assembler-arm64.h 76.9 KB
Newer Older
1
// Copyright 2013 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#ifndef V8_ARM64_ASSEMBLER_ARM64_H_
#define V8_ARM64_ASSEMBLER_ARM64_H_
7 8

#include <list>
9
#include <map>
10 11 12 13 14

#include "globals.h"
#include "utils.h"
#include "assembler.h"
#include "serialize.h"
15 16
#include "arm64/instructions-arm64.h"
#include "arm64/cpu-arm64.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


namespace v8 {
namespace internal {


// -----------------------------------------------------------------------------
// Registers.
#define REGISTER_CODE_LIST(R)                                                  \
R(0)  R(1)  R(2)  R(3)  R(4)  R(5)  R(6)  R(7)                                 \
R(8)  R(9)  R(10) R(11) R(12) R(13) R(14) R(15)                                \
R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23)                                \
R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)


static const int kRegListSizeInBits = sizeof(RegList) * kBitsPerByte;


// Some CPURegister methods can return Register and FPRegister types, so we
// need to declare them in advance.
37 38
struct Register;
struct FPRegister;
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68


struct CPURegister {
  enum RegisterType {
    // The kInvalid value is used to detect uninitialized static instances,
    // which are always zero-initialized before any constructors are called.
    kInvalid = 0,
    kRegister,
    kFPRegister,
    kNoRegister
  };

  static CPURegister Create(unsigned code, unsigned size, RegisterType type) {
    CPURegister r = {code, size, type};
    return r;
  }

  unsigned code() const;
  RegisterType type() const;
  RegList Bit() const;
  unsigned SizeInBits() const;
  int SizeInBytes() const;
  bool Is32Bits() const;
  bool Is64Bits() const;
  bool IsValid() const;
  bool IsValidOrNone() const;
  bool IsValidRegister() const;
  bool IsValidFPRegister() const;
  bool IsNone() const;
  bool Is(const CPURegister& other) const;
69
  bool Aliases(const CPURegister& other) const;
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

  bool IsZero() const;
  bool IsSP() const;

  bool IsRegister() const;
  bool IsFPRegister() const;

  Register X() const;
  Register W() const;
  FPRegister D() const;
  FPRegister S() const;

  bool IsSameSizeAndType(const CPURegister& other) const;

  // V8 compatibility.
  bool is(const CPURegister& other) const { return Is(other); }
  bool is_valid() const { return IsValid(); }

  unsigned reg_code;
  unsigned reg_size;
  RegisterType reg_type;
};


struct Register : public CPURegister {
  static Register Create(unsigned code, unsigned size) {
96
    return Register(CPURegister::Create(code, size, CPURegister::kRegister));
97 98 99 100 101 102 103 104
  }

  Register() {
    reg_code = 0;
    reg_size = 0;
    reg_type = CPURegister::kNoRegister;
  }

105 106 107 108 109 110 111 112
  explicit Register(const CPURegister& r) {
    reg_code = r.reg_code;
    reg_size = r.reg_size;
    reg_type = r.reg_type;
    ASSERT(IsValidOrNone());
  }

  Register(const Register& r) {  // NOLINT(runtime/explicit)
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    reg_code = r.reg_code;
    reg_size = r.reg_size;
    reg_type = r.reg_type;
    ASSERT(IsValidOrNone());
  }

  bool IsValid() const {
    ASSERT(IsRegister() || IsNone());
    return IsValidRegister();
  }

  static Register XRegFromCode(unsigned code);
  static Register WRegFromCode(unsigned code);

  // Start of V8 compatibility section ---------------------
  // These memebers are necessary for compilation.
  // A few of them may be unused for now.

  static const int kNumRegisters = kNumberOfRegisters;
  static int NumRegisters() { return kNumRegisters; }

  // We allow crankshaft to use the following registers:
  //   - x0 to x15
  //   - x18 to x24
  //   - x27 (also context)
  //
  // TODO(all): Register x25 is currently free and could be available for
  // crankshaft, but we don't use it as we might use it as a per function
  // literal pool pointer in the future.
  //
  // TODO(all): Consider storing cp in x25 to have only two ranges.
  // We split allocatable registers in three ranges called
  //   - "low range"
  //   - "high range"
  //   - "context"
  static const unsigned kAllocatableLowRangeBegin = 0;
  static const unsigned kAllocatableLowRangeEnd = 15;
  static const unsigned kAllocatableHighRangeBegin = 18;
  static const unsigned kAllocatableHighRangeEnd = 24;
  static const unsigned kAllocatableContext = 27;

  // Gap between low and high ranges.
  static const int kAllocatableRangeGapSize =
      (kAllocatableHighRangeBegin - kAllocatableLowRangeEnd) - 1;

  static const int kMaxNumAllocatableRegisters =
      (kAllocatableLowRangeEnd - kAllocatableLowRangeBegin + 1) +
      (kAllocatableHighRangeEnd - kAllocatableHighRangeBegin + 1) + 1;  // cp
  static int NumAllocatableRegisters() { return kMaxNumAllocatableRegisters; }

  // Return true if the register is one that crankshaft can allocate.
  bool IsAllocatable() const {
    return ((reg_code == kAllocatableContext) ||
            (reg_code <= kAllocatableLowRangeEnd) ||
            ((reg_code >= kAllocatableHighRangeBegin) &&
             (reg_code <= kAllocatableHighRangeEnd)));
  }

  static Register FromAllocationIndex(unsigned index) {
    ASSERT(index < static_cast<unsigned>(NumAllocatableRegisters()));
    // cp is the last allocatable register.
    if (index == (static_cast<unsigned>(NumAllocatableRegisters() - 1))) {
      return from_code(kAllocatableContext);
    }

    // Handle low and high ranges.
    return (index <= kAllocatableLowRangeEnd)
        ? from_code(index)
        : from_code(index + kAllocatableRangeGapSize);
  }

  static const char* AllocationIndexToString(int index) {
    ASSERT((index >= 0) && (index < NumAllocatableRegisters()));
    ASSERT((kAllocatableLowRangeBegin == 0) &&
           (kAllocatableLowRangeEnd == 15) &&
           (kAllocatableHighRangeBegin == 18) &&
           (kAllocatableHighRangeEnd == 24) &&
           (kAllocatableContext == 27));
    const char* const names[] = {
      "x0", "x1", "x2", "x3", "x4",
      "x5", "x6", "x7", "x8", "x9",
      "x10", "x11", "x12", "x13", "x14",
      "x15", "x18", "x19", "x20", "x21",
      "x22", "x23", "x24", "x27",
    };
    return names[index];
  }

  static int ToAllocationIndex(Register reg) {
    ASSERT(reg.IsAllocatable());
    unsigned code = reg.code();
    if (code == kAllocatableContext) {
      return NumAllocatableRegisters() - 1;
    }

    return (code <= kAllocatableLowRangeEnd)
        ? code
        : code - kAllocatableRangeGapSize;
  }

  static Register from_code(int code) {
    // Always return an X register.
215
    return Register::Create(code, kXRegSizeInBits);
216 217 218 219 220 221 222 223
  }

  // End of V8 compatibility section -----------------------
};


struct FPRegister : public CPURegister {
  static FPRegister Create(unsigned code, unsigned size) {
224 225
    return FPRegister(
        CPURegister::Create(code, size, CPURegister::kFPRegister));
226 227 228 229 230 231 232 233
  }

  FPRegister() {
    reg_code = 0;
    reg_size = 0;
    reg_type = CPURegister::kNoRegister;
  }

234 235 236 237 238 239 240 241
  explicit FPRegister(const CPURegister& r) {
    reg_code = r.reg_code;
    reg_size = r.reg_size;
    reg_type = r.reg_type;
    ASSERT(IsValidOrNone());
  }

  FPRegister(const FPRegister& r) {  // NOLINT(runtime/explicit)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    reg_code = r.reg_code;
    reg_size = r.reg_size;
    reg_type = r.reg_type;
    ASSERT(IsValidOrNone());
  }

  bool IsValid() const {
    ASSERT(IsFPRegister() || IsNone());
    return IsValidFPRegister();
  }

  static FPRegister SRegFromCode(unsigned code);
  static FPRegister DRegFromCode(unsigned code);

  // Start of V8 compatibility section ---------------------
  static const int kMaxNumRegisters = kNumberOfFPRegisters;

  // Crankshaft can use all the FP registers except:
260 261
  //   - d15 which is used to keep the 0 double value
  //   - d30 which is used in crankshaft as a double scratch register
262
  //   - d31 which is used in the MacroAssembler as a double scratch register
263 264 265
  static const unsigned kAllocatableLowRangeBegin = 0;
  static const unsigned kAllocatableLowRangeEnd = 14;
  static const unsigned kAllocatableHighRangeBegin = 16;
266
  static const unsigned kAllocatableHighRangeEnd = 28;
267

268
  static const RegList kAllocatableFPRegisters = 0x1fff7fff;
269 270 271 272 273

  // Gap between low and high ranges.
  static const int kAllocatableRangeGapSize =
      (kAllocatableHighRangeBegin - kAllocatableLowRangeEnd) - 1;

274
  static const int kMaxNumAllocatableRegisters =
275 276
      (kAllocatableLowRangeEnd - kAllocatableLowRangeBegin + 1) +
      (kAllocatableHighRangeEnd - kAllocatableHighRangeBegin + 1);
277 278
  static int NumAllocatableRegisters() { return kMaxNumAllocatableRegisters; }

279 280 281 282 283 284 285 286 287 288 289
  // Return true if the register is one that crankshaft can allocate.
  bool IsAllocatable() const {
    return (Bit() & kAllocatableFPRegisters) != 0;
  }

  static FPRegister FromAllocationIndex(unsigned int index) {
    ASSERT(index < static_cast<unsigned>(NumAllocatableRegisters()));

    return (index <= kAllocatableLowRangeEnd)
        ? from_code(index)
        : from_code(index + kAllocatableRangeGapSize);
290 291 292 293
  }

  static const char* AllocationIndexToString(int index) {
    ASSERT((index >= 0) && (index < NumAllocatableRegisters()));
294 295 296
    ASSERT((kAllocatableLowRangeBegin == 0) &&
           (kAllocatableLowRangeEnd == 14) &&
           (kAllocatableHighRangeBegin == 16) &&
297
           (kAllocatableHighRangeEnd == 28));
298 299
    const char* const names[] = {
      "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
300
      "d8", "d9", "d10", "d11", "d12", "d13", "d14",
301
      "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
302
      "d24", "d25", "d26", "d27", "d28"
303 304 305 306 307
    };
    return names[index];
  }

  static int ToAllocationIndex(FPRegister reg) {
308 309 310 311 312 313
    ASSERT(reg.IsAllocatable());
    unsigned code = reg.code();

    return (code <= kAllocatableLowRangeEnd)
        ? code
        : code - kAllocatableRangeGapSize;
314 315 316 317
  }

  static FPRegister from_code(int code) {
    // Always return a D register.
318
    return FPRegister::Create(code, kDRegSizeInBits);
319 320 321 322 323 324 325 326 327
  }
  // End of V8 compatibility section -----------------------
};


STATIC_ASSERT(sizeof(CPURegister) == sizeof(Register));
STATIC_ASSERT(sizeof(CPURegister) == sizeof(FPRegister));


328
#if defined(ARM64_DEFINE_REG_STATICS)
329 330 331 332 333 334 335 336 337 338 339 340
#define INITIALIZE_REGISTER(register_class, name, code, size, type)      \
  const CPURegister init_##register_class##_##name = {code, size, type}; \
  const register_class& name = *reinterpret_cast<const register_class*>( \
                                    &init_##register_class##_##name)
#define ALIAS_REGISTER(register_class, alias, name)                       \
  const register_class& alias = *reinterpret_cast<const register_class*>( \
                                     &init_##register_class##_##name)
#else
#define INITIALIZE_REGISTER(register_class, name, code, size, type) \
  extern const register_class& name
#define ALIAS_REGISTER(register_class, alias, name) \
  extern const register_class& alias
341
#endif  // defined(ARM64_DEFINE_REG_STATICS)
342 343 344 345 346 347 348 349 350 351 352 353

// No*Reg is used to indicate an unused argument, or an error case. Note that
// these all compare equal (using the Is() method). The Register and FPRegister
// variants are provided for convenience.
INITIALIZE_REGISTER(Register, NoReg, 0, 0, CPURegister::kNoRegister);
INITIALIZE_REGISTER(FPRegister, NoFPReg, 0, 0, CPURegister::kNoRegister);
INITIALIZE_REGISTER(CPURegister, NoCPUReg, 0, 0, CPURegister::kNoRegister);

// v8 compatibility.
INITIALIZE_REGISTER(Register, no_reg, 0, 0, CPURegister::kNoRegister);

#define DEFINE_REGISTERS(N)                                                  \
354 355 356 357
  INITIALIZE_REGISTER(Register, w##N, N,                                     \
                      kWRegSizeInBits, CPURegister::kRegister);              \
  INITIALIZE_REGISTER(Register, x##N, N,                                     \
                      kXRegSizeInBits, CPURegister::kRegister);
358 359 360
REGISTER_CODE_LIST(DEFINE_REGISTERS)
#undef DEFINE_REGISTERS

361
INITIALIZE_REGISTER(Register, wcsp, kSPRegInternalCode, kWRegSizeInBits,
362
                    CPURegister::kRegister);
363
INITIALIZE_REGISTER(Register, csp, kSPRegInternalCode, kXRegSizeInBits,
364 365
                    CPURegister::kRegister);

366 367 368 369 370
#define DEFINE_FPREGISTERS(N)                                                  \
  INITIALIZE_REGISTER(FPRegister, s##N, N,                                     \
                      kSRegSizeInBits, CPURegister::kFPRegister);              \
  INITIALIZE_REGISTER(FPRegister, d##N, N,                                     \
                      kDRegSizeInBits, CPURegister::kFPRegister);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
#undef DEFINE_FPREGISTERS

#undef INITIALIZE_REGISTER

// Registers aliases.
ALIAS_REGISTER(Register, ip0, x16);
ALIAS_REGISTER(Register, ip1, x17);
ALIAS_REGISTER(Register, wip0, w16);
ALIAS_REGISTER(Register, wip1, w17);
// Root register.
ALIAS_REGISTER(Register, root, x26);
ALIAS_REGISTER(Register, rr, x26);
// Context pointer register.
ALIAS_REGISTER(Register, cp, x27);
// We use a register as a JS stack pointer to overcome the restriction on the
// architectural SP alignment.
// We chose x28 because it is contiguous with the other specific purpose
// registers.
STATIC_ASSERT(kJSSPCode == 28);
ALIAS_REGISTER(Register, jssp, x28);
ALIAS_REGISTER(Register, wjssp, w28);
ALIAS_REGISTER(Register, fp, x29);
ALIAS_REGISTER(Register, lr, x30);
ALIAS_REGISTER(Register, xzr, x31);
ALIAS_REGISTER(Register, wzr, w31);

// Keeps the 0 double value.
399 400
ALIAS_REGISTER(FPRegister, fp_zero, d15);
// Crankshaft double scratch register.
401 402 403 404 405
ALIAS_REGISTER(FPRegister, crankshaft_fp_scratch, d29);
// MacroAssembler double scratch registers.
ALIAS_REGISTER(FPRegister, fp_scratch, d30);
ALIAS_REGISTER(FPRegister, fp_scratch1, d30);
ALIAS_REGISTER(FPRegister, fp_scratch2, d31);
406 407 408

#undef ALIAS_REGISTER

409 410 411 412 413 414 415

Register GetAllocatableRegisterThatIsNotOneOf(Register reg1,
                                              Register reg2 = NoReg,
                                              Register reg3 = NoReg,
                                              Register reg4 = NoReg);


416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
// AreAliased returns true if any of the named registers overlap. Arguments set
// to NoReg are ignored. The system stack pointer may be specified.
bool AreAliased(const CPURegister& reg1,
                const CPURegister& reg2,
                const CPURegister& reg3 = NoReg,
                const CPURegister& reg4 = NoReg,
                const CPURegister& reg5 = NoReg,
                const CPURegister& reg6 = NoReg,
                const CPURegister& reg7 = NoReg,
                const CPURegister& reg8 = NoReg);

// AreSameSizeAndType returns true if all of the specified registers have the
// same size, and are of the same type. The system stack pointer may be
// specified. Arguments set to NoReg are ignored, as are any subsequent
// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
bool AreSameSizeAndType(const CPURegister& reg1,
                        const CPURegister& reg2,
                        const CPURegister& reg3 = NoCPUReg,
                        const CPURegister& reg4 = NoCPUReg,
                        const CPURegister& reg5 = NoCPUReg,
                        const CPURegister& reg6 = NoCPUReg,
                        const CPURegister& reg7 = NoCPUReg,
                        const CPURegister& reg8 = NoCPUReg);


typedef FPRegister DoubleRegister;


// -----------------------------------------------------------------------------
// Lists of registers.
class CPURegList {
 public:
  explicit CPURegList(CPURegister reg1,
                      CPURegister reg2 = NoCPUReg,
                      CPURegister reg3 = NoCPUReg,
                      CPURegister reg4 = NoCPUReg)
      : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
        size_(reg1.SizeInBits()), type_(reg1.type()) {
    ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
    ASSERT(IsValid());
  }

  CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
      : list_(list), size_(size), type_(type) {
    ASSERT(IsValid());
  }

  CPURegList(CPURegister::RegisterType type, unsigned size,
             unsigned first_reg, unsigned last_reg)
      : size_(size), type_(type) {
    ASSERT(((type == CPURegister::kRegister) &&
            (last_reg < kNumberOfRegisters)) ||
           ((type == CPURegister::kFPRegister) &&
            (last_reg < kNumberOfFPRegisters)));
    ASSERT(last_reg >= first_reg);
    list_ = (1UL << (last_reg + 1)) - 1;
    list_ &= ~((1UL << first_reg) - 1);
    ASSERT(IsValid());
  }

  CPURegister::RegisterType type() const {
    ASSERT(IsValid());
    return type_;
  }

  RegList list() const {
    ASSERT(IsValid());
    return list_;
  }

486 487 488 489 490
  inline void set_list(RegList new_list) {
    ASSERT(IsValid());
    list_ = new_list;
  }

491 492 493 494 495 496
  // Combine another CPURegList into this one. Registers that already exist in
  // this list are left unchanged. The type and size of the registers in the
  // 'other' list must match those in this list.
  void Combine(const CPURegList& other);

  // Remove every register in the other CPURegList from this one. Registers that
497 498
  // do not exist in this list are ignored. The type of the registers in the
  // 'other' list must match those in this list.
499 500
  void Remove(const CPURegList& other);

501
  // Variants of Combine and Remove which take CPURegisters.
502
  void Combine(const CPURegister& other);
503 504 505 506
  void Remove(const CPURegister& other1,
              const CPURegister& other2 = NoCPUReg,
              const CPURegister& other3 = NoCPUReg,
              const CPURegister& other4 = NoCPUReg);
507 508 509 510 511 512 513 514 515 516 517 518 519 520

  // Variants of Combine and Remove which take a single register by its code;
  // the type and size of the register is inferred from this list.
  void Combine(int code);
  void Remove(int code);

  // Remove all callee-saved registers from the list. This can be useful when
  // preparing registers for an AAPCS64 function call, for example.
  void RemoveCalleeSaved();

  CPURegister PopLowestIndex();
  CPURegister PopHighestIndex();

  // AAPCS64 callee-saved registers.
521 522
  static CPURegList GetCalleeSaved(unsigned size = kXRegSizeInBits);
  static CPURegList GetCalleeSavedFP(unsigned size = kDRegSizeInBits);
523 524

  // AAPCS64 caller-saved registers. Note that this includes lr.
525 526
  static CPURegList GetCallerSaved(unsigned size = kXRegSizeInBits);
  static CPURegList GetCallerSavedFP(unsigned size = kDRegSizeInBits);
527 528 529 530 531 532 533 534 535

  // Registers saved as safepoints.
  static CPURegList GetSafepointSavedRegisters();

  bool IsEmpty() const {
    ASSERT(IsValid());
    return list_ == 0;
  }

536 537 538 539
  bool IncludesAliasOf(const CPURegister& other1,
                       const CPURegister& other2 = NoCPUReg,
                       const CPURegister& other3 = NoCPUReg,
                       const CPURegister& other4 = NoCPUReg) const {
540
    ASSERT(IsValid());
541 542 543 544 545 546
    RegList list = 0;
    if (!other1.IsNone() && (other1.type() == type_)) list |= other1.Bit();
    if (!other2.IsNone() && (other2.type() == type_)) list |= other2.Bit();
    if (!other3.IsNone() && (other3.type() == type_)) list |= other3.Bit();
    if (!other4.IsNone() && (other4.type() == type_)) list |= other4.Bit();
    return (list_ & list) != 0;
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
  }

  int Count() const {
    ASSERT(IsValid());
    return CountSetBits(list_, kRegListSizeInBits);
  }

  unsigned RegisterSizeInBits() const {
    ASSERT(IsValid());
    return size_;
  }

  unsigned RegisterSizeInBytes() const {
    int size_in_bits = RegisterSizeInBits();
    ASSERT((size_in_bits % kBitsPerByte) == 0);
    return size_in_bits / kBitsPerByte;
  }

565 566 567 568 569
  unsigned TotalSizeInBytes() const {
    ASSERT(IsValid());
    return RegisterSizeInBytes() * Count();
  }

570 571 572 573 574 575
 private:
  RegList list_;
  unsigned size_;
  CPURegister::RegisterType type_;

  bool IsValid() const {
576 577 578 579 580 581 582 583 584 585 586 587
    const RegList kValidRegisters = 0x8000000ffffffff;
    const RegList kValidFPRegisters = 0x0000000ffffffff;
    switch (type_) {
      case CPURegister::kRegister:
        return (list_ & kValidRegisters) == list_;
      case CPURegister::kFPRegister:
        return (list_ & kValidFPRegisters) == list_;
      case CPURegister::kNoRegister:
        return list_ == 0;
      default:
        UNREACHABLE();
        return false;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    }
  }
};


// AAPCS64 callee-saved registers.
#define kCalleeSaved CPURegList::GetCalleeSaved()
#define kCalleeSavedFP CPURegList::GetCalleeSavedFP()


// AAPCS64 caller-saved registers. Note that this includes lr.
#define kCallerSaved CPURegList::GetCallerSaved()
#define kCallerSavedFP CPURegList::GetCallerSavedFP()


// -----------------------------------------------------------------------------
// Operands.
const int kSmiShift = kSmiTagSize + kSmiShiftSize;
const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;

// Represents an operand in a machine instruction.
class Operand {
  // TODO(all): If necessary, study more in details which methods
  // TODO(all): should be inlined or not.
 public:
  // rm, {<shift> {#<shift_amount>}}
  // where <shift> is one of {LSL, LSR, ASR, ROR}.
  //       <shift_amount> is uint6_t.
  // This is allowed to be an implicit constructor because Operand is
  // a wrapper class that doesn't normally perform any type conversion.
  inline Operand(Register reg,
                 Shift shift = LSL,
                 unsigned shift_amount = 0);  // NOLINT(runtime/explicit)

  // rm, <extend> {#<shift_amount>}
  // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
  //       <shift_amount> is uint2_t.
  inline Operand(Register reg,
                 Extend extend,
                 unsigned shift_amount = 0);

629 630 631 632 633 634 635 636 637 638
  template<typename T>
  inline explicit Operand(Handle<T> handle);

  // Implicit constructor for all int types, ExternalReference, and Smi.
  template<typename T>
  inline Operand(T t);  // NOLINT(runtime/explicit)

  // Implicit constructor for int types.
  template<typename int_t>
  inline Operand(int_t t, RelocInfo::Mode rmode);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

  inline bool IsImmediate() const;
  inline bool IsShiftedRegister() const;
  inline bool IsExtendedRegister() const;
  inline bool IsZero() const;

  // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
  // which helps in the encoding of instructions that use the stack pointer.
  inline Operand ToExtendedRegister() const;

  inline int64_t immediate() const;
  inline Register reg() const;
  inline Shift shift() const;
  inline Extend extend() const;
  inline unsigned shift_amount() const;

  // Relocation information.
  RelocInfo::Mode rmode() const { return rmode_; }
  void set_rmode(RelocInfo::Mode rmode) { rmode_ = rmode; }
658
  bool NeedsRelocation(Isolate* isolate) const;
659 660 661 662 663 664

  // Helpers
  inline static Operand UntagSmi(Register smi);
  inline static Operand UntagSmiAndScale(Register smi, int scale);

 private:
665
  void initialize_handle(Handle<Object> value);
666 667 668 669 670 671 672 673 674 675 676 677
  int64_t immediate_;
  Register reg_;
  Shift shift_;
  Extend extend_;
  unsigned shift_amount_;
  RelocInfo::Mode rmode_;
};


// MemOperand represents a memory operand in a load or store instruction.
class MemOperand {
 public:
678
  inline explicit MemOperand();
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
  inline explicit MemOperand(Register base,
                             ptrdiff_t offset = 0,
                             AddrMode addrmode = Offset);
  inline explicit MemOperand(Register base,
                             Register regoffset,
                             Shift shift = LSL,
                             unsigned shift_amount = 0);
  inline explicit MemOperand(Register base,
                             Register regoffset,
                             Extend extend,
                             unsigned shift_amount = 0);
  inline explicit MemOperand(Register base,
                             const Operand& offset,
                             AddrMode addrmode = Offset);

  const Register& base() const { return base_; }
  const Register& regoffset() const { return regoffset_; }
  ptrdiff_t offset() const { return offset_; }
  AddrMode addrmode() const { return addrmode_; }
  Shift shift() const { return shift_; }
  Extend extend() const { return extend_; }
  unsigned shift_amount() const { return shift_amount_; }
  inline bool IsImmediateOffset() const;
  inline bool IsRegisterOffset() const;
  inline bool IsPreIndex() const;
  inline bool IsPostIndex() const;

  // For offset modes, return the offset as an Operand. This helper cannot
  // handle indexed modes.
  inline Operand OffsetAsOperand() const;

 private:
  Register base_;
  Register regoffset_;
  ptrdiff_t offset_;
  AddrMode addrmode_;
  Shift shift_;
  Extend extend_;
  unsigned shift_amount_;
};


// -----------------------------------------------------------------------------
// Assembler.

class Assembler : public AssemblerBase {
 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is NULL, the assembler allocates and grows its own
  // buffer, and buffer_size determines the initial buffer size. The buffer is
  // owned by the assembler and deallocated upon destruction of the assembler.
  //
  // If the provided buffer is not NULL, the assembler uses the provided buffer
  // for code generation and assumes its size to be buffer_size. If the buffer
  // is too small, a fatal error occurs. No deallocation of the buffer is done
  // upon destruction of the assembler.
  Assembler(Isolate* arg_isolate, void* buffer, int buffer_size);

  virtual ~Assembler();

743 744 745 746
  virtual void AbortedCodeGeneration() {
    num_pending_reloc_info_ = 0;
  }

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
  // System functions ---------------------------------------------------------
  // Start generating code from the beginning of the buffer, discarding any code
  // and data that has already been emitted into the buffer.
  //
  // In order to avoid any accidental transfer of state, Reset ASSERTs that the
  // constant pool is not blocked.
  void Reset();

  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
  // Assembler functions are invoked in between GetCode() calls.
  //
  // The descriptor (desc) can be NULL. In that case, the code is finalized as
  // usual, but the descriptor is not populated.
  void GetCode(CodeDesc* desc);

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2 (>= 4).
  void Align(int m);

768 769
  inline void Unreachable();

770 771 772 773 774 775 776
  // Label --------------------------------------------------------------------
  // Bind a label to the current pc. Note that labels can only be bound once,
  // and if labels are linked to other instructions, they _must_ be bound
  // before they go out of scope.
  void bind(Label* label);


777
  // RelocInfo and pools ------------------------------------------------------
778 779 780 781 782 783 784 785 786

  // Record relocation information for current pc_.
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);

  // Return the address in the constant pool of the code target address used by
  // the branch/call instruction at pc.
  inline static Address target_pointer_address_at(Address pc);

  // Read/Modify the code target address in the branch/call instruction at pc.
787 788 789 790 791 792 793 794 795
  inline static Address target_address_at(Address pc,
                                          ConstantPoolArray* constant_pool);
  inline static void set_target_address_at(Address pc,
                                           ConstantPoolArray* constant_pool,
                                           Address target);
  static inline Address target_address_at(Address pc, Code* code);
  static inline void set_target_address_at(Address pc,
                                           Code* code,
                                           Address target);
796 797 798 799 800 801 802 803 804 805 806 807

  // Return the code target address at a call site from the return address of
  // that call in the instruction stream.
  inline static Address target_address_from_return_address(Address pc);

  // Given the address of the beginning of a call, return the address in the
  // instruction stream that call will return from.
  inline static Address return_address_from_call_start(Address pc);

  // This sets the branch destination (which is in the constant pool on ARM).
  // This is for calls and branches within generated code.
  inline static void deserialization_set_special_target_at(
808
      Address constant_pool_entry, Code* code, Address target);
809 810 811 812 813 814 815 816 817

  // All addresses in the constant pool are the same size as pointers.
  static const int kSpecialTargetSize = kPointerSize;

  // The sizes of the call sequences emitted by MacroAssembler::Call.
  // Wherever possible, use MacroAssembler::CallSize instead of these constants,
  // as it will choose the correct value for a given relocation mode.
  //
  // Without relocation:
818 819 820 821
  //  movz  temp, #(target & 0x000000000000ffff)
  //  movk  temp, #(target & 0x00000000ffff0000)
  //  movk  temp, #(target & 0x0000ffff00000000)
  //  blr   temp
822 823
  //
  // With relocation:
824 825 826
  //  ldr   temp, =target
  //  blr   temp
  static const int kCallSizeWithoutRelocation = 4 * kInstructionSize;
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
  static const int kCallSizeWithRelocation = 2 * kInstructionSize;

  // Size of the generated code in bytes
  uint64_t SizeOfGeneratedCode() const {
    ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
    return pc_ - buffer_;
  }

  // Return the code size generated from label to the current position.
  uint64_t SizeOfCodeGeneratedSince(const Label* label) {
    ASSERT(label->is_bound());
    ASSERT(pc_offset() >= label->pos());
    ASSERT(pc_offset() < buffer_size_);
    return pc_offset() - label->pos();
  }

  // Check the size of the code generated since the given label. This function
  // is used primarily to work around comparisons between signed and unsigned
  // quantities, since V8 uses both.
  // TODO(jbramley): Work out what sign to use for these things and if possible,
  // change things to be consistent.
  void AssertSizeOfCodeGeneratedSince(const Label* label, ptrdiff_t size) {
    ASSERT(size >= 0);
    ASSERT(static_cast<uint64_t>(size) == SizeOfCodeGeneratedSince(label));
  }

  // Return the number of instructions generated from label to the
  // current position.
  int InstructionsGeneratedSince(const Label* label) {
    return SizeOfCodeGeneratedSince(label) / kInstructionSize;
  }

  // Number of instructions generated for the return sequence in
  // FullCodeGenerator::EmitReturnSequence.
  static const int kJSRetSequenceInstructions = 7;
  // Distance between start of patched return sequence and the emitted address
  // to jump to.
  static const int kPatchReturnSequenceAddressOffset =  0;
  static const int kPatchDebugBreakSlotAddressOffset =  0;

  // Number of instructions necessary to be able to later patch it to a call.
  // See Debug::GenerateSlot() and BreakLocationIterator::SetDebugBreakAtSlot().
  static const int kDebugBreakSlotInstructions = 4;
  static const int kDebugBreakSlotLength =
    kDebugBreakSlotInstructions * kInstructionSize;

  static const int kPatchDebugBreakSlotReturnOffset = 2 * kInstructionSize;

  // Prevent contant pool emission until EndBlockConstPool is called.
  // Call to this function can be nested but must be followed by an equal
  // number of call to EndBlockConstpool.
  void StartBlockConstPool();

  // Resume constant pool emission. Need to be called as many time as
  // StartBlockConstPool to have an effect.
  void EndBlockConstPool();

  bool is_const_pool_blocked() const;
  static bool IsConstantPoolAt(Instruction* instr);
  static int ConstantPoolSizeAt(Instruction* instr);
  // See Assembler::CheckConstPool for more info.
  void ConstantPoolMarker(uint32_t size);
889
  void EmitPoolGuard();
890 891
  void ConstantPoolGuard();

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
  // Prevent veneer pool emission until EndBlockVeneerPool is called.
  // Call to this function can be nested but must be followed by an equal
  // number of call to EndBlockConstpool.
  void StartBlockVeneerPool();

  // Resume constant pool emission. Need to be called as many time as
  // StartBlockVeneerPool to have an effect.
  void EndBlockVeneerPool();

  bool is_veneer_pool_blocked() const {
    return veneer_pool_blocked_nesting_ > 0;
  }

  // Block/resume emission of constant pools and veneer pools.
  void StartBlockPools() {
    StartBlockConstPool();
    StartBlockVeneerPool();
  }
  void EndBlockPools() {
    EndBlockConstPool();
    EndBlockVeneerPool();
  }
914 915 916 917 918 919 920 921 922 923 924 925 926 927

  // Debugging ----------------------------------------------------------------
  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
  void RecordComment(const char* msg);
  int buffer_space() const;

  // Mark address of the ExitJSFrame code.
  void RecordJSReturn();

  // Mark address of a debug break slot.
  void RecordDebugBreakSlot();

  // Record the emission of a constant pool.
  //
928 929
  // The emission of constant and veneer pools depends on the size of the code
  // generated and the number of RelocInfo recorded.
930 931 932 933
  // The Debug mechanism needs to map code offsets between two versions of a
  // function, compiled with and without debugger support (see for example
  // Debug::PrepareForBreakPoints()).
  // Compiling functions with debugger support generates additional code
934 935 936 937 938 939
  // (Debug::GenerateSlot()). This may affect the emission of the pools and
  // cause the version of the code with debugger support to have pools generated
  // in different places.
  // Recording the position and size of emitted pools allows to correctly
  // compute the offset mappings between the different versions of a function in
  // all situations.
940
  //
941
  // The parameter indicates the size of the pool (in bytes), including
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
  // the marker and branch over the data.
  void RecordConstPool(int size);


  // Instruction set functions ------------------------------------------------

  // Branch / Jump instructions.
  // For branches offsets are scaled, i.e. they in instrcutions not in bytes.
  // Branch to register.
  void br(const Register& xn);

  // Branch-link to register.
  void blr(const Register& xn);

  // Branch to register with return hint.
  void ret(const Register& xn = lr);

  // Unconditional branch to label.
  void b(Label* label);

  // Conditional branch to label.
  void b(Label* label, Condition cond);

  // Unconditional branch to PC offset.
  void b(int imm26);

  // Conditional branch to PC offset.
  void b(int imm19, Condition cond);

  // Branch-link to label / pc offset.
  void bl(Label* label);
  void bl(int imm26);

  // Compare and branch to label / pc offset if zero.
  void cbz(const Register& rt, Label* label);
  void cbz(const Register& rt, int imm19);

  // Compare and branch to label / pc offset if not zero.
  void cbnz(const Register& rt, Label* label);
  void cbnz(const Register& rt, int imm19);

  // Test bit and branch to label / pc offset if zero.
  void tbz(const Register& rt, unsigned bit_pos, Label* label);
  void tbz(const Register& rt, unsigned bit_pos, int imm14);

  // Test bit and branch to label / pc offset if not zero.
  void tbnz(const Register& rt, unsigned bit_pos, Label* label);
  void tbnz(const Register& rt, unsigned bit_pos, int imm14);

  // Address calculation instructions.
  // Calculate a PC-relative address. Unlike for branches the offset in adr is
  // unscaled (i.e. the result can be unaligned).
  void adr(const Register& rd, Label* label);
  void adr(const Register& rd, int imm21);

  // Data Processing instructions.
  // Add.
  void add(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Add and update status flags.
  void adds(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Compare negative.
  void cmn(const Register& rn, const Operand& operand);

  // Subtract.
  void sub(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Subtract and update status flags.
  void subs(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Compare.
  void cmp(const Register& rn, const Operand& operand);

  // Negate.
  void neg(const Register& rd,
           const Operand& operand);

  // Negate and update status flags.
  void negs(const Register& rd,
            const Operand& operand);

  // Add with carry bit.
  void adc(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Add with carry bit and update status flags.
  void adcs(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Subtract with carry bit.
  void sbc(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Subtract with carry bit and update status flags.
  void sbcs(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Negate with carry bit.
  void ngc(const Register& rd,
           const Operand& operand);

  // Negate with carry bit and update status flags.
  void ngcs(const Register& rd,
            const Operand& operand);

  // Logical instructions.
  // Bitwise and (A & B).
  void and_(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Bitwise and (A & B) and update status flags.
  void ands(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Bit test, and set flags.
  void tst(const Register& rn, const Operand& operand);

  // Bit clear (A & ~B).
  void bic(const Register& rd,
           const Register& rn,
           const Operand& operand);

  // Bit clear (A & ~B) and update status flags.
  void bics(const Register& rd,
            const Register& rn,
            const Operand& operand);

  // Bitwise or (A | B).
  void orr(const Register& rd, const Register& rn, const Operand& operand);

  // Bitwise nor (A | ~B).
  void orn(const Register& rd, const Register& rn, const Operand& operand);

  // Bitwise eor/xor (A ^ B).
  void eor(const Register& rd, const Register& rn, const Operand& operand);

  // Bitwise enor/xnor (A ^ ~B).
  void eon(const Register& rd, const Register& rn, const Operand& operand);

  // Logical shift left variable.
  void lslv(const Register& rd, const Register& rn, const Register& rm);

  // Logical shift right variable.
  void lsrv(const Register& rd, const Register& rn, const Register& rm);

  // Arithmetic shift right variable.
  void asrv(const Register& rd, const Register& rn, const Register& rm);

  // Rotate right variable.
  void rorv(const Register& rd, const Register& rn, const Register& rm);

  // Bitfield instructions.
  // Bitfield move.
  void bfm(const Register& rd,
           const Register& rn,
           unsigned immr,
           unsigned imms);

  // Signed bitfield move.
  void sbfm(const Register& rd,
            const Register& rn,
            unsigned immr,
            unsigned imms);

  // Unsigned bitfield move.
  void ubfm(const Register& rd,
            const Register& rn,
            unsigned immr,
            unsigned imms);

  // Bfm aliases.
  // Bitfield insert.
  void bfi(const Register& rd,
           const Register& rn,
           unsigned lsb,
           unsigned width) {
    ASSERT(width >= 1);
    ASSERT(lsb + width <= rn.SizeInBits());
    bfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
  }

  // Bitfield extract and insert low.
  void bfxil(const Register& rd,
             const Register& rn,
             unsigned lsb,
             unsigned width) {
    ASSERT(width >= 1);
    ASSERT(lsb + width <= rn.SizeInBits());
    bfm(rd, rn, lsb, lsb + width - 1);
  }

  // Sbfm aliases.
  // Arithmetic shift right.
  void asr(const Register& rd, const Register& rn, unsigned shift) {
    ASSERT(shift < rd.SizeInBits());
    sbfm(rd, rn, shift, rd.SizeInBits() - 1);
  }

  // Signed bitfield insert in zero.
  void sbfiz(const Register& rd,
             const Register& rn,
             unsigned lsb,
             unsigned width) {
    ASSERT(width >= 1);
    ASSERT(lsb + width <= rn.SizeInBits());
    sbfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
  }

  // Signed bitfield extract.
  void sbfx(const Register& rd,
            const Register& rn,
            unsigned lsb,
            unsigned width) {
    ASSERT(width >= 1);
    ASSERT(lsb + width <= rn.SizeInBits());
    sbfm(rd, rn, lsb, lsb + width - 1);
  }

  // Signed extend byte.
  void sxtb(const Register& rd, const Register& rn) {
    sbfm(rd, rn, 0, 7);
  }

  // Signed extend halfword.
  void sxth(const Register& rd, const Register& rn) {
    sbfm(rd, rn, 0, 15);
  }

  // Signed extend word.
  void sxtw(const Register& rd, const Register& rn) {
    sbfm(rd, rn, 0, 31);
  }

  // Ubfm aliases.
  // Logical shift left.
  void lsl(const Register& rd, const Register& rn, unsigned shift) {
    unsigned reg_size = rd.SizeInBits();
    ASSERT(shift < reg_size);
    ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
  }

  // Logical shift right.
  void lsr(const Register& rd, const Register& rn, unsigned shift) {
    ASSERT(shift < rd.SizeInBits());
    ubfm(rd, rn, shift, rd.SizeInBits() - 1);
  }

  // Unsigned bitfield insert in zero.
  void ubfiz(const Register& rd,
             const Register& rn,
             unsigned lsb,
             unsigned width) {
    ASSERT(width >= 1);
    ASSERT(lsb + width <= rn.SizeInBits());
    ubfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
  }

  // Unsigned bitfield extract.
  void ubfx(const Register& rd,
            const Register& rn,
            unsigned lsb,
            unsigned width) {
    ASSERT(width >= 1);
    ASSERT(lsb + width <= rn.SizeInBits());
    ubfm(rd, rn, lsb, lsb + width - 1);
  }

  // Unsigned extend byte.
  void uxtb(const Register& rd, const Register& rn) {
    ubfm(rd, rn, 0, 7);
  }

  // Unsigned extend halfword.
  void uxth(const Register& rd, const Register& rn) {
    ubfm(rd, rn, 0, 15);
  }

  // Unsigned extend word.
  void uxtw(const Register& rd, const Register& rn) {
    ubfm(rd, rn, 0, 31);
  }

  // Extract.
  void extr(const Register& rd,
            const Register& rn,
            const Register& rm,
            unsigned lsb);

  // Conditional select: rd = cond ? rn : rm.
  void csel(const Register& rd,
            const Register& rn,
            const Register& rm,
            Condition cond);

  // Conditional select increment: rd = cond ? rn : rm + 1.
  void csinc(const Register& rd,
             const Register& rn,
             const Register& rm,
             Condition cond);

  // Conditional select inversion: rd = cond ? rn : ~rm.
  void csinv(const Register& rd,
             const Register& rn,
             const Register& rm,
             Condition cond);

  // Conditional select negation: rd = cond ? rn : -rm.
  void csneg(const Register& rd,
             const Register& rn,
             const Register& rm,
             Condition cond);

  // Conditional set: rd = cond ? 1 : 0.
  void cset(const Register& rd, Condition cond);

  // Conditional set minus: rd = cond ? -1 : 0.
  void csetm(const Register& rd, Condition cond);

  // Conditional increment: rd = cond ? rn + 1 : rn.
  void cinc(const Register& rd, const Register& rn, Condition cond);

  // Conditional invert: rd = cond ? ~rn : rn.
  void cinv(const Register& rd, const Register& rn, Condition cond);

  // Conditional negate: rd = cond ? -rn : rn.
  void cneg(const Register& rd, const Register& rn, Condition cond);

  // Extr aliases.
  void ror(const Register& rd, const Register& rs, unsigned shift) {
    extr(rd, rs, rs, shift);
  }

  // Conditional comparison.
  // Conditional compare negative.
  void ccmn(const Register& rn,
            const Operand& operand,
            StatusFlags nzcv,
            Condition cond);

  // Conditional compare.
  void ccmp(const Register& rn,
            const Operand& operand,
            StatusFlags nzcv,
            Condition cond);

  // Multiplication.
  // 32 x 32 -> 32-bit and 64 x 64 -> 64-bit multiply.
  void mul(const Register& rd, const Register& rn, const Register& rm);

  // 32 + 32 x 32 -> 32-bit and 64 + 64 x 64 -> 64-bit multiply accumulate.
  void madd(const Register& rd,
            const Register& rn,
            const Register& rm,
            const Register& ra);

  // -(32 x 32) -> 32-bit and -(64 x 64) -> 64-bit multiply.
  void mneg(const Register& rd, const Register& rn, const Register& rm);

  // 32 - 32 x 32 -> 32-bit and 64 - 64 x 64 -> 64-bit multiply subtract.
  void msub(const Register& rd,
            const Register& rn,
            const Register& rm,
            const Register& ra);

  // 32 x 32 -> 64-bit multiply.
  void smull(const Register& rd, const Register& rn, const Register& rm);

  // Xd = bits<127:64> of Xn * Xm.
  void smulh(const Register& rd, const Register& rn, const Register& rm);

  // Signed 32 x 32 -> 64-bit multiply and accumulate.
  void smaddl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Unsigned 32 x 32 -> 64-bit multiply and accumulate.
  void umaddl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Signed 32 x 32 -> 64-bit multiply and subtract.
  void smsubl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Unsigned 32 x 32 -> 64-bit multiply and subtract.
  void umsubl(const Register& rd,
              const Register& rn,
              const Register& rm,
              const Register& ra);

  // Signed integer divide.
  void sdiv(const Register& rd, const Register& rn, const Register& rm);

  // Unsigned integer divide.
  void udiv(const Register& rd, const Register& rn, const Register& rm);

  // Bit count, bit reverse and endian reverse.
  void rbit(const Register& rd, const Register& rn);
  void rev16(const Register& rd, const Register& rn);
  void rev32(const Register& rd, const Register& rn);
  void rev(const Register& rd, const Register& rn);
  void clz(const Register& rd, const Register& rn);
  void cls(const Register& rd, const Register& rn);

  // Memory instructions.

  // Load literal from pc + offset_from_pc.
  void LoadLiteral(const CPURegister& rt, int offset_from_pc);

  // Load integer or FP register.
  void ldr(const CPURegister& rt, const MemOperand& src);

  // Store integer or FP register.
  void str(const CPURegister& rt, const MemOperand& dst);

  // Load word with sign extension.
  void ldrsw(const Register& rt, const MemOperand& src);

  // Load byte.
  void ldrb(const Register& rt, const MemOperand& src);

  // Store byte.
  void strb(const Register& rt, const MemOperand& dst);

  // Load byte with sign extension.
  void ldrsb(const Register& rt, const MemOperand& src);

  // Load half-word.
  void ldrh(const Register& rt, const MemOperand& src);

  // Store half-word.
  void strh(const Register& rt, const MemOperand& dst);

  // Load half-word with sign extension.
  void ldrsh(const Register& rt, const MemOperand& src);

  // Load integer or FP register pair.
  void ldp(const CPURegister& rt, const CPURegister& rt2,
           const MemOperand& src);

  // Store integer or FP register pair.
  void stp(const CPURegister& rt, const CPURegister& rt2,
           const MemOperand& dst);

  // Load word pair with sign extension.
  void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);

  // Load integer or FP register pair, non-temporal.
  void ldnp(const CPURegister& rt, const CPURegister& rt2,
            const MemOperand& src);

  // Store integer or FP register pair, non-temporal.
  void stnp(const CPURegister& rt, const CPURegister& rt2,
            const MemOperand& dst);

  // Load literal to register.
  void ldr(const Register& rt, uint64_t imm);

  // Load literal to FP register.
  void ldr(const FPRegister& ft, double imm);
1421
  void ldr(const FPRegister& ft, float imm);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

  // Move instructions. The default shift of -1 indicates that the move
  // instruction will calculate an appropriate 16-bit immediate and left shift
  // that is equal to the 64-bit immediate argument. If an explicit left shift
  // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
  //
  // For movk, an explicit shift can be used to indicate which half word should
  // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
  // half word with zero, whereas movk(x0, 0, 48) will overwrite the
  // most-significant.

  // Move and keep.
  void movk(const Register& rd, uint64_t imm, int shift = -1) {
    MoveWide(rd, imm, shift, MOVK);
  }

  // Move with non-zero.
  void movn(const Register& rd, uint64_t imm, int shift = -1) {
    MoveWide(rd, imm, shift, MOVN);
  }

  // Move with zero.
  void movz(const Register& rd, uint64_t imm, int shift = -1) {
    MoveWide(rd, imm, shift, MOVZ);
  }

  // Misc instructions.
  // Monitor debug-mode breakpoint.
  void brk(int code);

  // Halting debug-mode breakpoint.
  void hlt(int code);

  // Move register to register.
  void mov(const Register& rd, const Register& rn);

  // Move NOT(operand) to register.
  void mvn(const Register& rd, const Operand& operand);

  // System instructions.
  // Move to register from system register.
  void mrs(const Register& rt, SystemRegister sysreg);

  // Move from register to system register.
  void msr(SystemRegister sysreg, const Register& rt);

  // System hint.
  void hint(SystemHint code);

  // Data memory barrier
  void dmb(BarrierDomain domain, BarrierType type);

  // Data synchronization barrier
  void dsb(BarrierDomain domain, BarrierType type);

  // Instruction synchronization barrier
  void isb();

  // Alias for system instructions.
  void nop() { hint(NOP); }

  // Different nop operations are used by the code generator to detect certain
  // states of the generated code.
  enum NopMarkerTypes {
    DEBUG_BREAK_NOP,
    INTERRUPT_CODE_NOP,
1488
    ADR_FAR_NOP,
1489
    FIRST_NOP_MARKER = DEBUG_BREAK_NOP,
1490
    LAST_NOP_MARKER = ADR_FAR_NOP
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
  };

  void nop(NopMarkerTypes n) {
    ASSERT((FIRST_NOP_MARKER <= n) && (n <= LAST_NOP_MARKER));
    mov(Register::XRegFromCode(n), Register::XRegFromCode(n));
  }

  // FP instructions.
  // Move immediate to FP register.
  void fmov(FPRegister fd, double imm);
1501
  void fmov(FPRegister fd, float imm);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

  // Move FP register to register.
  void fmov(Register rd, FPRegister fn);

  // Move register to FP register.
  void fmov(FPRegister fd, Register rn);

  // Move FP register to FP register.
  void fmov(FPRegister fd, FPRegister fn);

  // FP add.
  void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP subtract.
  void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP multiply.
  void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP fused multiply and add.
  void fmadd(const FPRegister& fd,
             const FPRegister& fn,
             const FPRegister& fm,
             const FPRegister& fa);

  // FP fused multiply and subtract.
  void fmsub(const FPRegister& fd,
             const FPRegister& fn,
             const FPRegister& fm,
             const FPRegister& fa);

  // FP fused multiply, add and negate.
  void fnmadd(const FPRegister& fd,
              const FPRegister& fn,
              const FPRegister& fm,
              const FPRegister& fa);

  // FP fused multiply, subtract and negate.
  void fnmsub(const FPRegister& fd,
              const FPRegister& fn,
              const FPRegister& fm,
              const FPRegister& fa);

  // FP divide.
  void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP maximum.
  void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP minimum.
  void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP maximum.
  void fmaxnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP minimum.
  void fminnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);

  // FP absolute.
  void fabs(const FPRegister& fd, const FPRegister& fn);

  // FP negate.
  void fneg(const FPRegister& fd, const FPRegister& fn);

  // FP square root.
  void fsqrt(const FPRegister& fd, const FPRegister& fn);

  // FP round to integer (nearest with ties to away).
  void frinta(const FPRegister& fd, const FPRegister& fn);

1572 1573 1574
  // FP round to integer (toward minus infinity).
  void frintm(const FPRegister& fd, const FPRegister& fn);

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
  // FP round to integer (nearest with ties to even).
  void frintn(const FPRegister& fd, const FPRegister& fn);

  // FP round to integer (towards zero.)
  void frintz(const FPRegister& fd, const FPRegister& fn);

  // FP compare registers.
  void fcmp(const FPRegister& fn, const FPRegister& fm);

  // FP compare immediate.
  void fcmp(const FPRegister& fn, double value);

  // FP conditional compare.
  void fccmp(const FPRegister& fn,
             const FPRegister& fm,
             StatusFlags nzcv,
             Condition cond);

  // FP conditional select.
  void fcsel(const FPRegister& fd,
             const FPRegister& fn,
             const FPRegister& fm,
             Condition cond);

  // Common FP Convert function
  void FPConvertToInt(const Register& rd,
                      const FPRegister& fn,
                      FPIntegerConvertOp op);

  // FP convert between single and double precision.
  void fcvt(const FPRegister& fd, const FPRegister& fn);

  // Convert FP to unsigned integer (nearest with ties to away).
  void fcvtau(const Register& rd, const FPRegister& fn);

  // Convert FP to signed integer (nearest with ties to away).
  void fcvtas(const Register& rd, const FPRegister& fn);

  // Convert FP to unsigned integer (round towards -infinity).
  void fcvtmu(const Register& rd, const FPRegister& fn);

  // Convert FP to signed integer (round towards -infinity).
  void fcvtms(const Register& rd, const FPRegister& fn);

  // Convert FP to unsigned integer (nearest with ties to even).
  void fcvtnu(const Register& rd, const FPRegister& fn);

  // Convert FP to signed integer (nearest with ties to even).
  void fcvtns(const Register& rd, const FPRegister& fn);

  // Convert FP to unsigned integer (round towards zero).
  void fcvtzu(const Register& rd, const FPRegister& fn);

  // Convert FP to signed integer (rounf towards zero).
  void fcvtzs(const Register& rd, const FPRegister& fn);

  // Convert signed integer or fixed point to FP.
  void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);

  // Convert unsigned integer or fixed point to FP.
  void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);

  // Instruction functions used only for test, debug, and patching.
  // Emit raw instructions in the instruction stream.
  void dci(Instr raw_inst) { Emit(raw_inst); }

  // Emit 8 bits of data in the instruction stream.
  void dc8(uint8_t data) { EmitData(&data, sizeof(data)); }

  // Emit 32 bits of data in the instruction stream.
  void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }

  // Emit 64 bits of data in the instruction stream.
  void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }

  // Copy a string into the instruction stream, including the terminating NULL
  // character. The instruction pointer (pc_) is then aligned correctly for
  // subsequent instructions.
  void EmitStringData(const char * string) {
    size_t len = strlen(string) + 1;
    ASSERT(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
    EmitData(string, len);
    // Pad with NULL characters until pc_ is aligned.
    const char pad[] = {'\0', '\0', '\0', '\0'};
    STATIC_ASSERT(sizeof(pad) == kInstructionSize);
    byte* next_pc = AlignUp(pc_, kInstructionSize);
    EmitData(&pad, next_pc - pc_);
  }

  // Pseudo-instructions ------------------------------------------------------

1666
  // Parameters are described in arm64/instructions-arm64.h.
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
  void debug(const char* message, uint32_t code, Instr params = BREAK);

  // Required by V8.
  void dd(uint32_t data) { dc32(data); }
  void db(uint8_t data) { dc8(data); }

  // Code generation helpers --------------------------------------------------

  unsigned num_pending_reloc_info() const { return num_pending_reloc_info_; }

  Instruction* InstructionAt(int offset) const {
    return reinterpret_cast<Instruction*>(buffer_ + offset);
  }

1681 1682 1683 1684
  ptrdiff_t InstructionOffset(Instruction* instr) const {
    return reinterpret_cast<byte*>(instr) - buffer_;
  }

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
  // Register encoding.
  static Instr Rd(CPURegister rd) {
    ASSERT(rd.code() != kSPRegInternalCode);
    return rd.code() << Rd_offset;
  }

  static Instr Rn(CPURegister rn) {
    ASSERT(rn.code() != kSPRegInternalCode);
    return rn.code() << Rn_offset;
  }

  static Instr Rm(CPURegister rm) {
    ASSERT(rm.code() != kSPRegInternalCode);
    return rm.code() << Rm_offset;
  }

  static Instr Ra(CPURegister ra) {
    ASSERT(ra.code() != kSPRegInternalCode);
    return ra.code() << Ra_offset;
  }

  static Instr Rt(CPURegister rt) {
    ASSERT(rt.code() != kSPRegInternalCode);
    return rt.code() << Rt_offset;
  }

  static Instr Rt2(CPURegister rt2) {
    ASSERT(rt2.code() != kSPRegInternalCode);
    return rt2.code() << Rt2_offset;
  }

  // These encoding functions allow the stack pointer to be encoded, and
  // disallow the zero register.
  static Instr RdSP(Register rd) {
    ASSERT(!rd.IsZero());
    return (rd.code() & kRegCodeMask) << Rd_offset;
  }

  static Instr RnSP(Register rn) {
    ASSERT(!rn.IsZero());
    return (rn.code() & kRegCodeMask) << Rn_offset;
  }

  // Flags encoding.
  inline static Instr Flags(FlagsUpdate S);
  inline static Instr Cond(Condition cond);

  // PC-relative address encoding.
  inline static Instr ImmPCRelAddress(int imm21);

  // Branch encoding.
  inline static Instr ImmUncondBranch(int imm26);
  inline static Instr ImmCondBranch(int imm19);
  inline static Instr ImmCmpBranch(int imm19);
  inline static Instr ImmTestBranch(int imm14);
  inline static Instr ImmTestBranchBit(unsigned bit_pos);

  // Data Processing encoding.
  inline static Instr SF(Register rd);
  inline static Instr ImmAddSub(int64_t imm);
  inline static Instr ImmS(unsigned imms, unsigned reg_size);
  inline static Instr ImmR(unsigned immr, unsigned reg_size);
  inline static Instr ImmSetBits(unsigned imms, unsigned reg_size);
  inline static Instr ImmRotate(unsigned immr, unsigned reg_size);
  inline static Instr ImmLLiteral(int imm19);
  inline static Instr BitN(unsigned bitn, unsigned reg_size);
  inline static Instr ShiftDP(Shift shift);
  inline static Instr ImmDPShift(unsigned amount);
  inline static Instr ExtendMode(Extend extend);
  inline static Instr ImmExtendShift(unsigned left_shift);
  inline static Instr ImmCondCmp(unsigned imm);
  inline static Instr Nzcv(StatusFlags nzcv);

1758 1759 1760 1761 1762 1763 1764
  static bool IsImmAddSub(int64_t immediate);
  static bool IsImmLogical(uint64_t value,
                           unsigned width,
                           unsigned* n,
                           unsigned* imm_s,
                           unsigned* imm_r);

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
  // MemOperand offset encoding.
  inline static Instr ImmLSUnsigned(int imm12);
  inline static Instr ImmLS(int imm9);
  inline static Instr ImmLSPair(int imm7, LSDataSize size);
  inline static Instr ImmShiftLS(unsigned shift_amount);
  inline static Instr ImmException(int imm16);
  inline static Instr ImmSystemRegister(int imm15);
  inline static Instr ImmHint(int imm7);
  inline static Instr ImmBarrierDomain(int imm2);
  inline static Instr ImmBarrierType(int imm2);
  inline static LSDataSize CalcLSDataSize(LoadStoreOp op);

  // Move immediates encoding.
  inline static Instr ImmMoveWide(uint64_t imm);
  inline static Instr ShiftMoveWide(int64_t shift);

  // FP Immediates.
  static Instr ImmFP32(float imm);
  static Instr ImmFP64(double imm);
  inline static Instr FPScale(unsigned scale);

  // FP register type.
  inline static Instr FPType(FPRegister fd);

  // Class for scoping postponing the constant pool generation.
  class BlockConstPoolScope {
   public:
    explicit BlockConstPoolScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockConstPool();
    }
    ~BlockConstPoolScope() {
      assem_->EndBlockConstPool();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstPoolScope);
  };

  // Check if is time to emit a constant pool.
  void CheckConstPool(bool force_emit, bool require_jump);

1808
  // Allocate a constant pool of the correct size for the generated code.
1809
  Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1810 1811 1812

  // Generate the constant pool for the generated code.
  void PopulateConstantPool(ConstantPoolArray* constant_pool);
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

  // Returns true if we should emit a veneer as soon as possible for a branch
  // which can at most reach to specified pc.
  bool ShouldEmitVeneer(int max_reachable_pc,
                        int margin = kVeneerDistanceMargin);
  bool ShouldEmitVeneers(int margin = kVeneerDistanceMargin) {
    return ShouldEmitVeneer(unresolved_branches_first_limit(), margin);
  }

  // The maximum code size generated for a veneer. Currently one branch
  // instruction. This is for code size checking purposes, and can be extended
  // in the future for example if we decide to add nops between the veneers.
  static const int kMaxVeneerCodeSize = 1 * kInstructionSize;

1827
  void RecordVeneerPool(int location_offset, int size);
1828 1829 1830
  // Emits veneers for branches that are approaching their maximum range.
  // If need_protection is true, the veneers are protected by a branch jumping
  // over the code.
1831 1832
  void EmitVeneers(bool force_emit, bool need_protection,
                   int margin = kVeneerDistanceMargin);
1833
  void EmitVeneersGuard() { EmitPoolGuard(); }
1834
  // Checks whether veneers need to be emitted at this point.
1835 1836 1837
  // If force_emit is set, a veneer is generated for *all* unresolved branches.
  void CheckVeneerPool(bool force_emit, bool require_jump,
                       int margin = kVeneerDistanceMargin);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854


  class BlockPoolsScope {
   public:
    explicit BlockPoolsScope(Assembler* assem) : assem_(assem) {
      assem_->StartBlockPools();
    }
    ~BlockPoolsScope() {
      assem_->EndBlockPools();
    }

   private:
    Assembler* assem_;

    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockPoolsScope);
  };

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
  // Available for constrained code generation scopes. Prefer
  // MacroAssembler::Mov() when possible.
  inline void LoadRelocated(const CPURegister& rt, const Operand& operand);

 protected:
  inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const;

  void LoadStore(const CPURegister& rt,
                 const MemOperand& addr,
                 LoadStoreOp op);
  static bool IsImmLSUnscaled(ptrdiff_t offset);
  static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size);

  void Logical(const Register& rd,
               const Register& rn,
               const Operand& operand,
               LogicalOp op);
  void LogicalImmediate(const Register& rd,
                        const Register& rn,
                        unsigned n,
                        unsigned imm_s,
                        unsigned imm_r,
                        LogicalOp op);

  void ConditionalCompare(const Register& rn,
                          const Operand& operand,
                          StatusFlags nzcv,
                          Condition cond,
                          ConditionalCompareOp op);
  static bool IsImmConditionalCompare(int64_t immediate);

  void AddSubWithCarry(const Register& rd,
                       const Register& rn,
                       const Operand& operand,
                       FlagsUpdate S,
                       AddSubWithCarryOp op);

  // Functions for emulating operands not directly supported by the instruction
  // set.
  void EmitShift(const Register& rd,
                 const Register& rn,
                 Shift shift,
                 unsigned amount);
  void EmitExtendShift(const Register& rd,
                       const Register& rn,
                       Extend extend,
                       unsigned left_shift);

  void AddSub(const Register& rd,
              const Register& rn,
              const Operand& operand,
              FlagsUpdate S,
              AddSubOp op);

  static bool IsImmFP32(float imm);
  static bool IsImmFP64(double imm);

  // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
  // registers. Only simple loads are supported; sign- and zero-extension (such
  // as in LDPSW_x or LDRB_w) are not supported.
  static inline LoadStoreOp LoadOpFor(const CPURegister& rt);
  static inline LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
                                              const CPURegister& rt2);
  static inline LoadStoreOp StoreOpFor(const CPURegister& rt);
  static inline LoadStorePairOp StorePairOpFor(const CPURegister& rt,
                                               const CPURegister& rt2);
  static inline LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
    const CPURegister& rt, const CPURegister& rt2);
  static inline LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
    const CPURegister& rt, const CPURegister& rt2);

1926 1927 1928 1929 1930 1931
  // Remove the specified branch from the unbound label link chain.
  // If available, a veneer for this label can be used for other branches in the
  // chain if the link chain cannot be fixed up without this branch.
  void RemoveBranchFromLabelLinkChain(Instruction* branch,
                                      Label* label,
                                      Instruction* label_veneer = NULL);
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

 private:
  // Instruction helpers.
  void MoveWide(const Register& rd,
                uint64_t imm,
                int shift,
                MoveWideImmediateOp mov_op);
  void DataProcShiftedRegister(const Register& rd,
                               const Register& rn,
                               const Operand& operand,
                               FlagsUpdate S,
                               Instr op);
  void DataProcExtendedRegister(const Register& rd,
                                const Register& rn,
                                const Operand& operand,
                                FlagsUpdate S,
                                Instr op);
  void LoadStorePair(const CPURegister& rt,
                     const CPURegister& rt2,
                     const MemOperand& addr,
                     LoadStorePairOp op);
  void LoadStorePairNonTemporal(const CPURegister& rt,
                                const CPURegister& rt2,
                                const MemOperand& addr,
                                LoadStorePairNonTemporalOp op);
  // Register the relocation information for the operand and load its value
  // into rt.
  void LoadRelocatedValue(const CPURegister& rt,
                          const Operand& operand,
                          LoadLiteralOp op);
  void ConditionalSelect(const Register& rd,
                         const Register& rn,
                         const Register& rm,
                         Condition cond,
                         ConditionalSelectOp op);
  void DataProcessing1Source(const Register& rd,
                             const Register& rn,
                             DataProcessing1SourceOp op);
  void DataProcessing3Source(const Register& rd,
                             const Register& rn,
                             const Register& rm,
                             const Register& ra,
                             DataProcessing3SourceOp op);
  void FPDataProcessing1Source(const FPRegister& fd,
                               const FPRegister& fn,
                               FPDataProcessing1SourceOp op);
  void FPDataProcessing2Source(const FPRegister& fd,
                               const FPRegister& fn,
                               const FPRegister& fm,
                               FPDataProcessing2SourceOp op);
  void FPDataProcessing3Source(const FPRegister& fd,
                               const FPRegister& fn,
                               const FPRegister& fm,
                               const FPRegister& fa,
                               FPDataProcessing3SourceOp op);

  // Label helpers.

  // Return an offset for a label-referencing instruction, typically a branch.
  int LinkAndGetByteOffsetTo(Label* label);

  // This is the same as LinkAndGetByteOffsetTo, but return an offset
  // suitable for fields that take instruction offsets.
  inline int LinkAndGetInstructionOffsetTo(Label* label);

  static const int kStartOfLabelLinkChain = 0;

  // Verify that a label's link chain is intact.
  void CheckLabelLinkChain(Label const * label);

  void RecordLiteral(int64_t imm, unsigned size);

  // Postpone the generation of the constant pool for the specified number of
  // instructions.
  void BlockConstPoolFor(int instructions);

  // Emit the instruction at pc_.
  void Emit(Instr instruction) {
    STATIC_ASSERT(sizeof(*pc_) == 1);
    STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
    ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));

    memcpy(pc_, &instruction, sizeof(instruction));
    pc_ += sizeof(instruction);
    CheckBuffer();
  }

  // Emit data inline in the instruction stream.
  void EmitData(void const * data, unsigned size) {
    ASSERT(sizeof(*pc_) == 1);
    ASSERT((pc_ + size) <= (buffer_ + buffer_size_));

    // TODO(all): Somehow register we have some data here. Then we can
    // disassemble it correctly.
    memcpy(pc_, data, size);
    pc_ += size;
    CheckBuffer();
  }

  void GrowBuffer();
2032
  void CheckBufferSpace();
2033 2034
  void CheckBuffer();

2035 2036
  // Pc offset of the next constant pool check.
  int next_constant_pool_check_;
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

  // Constant pool generation
  // Pools are emitted in the instruction stream, preferably after unconditional
  // jumps or after returns from functions (in dead code locations).
  // If a long code sequence does not contain unconditional jumps, it is
  // necessary to emit the constant pool before the pool gets too far from the
  // location it is accessed from. In this case, we emit a jump over the emitted
  // constant pool.
  // Constants in the pool may be addresses of functions that gets relocated;
  // if so, a relocation info entry is associated to the constant pool entry.

  // Repeated checking whether the constant pool should be emitted is rather
  // expensive. By default we only check again once a number of instructions
  // has been generated. That also means that the sizing of the buffers is not
  // an exact science, and that we rely on some slop to not overrun buffers.
2052 2053 2054
  static const int kCheckConstPoolIntervalInst = 128;
  static const int kCheckConstPoolInterval =
    kCheckConstPoolIntervalInst * kInstructionSize;
2055 2056 2057 2058

  // Constants in pools are accessed via pc relative addressing, which can
  // reach +/-4KB thereby defining a maximum distance between the instruction
  // and the accessed constant.
2059 2060 2061
  static const int kMaxDistToConstPool = 4 * KB;
  static const int kMaxNumPendingRelocInfo =
    kMaxDistToConstPool / kInstructionSize;
2062 2063 2064 2065 2066 2067 2068


  // Average distance beetween a constant pool and the first instruction
  // accessing the constant pool. Longer distance should result in less I-cache
  // pollution.
  // In practice the distance will be smaller since constant pool emission is
  // forced after function return and sometimes after unconditional branches.
2069 2070
  static const int kAvgDistToConstPool =
    kMaxDistToConstPool - kCheckConstPoolInterval;
2071 2072 2073 2074 2075 2076 2077 2078 2079

  // Emission of the constant pool may be blocked in some code sequences.
  int const_pool_blocked_nesting_;  // Block emission if this is not zero.
  int no_const_pool_before_;  // Block emission before this pc offset.

  // Keep track of the first instruction requiring a constant pool entry
  // since the previous constant pool was emitted.
  int first_const_pool_use_;

2080 2081 2082
  // Emission of the veneer pools may be blocked in some code sequences.
  int veneer_pool_blocked_nesting_;  // Block emission if this is not zero.

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
  // Relocation info generation
  // Each relocation is encoded as a variable size value
  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
  RelocInfoWriter reloc_info_writer;

  // Relocation info records are also used during code generation as temporary
  // containers for constants and code target addresses until they are emitted
  // to the constant pool. These pending relocation info records are temporarily
  // stored in a separate buffer until a constant pool is emitted.
  // If every instruction in a long sequence is accessing the pool, we need one
  // pending relocation entry per instruction.

  // the buffer of pending relocation info
  RelocInfo pending_reloc_info_[kMaxNumPendingRelocInfo];
  // number of pending reloc info entries in the buffer
  int num_pending_reloc_info_;

  // Relocation for a type-recording IC has the AST id added to it.  This
  // member variable is a way to pass the information from the call site to
  // the relocation info.
  TypeFeedbackId recorded_ast_id_;

  inline TypeFeedbackId RecordedAstId();
  inline void ClearRecordedAstId();

 protected:
  // Record the AST id of the CallIC being compiled, so that it can be placed
  // in the relocation information.
  void SetRecordedAstId(TypeFeedbackId ast_id) {
    ASSERT(recorded_ast_id_.IsNone());
    recorded_ast_id_ = ast_id;
  }

  // Code generation
  // The relocation writer's position is at least kGap bytes below the end of
  // the generated instructions. This is so that multi-instruction sequences do
  // not have to check for overflow. The same is true for writes of large
  // relocation info entries, and debug strings encoded in the instruction
  // stream.
  static const int kGap = 128;

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
 public:
  class FarBranchInfo {
   public:
    FarBranchInfo(int offset, Label* label)
        : pc_offset_(offset), label_(label) {}
    // Offset of the branch in the code generation buffer.
    int pc_offset_;
    // The label branched to.
    Label* label_;
  };

 protected:
  // Information about unresolved (forward) branches.
  // The Assembler is only allowed to delete out-of-date information from here
  // after a label is bound. The MacroAssembler uses this information to
  // generate veneers.
  //
  // The second member gives information about the unresolved branch. The first
  // member of the pair is the maximum offset that the branch can reach in the
  // buffer. The map is sorted according to this reachable offset, allowing to
  // easily check when veneers need to be emitted.
  // Note that the maximum reachable offset (first member of the pairs) should
  // always be positive but has the same type as the return value for
  // pc_offset() for convenience.
  std::multimap<int, FarBranchInfo> unresolved_branches_;

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
  // We generate a veneer for a branch if we reach within this distance of the
  // limit of the range.
  static const int kVeneerDistanceMargin = 1 * KB;
  // The factor of 2 is a finger in the air guess. With a default margin of
  // 1KB, that leaves us an addional 256 instructions to avoid generating a
  // protective branch.
  static const int kVeneerNoProtectionFactor = 2;
  static const int kVeneerDistanceCheckMargin =
    kVeneerNoProtectionFactor * kVeneerDistanceMargin;
  int unresolved_branches_first_limit() const {
    ASSERT(!unresolved_branches_.empty());
    return unresolved_branches_.begin()->first;
  }
  // This is similar to next_constant_pool_check_ and helps reduce the overhead
  // of checking for veneer pools.
  // It is maintained to the closest unresolved branch limit minus the maximum
  // veneer margin (or kMaxInt if there are no unresolved branches).
  int next_veneer_pool_check_;

2169 2170 2171 2172 2173 2174
 private:
  // If a veneer is emitted for a branch instruction, that instruction must be
  // removed from the associated label's link chain so that the assembler does
  // not later attempt (likely unsuccessfully) to patch it to branch directly to
  // the label.
  void DeleteUnresolvedBranchInfoForLabel(Label* label);
2175 2176 2177 2178 2179
  // This function deletes the information related to the label by traversing
  // the label chain, and for each PC-relative instruction in the chain checking
  // if pending unresolved information exists. Its complexity is proportional to
  // the length of the label chain.
  void DeleteUnresolvedBranchInfoForLabelTraverse(Label* label);
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
 private:
  PositionsRecorder positions_recorder_;
  friend class PositionsRecorder;
  friend class EnsureSpace;
};

class PatchingAssembler : public Assembler {
 public:
  // Create an Assembler with a buffer starting at 'start'.
  // The buffer size is
  //   size of instructions to patch + kGap
  // Where kGap is the distance from which the Assembler tries to grow the
  // buffer.
  // If more or fewer instructions than expected are generated or if some
  // relocation information takes space in the buffer, the PatchingAssembler
  // will crash trying to grow the buffer.
  PatchingAssembler(Instruction* start, unsigned count)
    : Assembler(NULL,
                reinterpret_cast<byte*>(start),
                count * kInstructionSize + kGap) {
2201
    StartBlockPools();
2202 2203 2204 2205 2206
  }

  PatchingAssembler(byte* start, unsigned count)
    : Assembler(NULL, start, count * kInstructionSize + kGap) {
    // Block constant pool emission.
2207
    StartBlockPools();
2208 2209 2210 2211 2212
  }

  ~PatchingAssembler() {
    // Const pool should still be blocked.
    ASSERT(is_const_pool_blocked());
2213
    EndBlockPools();
2214 2215 2216 2217 2218 2219 2220 2221
    // Verify we have generated the number of instruction we expected.
    ASSERT((pc_offset() + kGap) == buffer_size_);
    // Verify no relocation information has been emitted.
    ASSERT(num_pending_reloc_info() == 0);
    // Flush the Instruction cache.
    size_t length = buffer_size_ - kGap;
    CPU::FlushICache(buffer_, length);
  }
2222 2223 2224 2225 2226 2227 2228 2229

  static const int kMovInt64NInstrs = 4;
  void MovInt64(const Register& rd, int64_t imm);

  // See definition of PatchAdrFar() for details.
  static const int kAdrFarPatchableNNops = kMovInt64NInstrs - 1;
  static const int kAdrFarPatchableNInstrs = kAdrFarPatchableNNops + 3;
  void PatchAdrFar(Instruction* target);
2230 2231 2232 2233 2234 2235
};


class EnsureSpace BASE_EMBEDDED {
 public:
  explicit EnsureSpace(Assembler* assembler) {
2236
    assembler->CheckBufferSpace();
2237 2238 2239 2240 2241
  }
};

} }  // namespace v8::internal

2242
#endif  // V8_ARM64_ASSEMBLER_ARM64_H_