conversions-inl.h 22.6 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4 5 6 7

#ifndef V8_CONVERSIONS_INL_H_
#define V8_CONVERSIONS_INL_H_

8 9 10
#include <float.h>         // Required for DBL_MAX and on Win32 for finite()
#include <limits.h>        // Required for INT_MAX etc.
#include <stdarg.h>
11
#include <cmath>
12
#include "src/globals.h"       // Required for V8_INFINITY
13
#include "src/unicode-cache-inl.h"
14 15 16 17

// ----------------------------------------------------------------------------
// Extra POSIX/ANSI functions for Win32/MSVC.

18
#include "src/base/bits.h"
19
#include "src/base/platform/platform.h"
20 21
#include "src/conversions.h"
#include "src/double.h"
22
#include "src/objects-inl.h"
23 24
#include "src/scanner.h"
#include "src/strtod.h"
25

26 27
namespace v8 {
namespace internal {
28

29
inline double JunkStringValue() {
30
  return bit_cast<double, uint64_t>(kQuietNaNMask);
31 32 33
}


34 35 36 37 38
inline double SignedZero(bool negative) {
  return negative ? uint64_to_double(Double::kSignMask) : 0.0;
}


39
// The fast double-to-unsigned-int conversion routine does not guarantee
40 41
// rounding towards zero, or any reasonable value if the argument is larger
// than what fits in an unsigned 32-bit integer.
42
inline unsigned int FastD2UI(double x) {
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  // There is no unsigned version of lrint, so there is no fast path
  // in this function as there is in FastD2I. Using lrint doesn't work
  // for values of 2^31 and above.

  // Convert "small enough" doubles to uint32_t by fixing the 32
  // least significant non-fractional bits in the low 32 bits of the
  // double, and reading them from there.
  const double k2Pow52 = 4503599627370496.0;
  bool negative = x < 0;
  if (negative) {
    x = -x;
  }
  if (x < k2Pow52) {
    x += k2Pow52;
    uint32_t result;
58
#ifndef V8_TARGET_BIG_ENDIAN
59
    Address mantissa_ptr = reinterpret_cast<Address>(&x);
60 61 62
#else
    Address mantissa_ptr = reinterpret_cast<Address>(&x) + kIntSize;
#endif
63
    // Copy least significant 32 bits of mantissa.
64
    memcpy(&result, mantissa_ptr, sizeof(result));
65 66 67 68 69 70 71
    return negative ? ~result + 1 : result;
  }
  // Large number (outside uint32 range), Infinity or NaN.
  return 0x80000000u;  // Return integer indefinite.
}


72 73 74 75 76 77 78 79
inline float DoubleToFloat32(double x) {
  // TODO(yanggou): This static_cast is implementation-defined behaviour in C++,
  // so we may need to do the conversion manually instead to match the spec.
  volatile float f = static_cast<float>(x);
  return f;
}


80
inline double DoubleToInteger(double x) {
81 82
  if (std::isnan(x)) return 0;
  if (!std::isfinite(x) || x == 0) return x;
83
  return (x >= 0) ? std::floor(x) : std::ceil(x);
84 85 86 87 88 89
}


int32_t DoubleToInt32(double x) {
  int32_t i = FastD2I(x);
  if (FastI2D(i) == x) return i;
90 91 92 93 94 95 96 97 98
  Double d(x);
  int exponent = d.Exponent();
  if (exponent < 0) {
    if (exponent <= -Double::kSignificandSize) return 0;
    return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
  } else {
    if (exponent > 31) return 0;
    return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
  }
99 100 101
}


102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
bool IsSmiDouble(double value) {
  return !IsMinusZero(value) && value >= Smi::kMinValue &&
         value <= Smi::kMaxValue && value == FastI2D(FastD2I(value));
}


bool IsInt32Double(double value) {
  return !IsMinusZero(value) && value >= kMinInt && value <= kMaxInt &&
         value == FastI2D(FastD2I(value));
}


bool IsUint32Double(double value) {
  return !IsMinusZero(value) && value >= 0 && value <= kMaxUInt32 &&
         value == FastUI2D(FastD2UI(value));
}


int32_t NumberToInt32(Object* number) {
  if (number->IsSmi()) return Smi::cast(number)->value();
  return DoubleToInt32(number->Number());
}


uint32_t NumberToUint32(Object* number) {
  if (number->IsSmi()) return Smi::cast(number)->value();
  return DoubleToUint32(number->Number());
}


bool TryNumberToSize(Isolate* isolate, Object* number, size_t* result) {
  SealHandleScope shs(isolate);
  if (number->IsSmi()) {
    int value = Smi::cast(number)->value();
    DCHECK(static_cast<unsigned>(Smi::kMaxValue) <=
           std::numeric_limits<size_t>::max());
    if (value >= 0) {
      *result = static_cast<size_t>(value);
      return true;
    }
    return false;
  } else {
    DCHECK(number->IsHeapNumber());
    double value = HeapNumber::cast(number)->value();
    if (value >= 0 && value <= std::numeric_limits<size_t>::max()) {
      *result = static_cast<size_t>(value);
      return true;
    } else {
      return false;
    }
  }
}


size_t NumberToSize(Isolate* isolate, Object* number) {
  size_t result = 0;
  bool is_valid = TryNumberToSize(isolate, number, &result);
  CHECK(is_valid);
  return result;
}


164 165 166 167 168
uint32_t DoubleToUint32(double x) {
  return static_cast<uint32_t>(DoubleToInt32(x));
}


169
template <class Iterator, class EndMark>
170 171 172
bool SubStringEquals(Iterator* current,
                     EndMark end,
                     const char* substring) {
173
  DCHECK(**current == *substring);
174 175 176 177 178 179 180 181 182 183 184 185
  for (substring++; *substring != '\0'; substring++) {
    ++*current;
    if (*current == end || **current != *substring) return false;
  }
  ++*current;
  return true;
}


// Returns true if a nonspace character has been found and false if the
// end was been reached before finding a nonspace character.
template <class Iterator, class EndMark>
186 187 188
inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
                              Iterator* current,
                              EndMark end) {
189
  while (*current != end) {
190
    if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
191 192 193 194 195 196 197 198
    ++*current;
  }
  return false;
}


// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
template <int radix_log_2, class Iterator, class EndMark>
199 200 201 202 203
double InternalStringToIntDouble(UnicodeCache* unicode_cache,
                                 Iterator current,
                                 EndMark end,
                                 bool negative,
                                 bool allow_trailing_junk) {
204
  DCHECK(current != end);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

  // Skip leading 0s.
  while (*current == '0') {
    ++current;
    if (current == end) return SignedZero(negative);
  }

  int64_t number = 0;
  int exponent = 0;
  const int radix = (1 << radix_log_2);

  do {
    int digit;
    if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
      digit = static_cast<char>(*current) - '0';
    } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
      digit = static_cast<char>(*current) - 'a' + 10;
    } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
      digit = static_cast<char>(*current) - 'A' + 10;
    } else {
      if (allow_trailing_junk ||
          !AdvanceToNonspace(unicode_cache, &current, end)) {
        break;
      } else {
229
        return JunkStringValue();
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
      }
    }

    number = number * radix + digit;
    int overflow = static_cast<int>(number >> 53);
    if (overflow != 0) {
      // Overflow occurred. Need to determine which direction to round the
      // result.
      int overflow_bits_count = 1;
      while (overflow > 1) {
        overflow_bits_count++;
        overflow >>= 1;
      }

      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
      number >>= overflow_bits_count;
      exponent = overflow_bits_count;

      bool zero_tail = true;
      while (true) {
        ++current;
        if (current == end || !isDigit(*current, radix)) break;
        zero_tail = zero_tail && *current == '0';
        exponent += radix_log_2;
      }

      if (!allow_trailing_junk &&
          AdvanceToNonspace(unicode_cache, &current, end)) {
259
        return JunkStringValue();
260 261 262 263 264 265 266 267 268 269 270 271 272 273
      }

      int middle_value = (1 << (overflow_bits_count - 1));
      if (dropped_bits > middle_value) {
        number++;  // Rounding up.
      } else if (dropped_bits == middle_value) {
        // Rounding to even to consistency with decimals: half-way case rounds
        // up if significant part is odd and down otherwise.
        if ((number & 1) != 0 || !zero_tail) {
          number++;  // Rounding up.
        }
      }

      // Rounding up may cause overflow.
274
      if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
275 276 277 278 279 280 281 282
        exponent++;
        number >>= 1;
      }
      break;
    }
    ++current;
  } while (current != end);

283 284
  DCHECK(number < ((int64_t)1 << 53));
  DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);
285 286 287 288 289 290 291 292 293

  if (exponent == 0) {
    if (negative) {
      if (number == 0) return -0.0;
      number = -number;
    }
    return static_cast<double>(number);
  }

294
  DCHECK(number != 0);
295
  return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
296 297 298 299
}


template <class Iterator, class EndMark>
300 301 302 303
double InternalStringToInt(UnicodeCache* unicode_cache,
                           Iterator current,
                           EndMark end,
                           int radix) {
304
  const bool allow_trailing_junk = true;
305
  const double empty_string_val = JunkStringValue();
306 307 308 309 310 311 312 313 314 315 316 317

  if (!AdvanceToNonspace(unicode_cache, &current, end)) {
    return empty_string_val;
  }

  bool negative = false;
  bool leading_zero = false;

  if (*current == '+') {
    // Ignore leading sign; skip following spaces.
    ++current;
    if (current == end) {
318
      return JunkStringValue();
319 320 321 322
    }
  } else if (*current == '-') {
    ++current;
    if (current == end) {
323
      return JunkStringValue();
324 325 326 327 328 329
    }
    negative = true;
  }

  if (radix == 0) {
    // Radix detection.
330
    radix = 10;
331 332 333 334 335 336
    if (*current == '0') {
      ++current;
      if (current == end) return SignedZero(negative);
      if (*current == 'x' || *current == 'X') {
        radix = 16;
        ++current;
337
        if (current == end) return JunkStringValue();
338 339 340 341 342 343 344 345 346 347 348
      } else {
        leading_zero = true;
      }
    }
  } else if (radix == 16) {
    if (*current == '0') {
      // Allow "0x" prefix.
      ++current;
      if (current == end) return SignedZero(negative);
      if (*current == 'x' || *current == 'X') {
        ++current;
349
        if (current == end) return JunkStringValue();
350 351 352 353 354 355
      } else {
        leading_zero = true;
      }
    }
  }

356
  if (radix < 2 || radix > 36) return JunkStringValue();
357 358 359 360 361 362 363 364 365

  // Skip leading zeros.
  while (*current == '0') {
    leading_zero = true;
    ++current;
    if (current == end) return SignedZero(negative);
  }

  if (!leading_zero && !isDigit(*current, radix)) {
366
    return JunkStringValue();
367 368
  }

369
  if (base::bits::IsPowerOfTwo32(radix)) {
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    switch (radix) {
      case 2:
        return InternalStringToIntDouble<1>(
            unicode_cache, current, end, negative, allow_trailing_junk);
      case 4:
        return InternalStringToIntDouble<2>(
            unicode_cache, current, end, negative, allow_trailing_junk);
      case 8:
        return InternalStringToIntDouble<3>(
            unicode_cache, current, end, negative, allow_trailing_junk);

      case 16:
        return InternalStringToIntDouble<4>(
            unicode_cache, current, end, negative, allow_trailing_junk);

      case 32:
        return InternalStringToIntDouble<5>(
            unicode_cache, current, end, negative, allow_trailing_junk);
      default:
        UNREACHABLE();
    }
  }

  if (radix == 10) {
    // Parsing with strtod.
    const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
    // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
    // end.
    const int kBufferSize = kMaxSignificantDigits + 2;
    char buffer[kBufferSize];
    int buffer_pos = 0;
    while (*current >= '0' && *current <= '9') {
      if (buffer_pos <= kMaxSignificantDigits) {
        // If the number has more than kMaxSignificantDigits it will be parsed
        // as infinity.
405
        DCHECK(buffer_pos < kBufferSize);
406 407 408 409 410 411 412 413
        buffer[buffer_pos++] = static_cast<char>(*current);
      }
      ++current;
      if (current == end) break;
    }

    if (!allow_trailing_junk &&
        AdvanceToNonspace(unicode_cache, &current, end)) {
414
      return JunkStringValue();
415 416
    }

417
    SLOW_DCHECK(buffer_pos < kBufferSize);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    buffer[buffer_pos] = '\0';
    Vector<const char> buffer_vector(buffer, buffer_pos);
    return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
  }

  // The following code causes accumulating rounding error for numbers greater
  // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
  // 16, or 32, then mathInt may be an implementation-dependent approximation to
  // the mathematical integer value" (15.1.2.2).

  int lim_0 = '0' + (radix < 10 ? radix : 10);
  int lim_a = 'a' + (radix - 10);
  int lim_A = 'A' + (radix - 10);

  // NOTE: The code for computing the value may seem a bit complex at
  // first glance. It is structured to use 32-bit multiply-and-add
  // loops as long as possible to avoid loosing precision.

  double v = 0.0;
  bool done = false;
  do {
    // Parse the longest part of the string starting at index j
    // possible while keeping the multiplier, and thus the part
    // itself, within 32 bits.
    unsigned int part = 0, multiplier = 1;
    while (true) {
      int d;
      if (*current >= '0' && *current < lim_0) {
        d = *current - '0';
      } else if (*current >= 'a' && *current < lim_a) {
        d = *current - 'a' + 10;
      } else if (*current >= 'A' && *current < lim_A) {
        d = *current - 'A' + 10;
      } else {
        done = true;
        break;
      }

      // Update the value of the part as long as the multiplier fits
      // in 32 bits. When we can't guarantee that the next iteration
      // will not overflow the multiplier, we stop parsing the part
      // by leaving the loop.
      const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
      uint32_t m = multiplier * radix;
      if (m > kMaximumMultiplier) break;
      part = part * radix + d;
      multiplier = m;
465
      DCHECK(multiplier > part);
466 467 468 469 470 471 472 473 474 475 476 477 478 479

      ++current;
      if (current == end) {
        done = true;
        break;
      }
    }

    // Update the value and skip the part in the string.
    v = v * multiplier + part;
  } while (!done);

  if (!allow_trailing_junk &&
      AdvanceToNonspace(unicode_cache, &current, end)) {
480
    return JunkStringValue();
481 482 483 484 485 486 487 488 489 490 491 492
  }

  return negative ? -v : v;
}


// Converts a string to a double value. Assumes the Iterator supports
// the following operations:
// 1. current == end (other ops are not allowed), current != end.
// 2. *current - gets the current character in the sequence.
// 3. ++current (advances the position).
template <class Iterator, class EndMark>
493 494 495 496 497
double InternalStringToDouble(UnicodeCache* unicode_cache,
                              Iterator current,
                              EndMark end,
                              int flags,
                              double empty_string_val) {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
  // To make sure that iterator dereferencing is valid the following
  // convention is used:
  // 1. Each '++current' statement is followed by check for equality to 'end'.
  // 2. If AdvanceToNonspace returned false then current == end.
  // 3. If 'current' becomes be equal to 'end' the function returns or goes to
  // 'parsing_done'.
  // 4. 'current' is not dereferenced after the 'parsing_done' label.
  // 5. Code before 'parsing_done' may rely on 'current != end'.
  if (!AdvanceToNonspace(unicode_cache, &current, end)) {
    return empty_string_val;
  }

  const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;

  // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
  const int kBufferSize = kMaxSignificantDigits + 10;
  char buffer[kBufferSize];  // NOLINT: size is known at compile time.
  int buffer_pos = 0;

  // Exponent will be adjusted if insignificant digits of the integer part
  // or insignificant leading zeros of the fractional part are dropped.
  int exponent = 0;
  int significant_digits = 0;
  int insignificant_digits = 0;
  bool nonzero_digit_dropped = false;

524 525 526 527 528 529 530
  enum Sign {
    NONE,
    NEGATIVE,
    POSITIVE
  };

  Sign sign = NONE;
531 532 533 534

  if (*current == '+') {
    // Ignore leading sign.
    ++current;
535
    if (current == end) return JunkStringValue();
536
    sign = POSITIVE;
537 538
  } else if (*current == '-') {
    ++current;
539
    if (current == end) return JunkStringValue();
540
    sign = NEGATIVE;
541 542
  }

543 544 545
  static const char kInfinityString[] = "Infinity";
  if (*current == kInfinityString[0]) {
    if (!SubStringEquals(&current, end, kInfinityString)) {
546
      return JunkStringValue();
547 548 549 550
    }

    if (!allow_trailing_junk &&
        AdvanceToNonspace(unicode_cache, &current, end)) {
551
      return JunkStringValue();
552 553
    }

554
    DCHECK(buffer_pos == 0);
555
    return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
556 557 558 559 560
  }

  bool leading_zero = false;
  if (*current == '0') {
    ++current;
561
    if (current == end) return SignedZero(sign == NEGATIVE);
562 563 564 565 566 567

    leading_zero = true;

    // It could be hexadecimal value.
    if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
      ++current;
568
      if (current == end || !isDigit(*current, 16) || sign != NONE) {
569
        return JunkStringValue();  // "0x".
570 571 572 573 574
      }

      return InternalStringToIntDouble<4>(unicode_cache,
                                          current,
                                          end,
575
                                          false,
576
                                          allow_trailing_junk);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

    // It could be an explicit octal value.
    } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
      ++current;
      if (current == end || !isDigit(*current, 8) || sign != NONE) {
        return JunkStringValue();  // "0o".
      }

      return InternalStringToIntDouble<3>(unicode_cache,
                                          current,
                                          end,
                                          false,
                                          allow_trailing_junk);

    // It could be a binary value.
    } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
      ++current;
      if (current == end || !isBinaryDigit(*current) || sign != NONE) {
        return JunkStringValue();  // "0b".
      }

      return InternalStringToIntDouble<1>(unicode_cache,
                                          current,
                                          end,
                                          false,
                                          allow_trailing_junk);
603 604 605 606 607
    }

    // Ignore leading zeros in the integer part.
    while (*current == '0') {
      ++current;
608
      if (current == end) return SignedZero(sign == NEGATIVE);
609 610 611
    }
  }

612
  bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;
613 614 615 616

  // Copy significant digits of the integer part (if any) to the buffer.
  while (*current >= '0' && *current <= '9') {
    if (significant_digits < kMaxSignificantDigits) {
617
      DCHECK(buffer_pos < kBufferSize);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
      buffer[buffer_pos++] = static_cast<char>(*current);
      significant_digits++;
      // Will later check if it's an octal in the buffer.
    } else {
      insignificant_digits++;  // Move the digit into the exponential part.
      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
    }
    octal = octal && *current < '8';
    ++current;
    if (current == end) goto parsing_done;
  }

  if (significant_digits == 0) {
    octal = false;
  }

  if (*current == '.') {
635
    if (octal && !allow_trailing_junk) return JunkStringValue();
636 637 638 639 640
    if (octal) goto parsing_done;

    ++current;
    if (current == end) {
      if (significant_digits == 0 && !leading_zero) {
641
        return JunkStringValue();
642 643 644 645 646 647 648 649 650 651 652
      } else {
        goto parsing_done;
      }
    }

    if (significant_digits == 0) {
      // octal = false;
      // Integer part consists of 0 or is absent. Significant digits start after
      // leading zeros (if any).
      while (*current == '0') {
        ++current;
653
        if (current == end) return SignedZero(sign == NEGATIVE);
654 655 656 657
        exponent--;  // Move this 0 into the exponent.
      }
    }

658 659
    // There is a fractional part.  We don't emit a '.', but adjust the exponent
    // instead.
660 661
    while (*current >= '0' && *current <= '9') {
      if (significant_digits < kMaxSignificantDigits) {
662
        DCHECK(buffer_pos < kBufferSize);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        buffer[buffer_pos++] = static_cast<char>(*current);
        significant_digits++;
        exponent--;
      } else {
        // Ignore insignificant digits in the fractional part.
        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
      }
      ++current;
      if (current == end) goto parsing_done;
    }
  }

  if (!leading_zero && exponent == 0 && significant_digits == 0) {
    // If leading_zeros is true then the string contains zeros.
    // If exponent < 0 then string was [+-]\.0*...
    // If significant_digits != 0 the string is not equal to 0.
    // Otherwise there are no digits in the string.
680
    return JunkStringValue();
681 682 683 684
  }

  // Parse exponential part.
  if (*current == 'e' || *current == 'E') {
685
    if (octal) return JunkStringValue();
686 687 688 689 690
    ++current;
    if (current == end) {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
691
        return JunkStringValue();
692 693 694 695 696 697 698 699 700 701
      }
    }
    char sign = '+';
    if (*current == '+' || *current == '-') {
      sign = static_cast<char>(*current);
      ++current;
      if (current == end) {
        if (allow_trailing_junk) {
          goto parsing_done;
        } else {
702
          return JunkStringValue();
703 704 705 706 707 708 709 710
        }
      }
    }

    if (current == end || *current < '0' || *current > '9') {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
711
        return JunkStringValue();
712 713 714
      }
    }

715
    const int max_exponent = INT_MAX / 2;
716
    DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    int num = 0;
    do {
      // Check overflow.
      int digit = *current - '0';
      if (num >= max_exponent / 10
          && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
        num = max_exponent;
      } else {
        num = num * 10 + digit;
      }
      ++current;
    } while (current != end && *current >= '0' && *current <= '9');

    exponent += (sign == '-' ? -num : num);
  }

  if (!allow_trailing_junk &&
      AdvanceToNonspace(unicode_cache, &current, end)) {
735
    return JunkStringValue();
736 737 738 739 740 741 742 743 744
  }

  parsing_done:
  exponent += insignificant_digits;

  if (octal) {
    return InternalStringToIntDouble<3>(unicode_cache,
                                        buffer,
                                        buffer + buffer_pos,
745
                                        sign == NEGATIVE,
746 747 748 749 750 751 752 753
                                        allow_trailing_junk);
  }

  if (nonzero_digit_dropped) {
    buffer[buffer_pos++] = '1';
    exponent--;
  }

754
  SLOW_DCHECK(buffer_pos < kBufferSize);
755 756 757
  buffer[buffer_pos] = '\0';

  double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
758
  return (sign == NEGATIVE) ? -converted : converted;
759 760
}

761 762 763
} }  // namespace v8::internal

#endif  // V8_CONVERSIONS_INL_H_