wasm-compile.cc 28.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>

#include <algorithm>

#include "include/v8.h"
12
#include "src/execution/isolate.h"
13 14
#include "src/objects/objects-inl.h"
#include "src/objects/objects.h"
15
#include "src/utils/ostreams.h"
16 17 18
#include "src/wasm/wasm-interpreter.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
19
#include "test/common/wasm/flag-utils.h"
20 21 22
#include "test/common/wasm/test-signatures.h"
#include "test/common/wasm/wasm-module-runner.h"
#include "test/fuzzer/fuzzer-support.h"
23
#include "test/fuzzer/wasm-fuzzer-common.h"
24

25 26 27 28
namespace v8 {
namespace internal {
namespace wasm {
namespace fuzzer {
29

30 31
namespace {

32
constexpr int kMaxFunctions = 4;
33
constexpr int kMaxGlobals = 64;
34

35
class DataRange {
36
  Vector<const uint8_t> data_;
37 38

 public:
39
  explicit DataRange(Vector<const uint8_t> data) : data_(data) {}
40

41 42 43 44
  // Don't accidentally pass DataRange by value. This will reuse bytes and might
  // lead to OOM because the end might not be reached.
  // Define move constructor and move assignment, disallow copy constructor and
  // copy assignment (below).
45 46 47 48
  DataRange(DataRange&& other) V8_NOEXCEPT : DataRange(other.data_) {
    other.data_ = {};
  }
  DataRange& operator=(DataRange&& other) V8_NOEXCEPT {
49
    data_ = other.data_;
50
    other.data_ = {};
51
    return *this;
52 53
  }

54
  size_t size() const { return data_.size(); }
55 56

  DataRange split() {
57 58
    uint16_t num_bytes = get<uint16_t>() % std::max(size_t{1}, data_.size());
    DataRange split(data_.SubVector(0, num_bytes));
59 60
    data_ += num_bytes;
    return split;
61 62
  }

63
  template <typename T, size_t max_bytes = sizeof(T)>
64
  T get() {
65
    STATIC_ASSERT(max_bytes <= sizeof(T));
66 67 68 69 70
    // We want to support the case where we have less than sizeof(T) bytes
    // remaining in the slice. For example, if we emit an i32 constant, it's
    // okay if we don't have a full four bytes available, we'll just use what
    // we have. We aren't concerned about endianness because we are generating
    // arbitrary expressions.
71
    const size_t num_bytes = std::min(max_bytes, data_.size());
72
    T result = T();
73
    memcpy(&result, data_.begin(), num_bytes);
74 75
    data_ += num_bytes;
    return result;
76
  }
77 78

  DISALLOW_COPY_AND_ASSIGN(DataRange);
79 80
};

81 82
ValueType GetValueType(DataRange* data) {
  switch (data->get<uint8_t>() % 4) {
83 84 85 86 87 88 89 90 91 92 93 94
    case 0:
      return kWasmI32;
    case 1:
      return kWasmI64;
    case 2:
      return kWasmF32;
    case 3:
      return kWasmF64;
  }
  UNREACHABLE();
}

95 96
class WasmGenerator {
  template <WasmOpcode Op, ValueType... Args>
97
  void op(DataRange* data) {
98 99
    Generate<Args...>(data);
    builder_->Emit(Op);
100 101
  }

102 103 104 105 106 107 108
  class BlockScope {
   public:
    BlockScope(WasmGenerator* gen, WasmOpcode block_type, ValueType result_type,
               ValueType br_type)
        : gen_(gen) {
      gen->blocks_.push_back(br_type);
      gen->builder_->EmitWithU8(block_type,
109
                                ValueTypes::ValueTypeCodeFor(result_type));
110 111 112 113 114 115 116 117 118 119 120
    }

    ~BlockScope() {
      gen_->builder_->Emit(kExprEnd);
      gen_->blocks_.pop_back();
    }

   private:
    WasmGenerator* const gen_;
  };

121
  template <ValueType T>
122
  void block(DataRange* data) {
123
    BlockScope block_scope(this, kExprBlock, T, T);
124
    Generate<T>(data);
125 126 127
  }

  template <ValueType T>
128
  void loop(DataRange* data) {
129 130 131 132 133
    // When breaking to a loop header, don't provide any input value (hence
    // kWasmStmt).
    BlockScope block_scope(this, kExprLoop, T, kWasmStmt);
    Generate<T>(data);
  }
134

135 136 137
  enum IfType { kIf, kIfElse };

  template <ValueType T, IfType type>
138
  void if_(DataRange* data) {
139 140 141 142 143 144 145 146 147 148 149
    static_assert(T == kWasmStmt || type == kIfElse,
                  "if without else cannot produce a value");
    Generate<kWasmI32>(data);
    BlockScope block_scope(this, kExprIf, T, T);
    Generate<T>(data);
    if (type == kIfElse) {
      builder_->Emit(kExprElse);
      Generate<T>(data);
    }
  }

150
  void br(DataRange* data) {
151 152
    // There is always at least the block representing the function body.
    DCHECK(!blocks_.empty());
153
    const uint32_t target_block = data->get<uint32_t>() % blocks_.size();
154 155 156
    const ValueType break_type = blocks_[target_block];

    Generate(break_type, data);
157 158
    builder_->EmitWithI32V(
        kExprBr, static_cast<uint32_t>(blocks_.size()) - 1 - target_block);
159 160
  }

161
  template <ValueType wanted_type>
162
  void br_if(DataRange* data) {
163 164
    // There is always at least the block representing the function body.
    DCHECK(!blocks_.empty());
165
    const uint32_t target_block = data->get<uint32_t>() % blocks_.size();
166 167 168 169 170 171 172 173 174
    const ValueType break_type = blocks_[target_block];

    Generate(break_type, data);
    Generate(kWasmI32, data);
    builder_->EmitWithI32V(
        kExprBrIf, static_cast<uint32_t>(blocks_.size()) - 1 - target_block);
    ConvertOrGenerate(break_type, wanted_type, data);
  }

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  // TODO(eholk): make this function constexpr once gcc supports it
  static uint8_t max_alignment(WasmOpcode memop) {
    switch (memop) {
      case kExprI64LoadMem:
      case kExprF64LoadMem:
      case kExprI64StoreMem:
      case kExprF64StoreMem:
        return 3;
      case kExprI32LoadMem:
      case kExprI64LoadMem32S:
      case kExprI64LoadMem32U:
      case kExprF32LoadMem:
      case kExprI32StoreMem:
      case kExprI64StoreMem32:
      case kExprF32StoreMem:
        return 2;
      case kExprI32LoadMem16S:
      case kExprI32LoadMem16U:
      case kExprI64LoadMem16S:
      case kExprI64LoadMem16U:
      case kExprI32StoreMem16:
      case kExprI64StoreMem16:
        return 1;
      case kExprI32LoadMem8S:
      case kExprI32LoadMem8U:
      case kExprI64LoadMem8S:
      case kExprI64LoadMem8U:
      case kExprI32StoreMem8:
      case kExprI64StoreMem8:
        return 0;
      default:
        return 0;
    }
  }

210
  template <WasmOpcode memory_op, ValueType... arg_types>
211 212 213
  void memop(DataRange* data) {
    const uint8_t align = data->get<uint8_t>() % (max_alignment(memory_op) + 1);
    const uint32_t offset = data->get<uint32_t>();
214

215 216
    // Generate the index and the arguments, if any.
    Generate<kWasmI32, arg_types...>(data);
217 218 219 220 221 222

    builder_->Emit(memory_op);
    builder_->EmitU32V(align);
    builder_->EmitU32V(offset);
  }

223
  void drop(DataRange* data) {
224 225 226 227
    Generate(GetValueType(data), data);
    builder_->Emit(kExprDrop);
  }

228
  template <ValueType wanted_type>
229
  void call(DataRange* data) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    call(data, wanted_type);
  }

  void Convert(ValueType src, ValueType dst) {
    auto idx = [](ValueType t) -> int {
      switch (t) {
        case kWasmI32:
          return 0;
        case kWasmI64:
          return 1;
        case kWasmF32:
          return 2;
        case kWasmF64:
          return 3;
        default:
          UNREACHABLE();
      }
    };
    static constexpr WasmOpcode kConvertOpcodes[] = {
        // {i32, i64, f32, f64} -> i32
        kExprNop, kExprI32ConvertI64, kExprI32SConvertF32, kExprI32SConvertF64,
        // {i32, i64, f32, f64} -> i64
        kExprI64SConvertI32, kExprNop, kExprI64SConvertF32, kExprI64SConvertF64,
        // {i32, i64, f32, f64} -> f32
        kExprF32SConvertI32, kExprF32SConvertI64, kExprNop, kExprF32ConvertF64,
        // {i32, i64, f32, f64} -> f64
        kExprF64SConvertI32, kExprF64SConvertI64, kExprF64ConvertF32, kExprNop};
    int arr_idx = idx(dst) << 2 | idx(src);
    builder_->Emit(kConvertOpcodes[arr_idx]);
  }

261
  void ConvertOrGenerate(ValueType src, ValueType dst, DataRange* data) {
262 263 264 265 266 267 268 269 270 271
    if (src == dst) return;
    if (src == kWasmStmt && dst != kWasmStmt) {
      Generate(dst, data);
    } else if (dst == kWasmStmt && src != kWasmStmt) {
      builder_->Emit(kExprDrop);
    } else {
      Convert(src, dst);
    }
  }

272 273
  void call(DataRange* data, ValueType wanted_type) {
    int func_index = data->get<uint8_t>() % functions_.size();
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    FunctionSig* sig = functions_[func_index];
    // Generate arguments.
    for (size_t i = 0; i < sig->parameter_count(); ++i) {
      Generate(sig->GetParam(i), data);
    }
    // Emit call.
    builder_->EmitWithU32V(kExprCallFunction, func_index);
    // Convert the return value to the wanted type.
    ValueType return_type =
        sig->return_count() == 0 ? kWasmStmt : sig->GetReturn(0);
    if (return_type == kWasmStmt && wanted_type != kWasmStmt) {
      // The call did not generate a value. Thus just generate it here.
      Generate(wanted_type, data);
    } else if (return_type != kWasmStmt && wanted_type == kWasmStmt) {
      // The call did generate a value, but we did not want one.
      builder_->Emit(kExprDrop);
    } else if (return_type != wanted_type) {
      // If the returned type does not match the wanted type, convert it.
      Convert(return_type, wanted_type);
    }
  }

296
  struct Var {
297 298
    uint32_t index;
    ValueType type = kWasmStmt;
299 300
    Var() = default;
    Var(uint32_t index, ValueType type) : index(index), type(type) {}
301 302 303
    bool is_valid() const { return type != kWasmStmt; }
  };

304
  Var GetRandomLocal(DataRange* data) {
305 306 307 308
    uint32_t num_params =
        static_cast<uint32_t>(builder_->signature()->parameter_count());
    uint32_t num_locals = static_cast<uint32_t>(locals_.size());
    if (num_params + num_locals == 0) return {};
309
    uint32_t index = data->get<uint8_t>() % (num_params + num_locals);
310 311 312 313 314 315
    ValueType type = index < num_params ? builder_->signature()->GetParam(index)
                                        : locals_[index - num_params];
    return {index, type};
  }

  template <ValueType wanted_type>
316
  void local_op(DataRange* data, WasmOpcode opcode) {
317
    Var local = GetRandomLocal(data);
318 319 320 321 322 323
    // If there are no locals and no parameters, just generate any value (if a
    // value is needed), or do nothing.
    if (!local.is_valid()) {
      if (wanted_type == kWasmStmt) return;
      return Generate<wanted_type>(data);
    }
324

325 326 327 328 329
    if (opcode != kExprGetLocal) Generate(local.type, data);
    builder_->EmitWithU32V(opcode, local.index);
    if (wanted_type != kWasmStmt && local.type != wanted_type) {
      Convert(local.type, wanted_type);
    }
330 331
  }

332
  template <ValueType wanted_type>
333
  void get_local(DataRange* data) {
334
    static_assert(wanted_type != kWasmStmt, "illegal type");
335 336 337
    local_op<wanted_type>(data, kExprGetLocal);
  }

338
  void set_local(DataRange* data) { local_op<kWasmStmt>(data, kExprSetLocal); }
339

340
  template <ValueType wanted_type>
341
  void tee_local(DataRange* data) {
342
    local_op<wanted_type>(data, kExprTeeLocal);
343 344
  }

345
  template <size_t num_bytes>
346 347
  void i32_const(DataRange* data) {
    builder_->EmitI32Const(data->get<int32_t, num_bytes>());
348 349 350
  }

  template <size_t num_bytes>
351 352
  void i64_const(DataRange* data) {
    builder_->EmitI64Const(data->get<int64_t, num_bytes>());
353 354
  }

355
  Var GetRandomGlobal(DataRange* data, bool ensure_mutable) {
356 357 358
    uint32_t index;
    if (ensure_mutable) {
      if (mutable_globals_.empty()) return {};
359
      index = mutable_globals_[data->get<uint8_t>() % mutable_globals_.size()];
360 361
    } else {
      if (globals_.empty()) return {};
362
      index = data->get<uint8_t>() % globals_.size();
363 364 365 366 367 368
    }
    ValueType type = globals_[index];
    return {index, type};
  }

  template <ValueType wanted_type>
369
  void global_op(DataRange* data) {
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    constexpr bool is_set = wanted_type == kWasmStmt;
    Var global = GetRandomGlobal(data, is_set);
    // If there are no globals, just generate any value (if a value is needed),
    // or do nothing.
    if (!global.is_valid()) {
      if (wanted_type == kWasmStmt) return;
      return Generate<wanted_type>(data);
    }

    if (is_set) Generate(global.type, data);
    builder_->EmitWithU32V(is_set ? kExprSetGlobal : kExprGetGlobal,
                           global.index);
    if (!is_set && global.type != wanted_type) {
      Convert(global.type, wanted_type);
    }
  }

  template <ValueType wanted_type>
388
  void get_global(DataRange* data) {
389 390 391 392
    static_assert(wanted_type != kWasmStmt, "illegal type");
    global_op<wanted_type>(data);
  }

393
  template <ValueType select_type>
394
  void select_with_type(DataRange* data) {
395 396 397 398 399 400 401 402
    static_assert(select_type != kWasmStmt, "illegal type for select");
    Generate<select_type, select_type, kWasmI32>(data);
    // num_types is always 1.
    uint8_t num_types = 1;
    builder_->EmitWithU8U8(kExprSelectWithType, num_types,
                           ValueTypes::ValueTypeCodeFor(select_type));
  }

403
  void set_global(DataRange* data) { global_op<kWasmStmt>(data); }
404

405
  template <ValueType... Types>
406
  void sequence(DataRange* data) {
407
    Generate<Types...>(data);
408 409
  }

410
  void current_memory(DataRange* data) {
411 412 413
    builder_->EmitWithU8(kExprMemorySize, 0);
  }

414
  void grow_memory(DataRange* data);
415

416
  using generate_fn = void (WasmGenerator::*const)(DataRange*);
417 418

  template <size_t N>
419
  void GenerateOneOf(generate_fn (&alternates)[N], DataRange* data) {
420 421
    static_assert(N < std::numeric_limits<uint8_t>::max(),
                  "Too many alternates. Replace with a bigger type if needed.");
422
    const auto which = data->get<uint8_t>();
423 424 425

    generate_fn alternate = alternates[which % N];
    (this->*alternate)(data);
426 427
  }

428 429 430
  struct GeneratorRecursionScope {
    explicit GeneratorRecursionScope(WasmGenerator* gen) : gen(gen) {
      ++gen->recursion_depth;
431
      DCHECK_LE(gen->recursion_depth, kMaxRecursionDepth);
432 433 434 435 436 437 438 439
    }
    ~GeneratorRecursionScope() {
      DCHECK_GT(gen->recursion_depth, 0);
      --gen->recursion_depth;
    }
    WasmGenerator* gen;
  };

440
 public:
441
  WasmGenerator(WasmFunctionBuilder* fn,
442 443
                const std::vector<FunctionSig*>& functions,
                const std::vector<ValueType>& globals,
444
                const std::vector<uint8_t>& mutable_globals, DataRange* data)
445 446 447 448
      : builder_(fn),
        functions_(functions),
        globals_(globals),
        mutable_globals_(mutable_globals) {
449 450 451
    FunctionSig* sig = fn->signature();
    DCHECK_GE(1, sig->return_count());
    blocks_.push_back(sig->return_count() == 0 ? kWasmStmt : sig->GetReturn(0));
452 453

    constexpr uint32_t kMaxLocals = 32;
454
    locals_.resize(data->get<uint8_t>() % kMaxLocals);
455 456 457 458
    for (ValueType& local : locals_) {
      local = GetValueType(data);
      fn->AddLocal(local);
    }
459
  }
460

461
  void Generate(ValueType type, DataRange* data);
462 463

  template <ValueType T>
464
  void Generate(DataRange* data);
465 466

  template <ValueType T1, ValueType T2, ValueType... Ts>
467
  void Generate(DataRange* data) {
468
    // TODO(clemensh): Implement a more even split.
469 470
    auto first_data = data->split();
    Generate<T1>(&first_data);
471
    Generate<T2, Ts...>(data);
472 473 474
  }

 private:
475
  WasmFunctionBuilder* builder_;
476
  std::vector<ValueType> blocks_;
477
  const std::vector<FunctionSig*>& functions_;
478
  std::vector<ValueType> locals_;
479 480
  std::vector<ValueType> globals_;
  std::vector<uint8_t> mutable_globals_;  // indexes into {globals_}.
481 482 483 484 485 486 487
  uint32_t recursion_depth = 0;

  static constexpr uint32_t kMaxRecursionDepth = 64;

  bool recursion_limit_reached() {
    return recursion_depth >= kMaxRecursionDepth;
  }
488 489
};

490
template <>
491
void WasmGenerator::Generate<kWasmStmt>(DataRange* data) {
492
  GeneratorRecursionScope rec_scope(this);
493
  if (recursion_limit_reached() || data->size() == 0) return;
494 495

  constexpr generate_fn alternates[] = {
496
      &WasmGenerator::sequence<kWasmStmt, kWasmStmt>,
497 498 499
      &WasmGenerator::sequence<kWasmStmt, kWasmStmt, kWasmStmt, kWasmStmt>,
      &WasmGenerator::sequence<kWasmStmt, kWasmStmt, kWasmStmt, kWasmStmt,
                               kWasmStmt, kWasmStmt, kWasmStmt, kWasmStmt>,
500
      &WasmGenerator::block<kWasmStmt>,
501
      &WasmGenerator::loop<kWasmStmt>,
502 503
      &WasmGenerator::if_<kWasmStmt, kIf>,
      &WasmGenerator::if_<kWasmStmt, kIfElse>,
504
      &WasmGenerator::br,
505
      &WasmGenerator::br_if<kWasmStmt>,
506 507 508 509

      &WasmGenerator::memop<kExprI32StoreMem, kWasmI32>,
      &WasmGenerator::memop<kExprI32StoreMem8, kWasmI32>,
      &WasmGenerator::memop<kExprI32StoreMem16, kWasmI32>,
510
      &WasmGenerator::memop<kExprI64StoreMem, kWasmI64>,
511 512 513 514 515
      &WasmGenerator::memop<kExprI64StoreMem8, kWasmI64>,
      &WasmGenerator::memop<kExprI64StoreMem16, kWasmI64>,
      &WasmGenerator::memop<kExprI64StoreMem32, kWasmI64>,
      &WasmGenerator::memop<kExprF32StoreMem, kWasmF32>,
      &WasmGenerator::memop<kExprF64StoreMem, kWasmF64>,
516

517 518
      &WasmGenerator::drop,

519 520
      &WasmGenerator::call<kWasmStmt>,

521 522
      &WasmGenerator::set_local,
      &WasmGenerator::set_global};
523

524
  GenerateOneOf(alternates, data);
525 526
}

527
template <>
528
void WasmGenerator::Generate<kWasmI32>(DataRange* data) {
529
  GeneratorRecursionScope rec_scope(this);
530 531
  if (recursion_limit_reached() || data->size() <= 1) {
    builder_->EmitI32Const(data->get<uint32_t>());
532
    return;
533
  }
534 535

  constexpr generate_fn alternates[] = {
536 537 538 539 540
      &WasmGenerator::i32_const<1>,
      &WasmGenerator::i32_const<2>,
      &WasmGenerator::i32_const<3>,
      &WasmGenerator::i32_const<4>,

541
      &WasmGenerator::sequence<kWasmI32, kWasmStmt>,
542
      &WasmGenerator::sequence<kWasmStmt, kWasmI32>,
543
      &WasmGenerator::sequence<kWasmStmt, kWasmI32, kWasmStmt>,
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

      &WasmGenerator::op<kExprI32Eqz, kWasmI32>,
      &WasmGenerator::op<kExprI32Eq, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32Ne, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32LtS, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32LtU, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32GeS, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32GeU, kWasmI32, kWasmI32>,

      &WasmGenerator::op<kExprI64Eqz, kWasmI64>,
      &WasmGenerator::op<kExprI64Eq, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64Ne, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64LtS, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64LtU, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64GeS, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64GeU, kWasmI64, kWasmI64>,

      &WasmGenerator::op<kExprF32Eq, kWasmF32, kWasmF32>,
      &WasmGenerator::op<kExprF32Ne, kWasmF32, kWasmF32>,
      &WasmGenerator::op<kExprF32Lt, kWasmF32, kWasmF32>,
      &WasmGenerator::op<kExprF32Ge, kWasmF32, kWasmF32>,

      &WasmGenerator::op<kExprF64Eq, kWasmF64, kWasmF64>,
      &WasmGenerator::op<kExprF64Ne, kWasmF64, kWasmF64>,
      &WasmGenerator::op<kExprF64Lt, kWasmF64, kWasmF64>,
      &WasmGenerator::op<kExprF64Ge, kWasmF64, kWasmF64>,

      &WasmGenerator::op<kExprI32Add, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32Sub, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32Mul, kWasmI32, kWasmI32>,

      &WasmGenerator::op<kExprI32DivS, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32DivU, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32RemS, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32RemU, kWasmI32, kWasmI32>,

      &WasmGenerator::op<kExprI32And, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32Ior, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32Xor, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32Shl, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32ShrU, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32ShrS, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32Ror, kWasmI32, kWasmI32>,
      &WasmGenerator::op<kExprI32Rol, kWasmI32, kWasmI32>,

      &WasmGenerator::op<kExprI32Clz, kWasmI32>,
      &WasmGenerator::op<kExprI32Ctz, kWasmI32>,
      &WasmGenerator::op<kExprI32Popcnt, kWasmI32>,

      &WasmGenerator::op<kExprI32ConvertI64, kWasmI64>,
      &WasmGenerator::op<kExprI32SConvertF32, kWasmF32>,
      &WasmGenerator::op<kExprI32UConvertF32, kWasmF32>,
      &WasmGenerator::op<kExprI32SConvertF64, kWasmF64>,
      &WasmGenerator::op<kExprI32UConvertF64, kWasmF64>,
      &WasmGenerator::op<kExprI32ReinterpretF32, kWasmF32>,

      &WasmGenerator::block<kWasmI32>,
601
      &WasmGenerator::loop<kWasmI32>,
602
      &WasmGenerator::if_<kWasmI32, kIfElse>,
603
      &WasmGenerator::br_if<kWasmI32>,
604 605 606 607 608 609 610 611

      &WasmGenerator::memop<kExprI32LoadMem>,
      &WasmGenerator::memop<kExprI32LoadMem8S>,
      &WasmGenerator::memop<kExprI32LoadMem8U>,
      &WasmGenerator::memop<kExprI32LoadMem16S>,
      &WasmGenerator::memop<kExprI32LoadMem16U>,

      &WasmGenerator::current_memory,
612 613
      &WasmGenerator::grow_memory,

614
      &WasmGenerator::get_local<kWasmI32>,
615
      &WasmGenerator::tee_local<kWasmI32>,
616
      &WasmGenerator::get_global<kWasmI32>,
617 618
      &WasmGenerator::op<kExprSelect, kWasmI32, kWasmI32, kWasmI32>,
      &WasmGenerator::select_with_type<kWasmI32>,
619

620
      &WasmGenerator::call<kWasmI32>};
621 622

  GenerateOneOf(alternates, data);
623 624 625
}

template <>
626
void WasmGenerator::Generate<kWasmI64>(DataRange* data) {
627
  GeneratorRecursionScope rec_scope(this);
628 629
  if (recursion_limit_reached() || data->size() <= 1) {
    builder_->EmitI64Const(data->get<int64_t>());
630
    return;
631
  }
632 633

  constexpr generate_fn alternates[] = {
634 635 636 637 638 639 640 641 642
      &WasmGenerator::i64_const<1>,
      &WasmGenerator::i64_const<2>,
      &WasmGenerator::i64_const<3>,
      &WasmGenerator::i64_const<4>,
      &WasmGenerator::i64_const<5>,
      &WasmGenerator::i64_const<6>,
      &WasmGenerator::i64_const<7>,
      &WasmGenerator::i64_const<8>,

643
      &WasmGenerator::sequence<kWasmI64, kWasmStmt>,
644
      &WasmGenerator::sequence<kWasmStmt, kWasmI64>,
645
      &WasmGenerator::sequence<kWasmStmt, kWasmI64, kWasmStmt>,
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

      &WasmGenerator::op<kExprI64Add, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64Sub, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64Mul, kWasmI64, kWasmI64>,

      &WasmGenerator::op<kExprI64DivS, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64DivU, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64RemS, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64RemU, kWasmI64, kWasmI64>,

      &WasmGenerator::op<kExprI64And, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64Ior, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64Xor, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64Shl, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64ShrU, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64ShrS, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64Ror, kWasmI64, kWasmI64>,
      &WasmGenerator::op<kExprI64Rol, kWasmI64, kWasmI64>,

      &WasmGenerator::op<kExprI64Clz, kWasmI64>,
      &WasmGenerator::op<kExprI64Ctz, kWasmI64>,
      &WasmGenerator::op<kExprI64Popcnt, kWasmI64>,

      &WasmGenerator::block<kWasmI64>,
670
      &WasmGenerator::loop<kWasmI64>,
671
      &WasmGenerator::if_<kWasmI64, kIfElse>,
672
      &WasmGenerator::br_if<kWasmI64>,
673 674 675 676 677 678 679

      &WasmGenerator::memop<kExprI64LoadMem>,
      &WasmGenerator::memop<kExprI64LoadMem8S>,
      &WasmGenerator::memop<kExprI64LoadMem8U>,
      &WasmGenerator::memop<kExprI64LoadMem16S>,
      &WasmGenerator::memop<kExprI64LoadMem16U>,
      &WasmGenerator::memop<kExprI64LoadMem32S>,
680 681
      &WasmGenerator::memop<kExprI64LoadMem32U>,

682
      &WasmGenerator::get_local<kWasmI64>,
683
      &WasmGenerator::tee_local<kWasmI64>,
684
      &WasmGenerator::get_global<kWasmI64>,
685 686
      &WasmGenerator::op<kExprSelect, kWasmI64, kWasmI64, kWasmI32>,
      &WasmGenerator::select_with_type<kWasmI64>,
687

688
      &WasmGenerator::call<kWasmI64>};
689 690

  GenerateOneOf(alternates, data);
691 692 693
}

template <>
694
void WasmGenerator::Generate<kWasmF32>(DataRange* data) {
695
  GeneratorRecursionScope rec_scope(this);
696 697
  if (recursion_limit_reached() || data->size() <= sizeof(float)) {
    builder_->EmitF32Const(data->get<float>());
698 699
    return;
  }
700

701
  constexpr generate_fn alternates[] = {
702
      &WasmGenerator::sequence<kWasmF32, kWasmStmt>,
703
      &WasmGenerator::sequence<kWasmStmt, kWasmF32>,
704
      &WasmGenerator::sequence<kWasmStmt, kWasmF32, kWasmStmt>,
705

706 707 708
      &WasmGenerator::op<kExprF32Add, kWasmF32, kWasmF32>,
      &WasmGenerator::op<kExprF32Sub, kWasmF32, kWasmF32>,
      &WasmGenerator::op<kExprF32Mul, kWasmF32, kWasmF32>,
709

710
      &WasmGenerator::block<kWasmF32>,
711
      &WasmGenerator::loop<kWasmF32>,
712
      &WasmGenerator::if_<kWasmF32, kIfElse>,
713
      &WasmGenerator::br_if<kWasmF32>,
714

715 716
      &WasmGenerator::memop<kExprF32LoadMem>,

717
      &WasmGenerator::get_local<kWasmF32>,
718
      &WasmGenerator::tee_local<kWasmF32>,
719
      &WasmGenerator::get_global<kWasmF32>,
720 721
      &WasmGenerator::op<kExprSelect, kWasmF32, kWasmF32, kWasmI32>,
      &WasmGenerator::select_with_type<kWasmF32>,
722

723
      &WasmGenerator::call<kWasmF32>};
724

725
  GenerateOneOf(alternates, data);
726 727 728
}

template <>
729
void WasmGenerator::Generate<kWasmF64>(DataRange* data) {
730
  GeneratorRecursionScope rec_scope(this);
731 732
  if (recursion_limit_reached() || data->size() <= sizeof(double)) {
    builder_->EmitF64Const(data->get<double>());
733 734
    return;
  }
735

736
  constexpr generate_fn alternates[] = {
737
      &WasmGenerator::sequence<kWasmF64, kWasmStmt>,
738
      &WasmGenerator::sequence<kWasmStmt, kWasmF64>,
739
      &WasmGenerator::sequence<kWasmStmt, kWasmF64, kWasmStmt>,
740

741 742 743
      &WasmGenerator::op<kExprF64Add, kWasmF64, kWasmF64>,
      &WasmGenerator::op<kExprF64Sub, kWasmF64, kWasmF64>,
      &WasmGenerator::op<kExprF64Mul, kWasmF64, kWasmF64>,
744

745
      &WasmGenerator::block<kWasmF64>,
746
      &WasmGenerator::loop<kWasmF64>,
747
      &WasmGenerator::if_<kWasmF64, kIfElse>,
748
      &WasmGenerator::br_if<kWasmF64>,
749

750 751
      &WasmGenerator::memop<kExprF64LoadMem>,

752
      &WasmGenerator::get_local<kWasmF64>,
753
      &WasmGenerator::tee_local<kWasmF64>,
754
      &WasmGenerator::get_global<kWasmF64>,
755 756
      &WasmGenerator::op<kExprSelect, kWasmF64, kWasmF64, kWasmI32>,
      &WasmGenerator::select_with_type<kWasmF64>,
757

758
      &WasmGenerator::call<kWasmF64>};
759

760
  GenerateOneOf(alternates, data);
761 762
}

763
void WasmGenerator::grow_memory(DataRange* data) {
764
  Generate<kWasmI32>(data);
765
  builder_->EmitWithU8(kExprMemoryGrow, 0);
766 767
}

768
void WasmGenerator::Generate(ValueType type, DataRange* data) {
769
  switch (type) {
770 771
    case kWasmStmt:
      return Generate<kWasmStmt>(data);
772 773 774 775 776 777 778 779 780 781 782 783
    case kWasmI32:
      return Generate<kWasmI32>(data);
    case kWasmI64:
      return Generate<kWasmI64>(data);
    case kWasmF32:
      return Generate<kWasmF32>(data);
    case kWasmF64:
      return Generate<kWasmF64>(data);
    default:
      UNREACHABLE();
  }
}
784

785
FunctionSig* GenerateSig(Zone* zone, DataRange* data) {
786 787
  // Generate enough parameters to spill some to the stack.
  constexpr int kMaxParameters = 15;
788 789
  int num_params = int{data->get<uint8_t>()} % (kMaxParameters + 1);
  bool has_return = data->get<bool>();
790 791 792 793 794 795 796

  FunctionSig::Builder builder(zone, has_return ? 1 : 0, num_params);
  if (has_return) builder.AddReturn(GetValueType(data));
  for (int i = 0; i < num_params; ++i) builder.AddParam(GetValueType(data));
  return builder.Build();
}

797
}  // namespace
798

799
class WasmCompileFuzzer : public WasmExecutionFuzzer {
800
  bool GenerateModule(
801
      Isolate* isolate, Zone* zone, Vector<const uint8_t> data,
802 803 804
      ZoneBuffer* buffer, int32_t* num_args,
      std::unique_ptr<WasmValue[]>* interpreter_args,
      std::unique_ptr<Handle<Object>[]>* compiler_args) override {
805
    TestSignatures sigs;
806

807
    WasmModuleBuilder builder(zone);
808

809
    DataRange range(data);
810 811
    std::vector<FunctionSig*> function_signatures;
    function_signatures.push_back(sigs.i_iii());
812

813 814 815 816
    static_assert(kMaxFunctions >= 1, "need min. 1 function");
    int num_functions = 1 + (range.get<uint8_t>() % kMaxFunctions);

    for (int i = 1; i < num_functions; ++i) {
817
      function_signatures.push_back(GenerateSig(zone, &range));
818 819
    }

820 821 822 823 824 825 826
    int num_globals = range.get<uint8_t>() % (kMaxGlobals + 1);
    std::vector<ValueType> globals;
    std::vector<uint8_t> mutable_globals;
    globals.reserve(num_globals);
    mutable_globals.reserve(num_globals);

    for (int i = 0; i < num_globals; ++i) {
827
      ValueType type = GetValueType(&range);
828 829
      // 1/8 of globals are immutable.
      const bool mutability = (range.get<uint8_t>() % 8) != 0;
830
      builder.AddGlobal(type, mutability, WasmInitExpr());
831 832 833 834
      globals.push_back(type);
      if (mutability) mutable_globals.push_back(static_cast<uint8_t>(i));
    }

835 836 837 838 839 840 841
    for (int i = 0; i < num_functions; ++i) {
      DataRange function_range =
          i == num_functions - 1 ? std::move(range) : range.split();

      FunctionSig* sig = function_signatures[i];
      WasmFunctionBuilder* f = builder.AddFunction(sig);

842
      WasmGenerator gen(f, function_signatures, globals, mutable_globals,
843
                        &function_range);
844 845
      ValueType return_type =
          sig->return_count() == 0 ? kWasmStmt : sig->GetReturn(0);
846
      gen.Generate(return_type, &function_range);
847 848 849 850

      f->Emit(kExprEnd);
      if (i == 0) builder.AddExport(CStrVector("main"), f);
    }
851

852
    builder.SetMaxMemorySize(32);
853
    builder.WriteTo(buffer);
854

855 856
    *num_args = 3;
    interpreter_args->reset(
857
        new WasmValue[3]{WasmValue(1), WasmValue(2), WasmValue(3)});
858

859 860 861 862
    compiler_args->reset(new Handle<Object>[3] {
      handle(Smi::FromInt(1), isolate), handle(Smi::FromInt(2), isolate),
          handle(Smi::FromInt(3), isolate)
    });
863
    return true;
864
  }
865
};
866

867
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
868
  constexpr bool require_valid = true;
869
  EXPERIMENTAL_FLAG_SCOPE(anyref);
870 871
  WasmCompileFuzzer().FuzzWasmModule({data, size}, require_valid);
  return 0;
872
}
873 874 875 876 877

}  // namespace fuzzer
}  // namespace wasm
}  // namespace internal
}  // namespace v8