bigint.h 11.6 KB
Newer Older
1 2 3 4 5 6 7
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_BIGINT_H_
#define V8_OBJECTS_BIGINT_H_

8
#include "src/common/globals.h"
9
#include "src/objects/objects.h"
10
#include "src/objects/primitive-heap-object.h"
11
#include "src/utils/utils.h"
12 13 14 15 16

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
17 18 19 20 21

namespace bigint {
class FromStringAccumulator;
}  // namespace bigint

22 23
namespace internal {

24 25 26 27 28 29
void MutableBigInt_AbsoluteAddAndCanonicalize(Address result_addr,
                                              Address x_addr, Address y_addr);
int32_t MutableBigInt_AbsoluteCompare(Address x_addr, Address y_addr);
void MutableBigInt_AbsoluteSubAndCanonicalize(Address result_addr,
                                              Address x_addr, Address y_addr);

30
class BigInt;
31 32
class ValueDeserializer;
class ValueSerializer;
33

34 35
#include "torque-generated/src/objects/bigint-tq.inc"

36 37
// BigIntBase is just the raw data object underlying a BigInt. Use with care!
// Most code should be using BigInts instead.
38
class BigIntBase : public PrimitiveHeapObject {
39 40
 public:
  inline int length() const {
41
    int32_t bitfield = RELAXED_READ_INT32_FIELD(*this, kBitfieldOffset);
42 43 44
    return LengthBits::decode(static_cast<uint32_t>(bitfield));
  }

45
  // For use by the GC.
46
  inline int length(AcquireLoadTag) const {
47
    int32_t bitfield = ACQUIRE_READ_INT32_FIELD(*this, kBitfieldOffset);
48 49 50
    return LengthBits::decode(static_cast<uint32_t>(bitfield));
  }

51 52 53 54 55
  // The maximum kMaxLengthBits that the current implementation supports
  // would be kMaxInt - kSystemPointerSize * kBitsPerByte - 1.
  // Since we want a platform independent limit, choose a nice round number
  // somewhere below that maximum.
  static const int kMaxLengthBits = 1 << 30;  // ~1 billion.
56 57
  static const int kMaxLength =
      kMaxLengthBits / (kSystemPointerSize * kBitsPerByte);
58

59 60
  // Sign and length are stored in the same bitfield.  Since the GC needs to be
  // able to read the length concurrently, the getters and setters are atomic.
61
  static const int kLengthFieldBits = 30;
62
  STATIC_ASSERT(kMaxLength <= ((1 << kLengthFieldBits) - 1));
63
  using SignBits = base::BitField<bool, 0, 1>;
64 65
  using LengthBits = SignBits::Next<int, kLengthFieldBits>;
  STATIC_ASSERT(LengthBits::kLastUsedBit < 32);
66

67 68 69 70 71 72 73 74
  // Layout description.
#define BIGINT_FIELDS(V)                                                  \
  V(kBitfieldOffset, kInt32Size)                                          \
  V(kOptionalPaddingOffset, POINTER_SIZE_PADDING(kOptionalPaddingOffset)) \
  /* Header size. */                                                      \
  V(kHeaderSize, 0)                                                       \
  V(kDigitsOffset, 0)

75
  DEFINE_FIELD_OFFSET_CONSTANTS(PrimitiveHeapObject::kHeaderSize, BIGINT_FIELDS)
76
#undef BIGINT_FIELDS
77

78 79 80 81
  static constexpr bool HasOptionalPadding() {
    return FIELD_SIZE(kOptionalPaddingOffset) > 0;
  }

82 83 84 85
  DECL_CAST(BigIntBase)
  DECL_VERIFIER(BigIntBase)
  DECL_PRINTER(BigIntBase)

86
 private:
87
  friend class ::v8::internal::BigInt;  // MSVC wants full namespace.
88 89
  friend class MutableBigInt;

90
  using digit_t = uintptr_t;
91 92
  static const int kDigitSize = sizeof(digit_t);
  // kMaxLength definition assumes this:
93
  STATIC_ASSERT(kDigitSize == kSystemPointerSize);
94 95 96 97 98 99 100

  static const int kDigitBits = kDigitSize * kBitsPerByte;
  static const int kHalfDigitBits = kDigitBits / 2;
  static const digit_t kHalfDigitMask = (1ull << kHalfDigitBits) - 1;

  // sign() == true means negative.
  inline bool sign() const {
101
    int32_t bitfield = RELAXED_READ_INT32_FIELD(*this, kBitfieldOffset);
102 103 104 105 106
    return SignBits::decode(static_cast<uint32_t>(bitfield));
  }

  inline digit_t digit(int n) const {
    SLOW_DCHECK(0 <= n && n < length());
107
    return ReadField<digit_t>(kDigitsOffset + n * kDigitSize);
108 109 110 111
  }

  bool is_zero() const { return length() == 0; }

112
  OBJECT_CONSTRUCTORS(BigIntBase, PrimitiveHeapObject);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
};

class FreshlyAllocatedBigInt : public BigIntBase {
  // This class is essentially the publicly accessible abstract version of
  // MutableBigInt (which is a hidden implementation detail). It serves as
  // the return type of Factory::NewBigInt, and makes it possible to enforce
  // casting restrictions:
  // - FreshlyAllocatedBigInt can be cast explicitly to MutableBigInt
  //   (with MutableBigInt::Cast) for initialization.
  // - MutableBigInt can be cast/converted explicitly to BigInt
  //   (with MutableBigInt::MakeImmutable); is afterwards treated as readonly.
  // - No accidental implicit casting is possible from BigInt to MutableBigInt
  //   (and no explicit operator is provided either).

 public:
128
  inline static FreshlyAllocatedBigInt cast(Object object);
129
  inline static FreshlyAllocatedBigInt unchecked_cast(Object o) {
130 131
    return bit_cast<FreshlyAllocatedBigInt>(o);
  }
132

133 134
  // Clear uninitialized padding space.
  inline void clear_padding() {
135
    if (FIELD_SIZE(kOptionalPaddingOffset) != 0) {
136 137 138 139 140 141
      DCHECK_EQ(4, FIELD_SIZE(kOptionalPaddingOffset));
      memset(reinterpret_cast<void*>(address() + kOptionalPaddingOffset), 0,
             FIELD_SIZE(kOptionalPaddingOffset));
    }
  }

142
 private:
143 144 145 146
  // Only serves to make macros happy; other code should use IsBigInt.
  bool IsFreshlyAllocatedBigInt() const { return true; }

  OBJECT_CONSTRUCTORS(FreshlyAllocatedBigInt, BigIntBase);
147 148
};

149
// Arbitrary precision integers in JavaScript.
150
class BigInt : public BigIntBase {
151
 public:
152 153 154
  // Implementation of the Spec methods, see:
  // https://tc39.github.io/proposal-bigint/#sec-numeric-types
  // Sections 1.1.1 through 1.1.19.
155 156 157
  static Handle<BigInt> UnaryMinus(Isolate* isolate, Handle<BigInt> x);
  static MaybeHandle<BigInt> BitwiseNot(Isolate* isolate, Handle<BigInt> x);
  static MaybeHandle<BigInt> Exponentiate(Isolate* isolate, Handle<BigInt> base,
158
                                          Handle<BigInt> exponent);
159 160 161 162 163 164 165 166 167 168 169 170 171 172
  static MaybeHandle<BigInt> Multiply(Isolate* isolate, Handle<BigInt> x,
                                      Handle<BigInt> y);
  static MaybeHandle<BigInt> Divide(Isolate* isolate, Handle<BigInt> x,
                                    Handle<BigInt> y);
  static MaybeHandle<BigInt> Remainder(Isolate* isolate, Handle<BigInt> x,
                                       Handle<BigInt> y);
  static MaybeHandle<BigInt> Add(Isolate* isolate, Handle<BigInt> x,
                                 Handle<BigInt> y);
  static MaybeHandle<BigInt> Subtract(Isolate* isolate, Handle<BigInt> x,
                                      Handle<BigInt> y);
  static MaybeHandle<BigInt> LeftShift(Isolate* isolate, Handle<BigInt> x,
                                       Handle<BigInt> y);
  static MaybeHandle<BigInt> SignedRightShift(Isolate* isolate,
                                              Handle<BigInt> x,
173
                                              Handle<BigInt> y);
174 175
  static MaybeHandle<BigInt> UnsignedRightShift(Isolate* isolate,
                                                Handle<BigInt> x,
176
                                                Handle<BigInt> y);
177 178
  // More convenient version of "bool LessThan(x, y)".
  static ComparisonResult CompareToBigInt(Handle<BigInt> x, Handle<BigInt> y);
179
  static bool EqualToBigInt(BigInt x, BigInt y);
180 181 182 183 184 185
  static MaybeHandle<BigInt> BitwiseAnd(Isolate* isolate, Handle<BigInt> x,
                                        Handle<BigInt> y);
  static MaybeHandle<BigInt> BitwiseXor(Isolate* isolate, Handle<BigInt> x,
                                        Handle<BigInt> y);
  static MaybeHandle<BigInt> BitwiseOr(Isolate* isolate, Handle<BigInt> x,
                                       Handle<BigInt> y);
186

187
  // Other parts of the public interface.
188 189
  static MaybeHandle<BigInt> Increment(Isolate* isolate, Handle<BigInt> x);
  static MaybeHandle<BigInt> Decrement(Isolate* isolate, Handle<BigInt> x);
190

191 192 193
  bool ToBoolean() { return !is_zero(); }
  uint32_t Hash() {
    // TODO(jkummerow): Improve this. At least use length and sign.
194
    return is_zero() ? 0 : ComputeLongHash(static_cast<uint64_t>(digit(0)));
195 196
  }

197 198
  bool IsNegative() const { return sign(); }

199 200
  static Maybe<bool> EqualToString(Isolate* isolate, Handle<BigInt> x,
                                   Handle<String> y);
201
  static bool EqualToNumber(Handle<BigInt> x, Handle<Object> y);
202 203 204
  static Maybe<ComparisonResult> CompareToString(Isolate* isolate,
                                                 Handle<BigInt> x,
                                                 Handle<String> y);
205 206
  static ComparisonResult CompareToNumber(Handle<BigInt> x, Handle<Object> y);
  // Exposed for tests, do not call directly. Use CompareToNumber() instead.
207 208
  V8_EXPORT_PRIVATE static ComparisonResult CompareToDouble(Handle<BigInt> x,
                                                            double y);
209

210 211 212
  static Handle<BigInt> AsIntN(Isolate* isolate, uint64_t n, Handle<BigInt> x);
  static MaybeHandle<BigInt> AsUintN(Isolate* isolate, uint64_t n,
                                     Handle<BigInt> x);
213

214 215
  V8_EXPORT_PRIVATE static Handle<BigInt> FromInt64(Isolate* isolate,
                                                    int64_t n);
216
  static Handle<BigInt> FromUint64(Isolate* isolate, uint64_t n);
217 218 219
  static MaybeHandle<BigInt> FromWords64(Isolate* isolate, int sign_bit,
                                         int words64_count,
                                         const uint64_t* words);
220
  V8_EXPORT_PRIVATE int64_t AsInt64(bool* lossless = nullptr);
221
  uint64_t AsUint64(bool* lossless = nullptr);
222 223
  int Words64Count();
  void ToWordsArray64(int* sign_bit, int* words64_count, uint64_t* words);
224

225
  DECL_CAST(BigInt)
226
  void BigIntShortPrint(std::ostream& os);
227

228 229 230 231
  inline static int SizeFor(int length) {
    return kHeaderSize + length * kDigitSize;
  }

232
  static MaybeHandle<String> ToString(Isolate* isolate, Handle<BigInt> bigint,
233 234
                                      int radix = 10,
                                      ShouldThrow should_throw = kThrowOnError);
235 236 237
  // "The Number value for x", see:
  // https://tc39.github.io/ecma262/#sec-ecmascript-language-types-number-type
  // Returns a Smi or HeapNumber.
238
  static Handle<Object> ToNumber(Isolate* isolate, Handle<BigInt> x);
239

240
  // ECMAScript's NumberToBigInt
241 242
  V8_EXPORT_PRIVATE static MaybeHandle<BigInt> FromNumber(
      Isolate* isolate, Handle<Object> number);
243 244 245 246

  // ECMAScript's ToBigInt (throws for Number input)
  static MaybeHandle<BigInt> FromObject(Isolate* isolate, Handle<Object> obj);

247
  class BodyDescriptor;
248 249

 private:
250
  template <typename IsolateT>
251
  friend class StringToBigIntHelper;
252 253
  friend class ValueDeserializer;
  friend class ValueSerializer;
254

255
  // Special functions for StringToBigIntHelper:
256 257 258 259
  template <typename IsolateT>
  static Handle<BigInt> Zero(
      IsolateT* isolate, AllocationType allocation = AllocationType::kYoung);
  template <typename IsolateT>
260 261 262
  static MaybeHandle<BigInt> Allocate(
      IsolateT* isolate, bigint::FromStringAccumulator* accumulator,
      bool negative, AllocationType allocation);
263

264 265 266 267 268 269
  // Special functions for ValueSerializer/ValueDeserializer:
  uint32_t GetBitfieldForSerialization() const;
  static int DigitsByteLengthForBitfield(uint32_t bitfield);
  // Expects {storage} to have a length of at least
  // {DigitsByteLengthForBitfield(GetBitfieldForSerialization())}.
  void SerializeDigits(uint8_t* storage);
270
  V8_WARN_UNUSED_RESULT static MaybeHandle<BigInt> FromSerializedDigits(
271
      Isolate* isolate, uint32_t bitfield,
272
      base::Vector<const uint8_t> digits_storage);
273

274
  OBJECT_CONSTRUCTORS(BigInt, BigIntBase);
275 276 277 278 279 280 281 282
};

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_BIGINT_H_