

  // Get the raw instruction bits.
  inline Instr InstructionBits() const {
    return *reinterpret_cast<const Instr*>(this);
  }

  // Set the raw instruction bits to value.
  inline void SetInstructionBits(Instr value) {
    *reinterpret_cast<Instr*>(this) = value;
  }

  // Read one particular bit out of the instruction bits.
  inline int Bit(int nr) const {
    return (InstructionBits() >> nr) & 1;
  }

  // Read a bit field out of the instruction bits.
  inline int Bits(int hi, int lo) const {
    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
  }

  // Instruction type.
  enum Type {
    kRegisterType,
    kImmediateType,
    kJumpType,
    kUnsupported = -1
  };

  // Get the encoding type of the instruction.
  Type InstructionType() const;


  // Accessors for the different named fields used in the MIPS encoding.
  inline Opcode OpcodeField() const {
    return static_cast<Opcode>(
        Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
  }

  inline int RsField() const {
    ASSERT(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return Bits(kRsShift + kRsBits - 1, kRsShift);
  }

  inline int RtField() const {
    ASSERT(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return Bits(kRtShift + kRtBits - 1, kRtShift);
  }

  inline int RdField() const {
    ASSERT(InstructionType() == kRegisterType);
    return Bits(kRdShift + kRdBits - 1, kRdShift);
  }

  inline int SaField() const {
    ASSERT(InstructionType() == kRegisterType);
    return Bits(kSaShift + kSaBits - 1, kSaShift);
  }

  inline int FunctionField() const {
    ASSERT(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
  }

  inline int FsField() const {
    return Bits(kFsShift + kRsBits - 1, kFsShift);
  }

  inline int FtField() const {
    return Bits(kFtShift + kRsBits - 1, kFtShift);
  }

  // Return the fields at their original place in the instruction encoding.
  inline Opcode OpcodeFieldRaw() const {
    return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
  }

  inline int RsFieldRaw() const {
    ASSERT(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return InstructionBits() & kRsFieldMask;
  }

  inline int RtFieldRaw() const {
    ASSERT(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return InstructionBits() & kRtFieldMask;
  }

  inline int RdFieldRaw() const {
    ASSERT(InstructionType() == kRegisterType);
    return InstructionBits() & kRdFieldMask;
  }

  inline int SaFieldRaw() const {
    ASSERT(InstructionType() == kRegisterType);
    return InstructionBits() & kSaFieldMask;
  }

  inline int FunctionFieldRaw() const {
    return InstructionBits() & kFunctionFieldMask;
  }

  // Get the secondary field according to the opcode.
  inline int SecondaryField() const {
    Opcode op = OpcodeFieldRaw();
    switch (op) {
      case SPECIAL:
      case SPECIAL2:
        return FunctionField();
      case COP1:
        return RsField();
      case REGIMM:
        return RtField();
      default:
        return NULLSF;
    }
  }

  inline int32_t Imm16Field() const {
    ASSERT(InstructionType() == kImmediateType);
    return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
  }

  inline int32_t Imm26Field() const {
    ASSERT(InstructionType() == kJumpType);
    return Bits(kImm16Shift + kImm26Bits - 1, kImm26Shift);
  }

  // Say if the instruction should not be used in a branch delay slot.
  bool IsForbiddenInBranchDelay();
  // Say if the instruction 'links'. eg: jal, bal.
  bool IsLinkingInstruction();
  // Say if the instruction is a break or a trap.
  bool IsTrap();

  // Instructions are read of out a code stream. The only way to get a
  // reference to an instruction is to convert a pointer. There is no way
  // to allocate or create instances of class Instruction.
  // Use the At(pc) function to create references to Instruction.
  static Instruction* At(byte_* pc) {
    return reinterpret_cast<Instruction*>(pc);
  }

 private:
  // We need to prevent the creation of instances of class Instruction.
  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};


// -----------------------------------------------------------------------------
// MIPS assembly various constants.

static const int kArgsSlotsSize  = 4 * Instruction::kInstructionSize;
static const int kArgsSlotsNum   = 4;

static const int kBranchReturnOffset = 2 * Instruction::kInstructionSize;

static const int kDoubleAlignment = 2 * 8;
static const int kDoubleAlignmentMask = kDoubleAlignmentMask - 1;


} }   // namespace assembler::mips

#endif    // #ifndef V8_MIPS_CONSTANTS_H_