string-inl.h 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_STRING_INL_H_
#define V8_OBJECTS_STRING_INL_H_

#include "src/objects/string.h"

#include "src/conversions-inl.h"
11
#include "src/handles-inl.h"
12
#include "src/heap/factory.h"
13 14 15 16 17 18 19 20 21
#include "src/objects/name-inl.h"
#include "src/string-hasher-inl.h"

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

22 23 24 25 26 27 28 29 30 31 32
INT32_ACCESSORS(String, length, kLengthOffset)

int String::synchronized_length() const {
  return base::AsAtomic32::Acquire_Load(
      reinterpret_cast<const int32_t*>(FIELD_ADDR(this, kLengthOffset)));
}

void String::synchronized_set_length(int value) {
  base::AsAtomic32::Release_Store(
      reinterpret_cast<int32_t*>(FIELD_ADDR(this, kLengthOffset)), value);
}
33 34 35 36 37

CAST_ACCESSOR(ConsString)
CAST_ACCESSOR(ExternalOneByteString)
CAST_ACCESSOR(ExternalString)
CAST_ACCESSOR(ExternalTwoByteString)
38
CAST_ACCESSOR(InternalizedString)
39 40 41 42 43 44 45 46 47 48
CAST_ACCESSOR(SeqOneByteString)
CAST_ACCESSOR(SeqString)
CAST_ACCESSOR(SeqTwoByteString)
CAST_ACCESSOR(SlicedString)
CAST_ACCESSOR(String)
CAST_ACCESSOR(ThinString)

StringShape::StringShape(const String* str)
    : type_(str->map()->instance_type()) {
  set_valid();
49
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
50 51 52 53
}

StringShape::StringShape(Map* map) : type_(map->instance_type()) {
  set_valid();
54
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
55 56 57 58
}

StringShape::StringShape(InstanceType t) : type_(static_cast<uint32_t>(t)) {
  set_valid();
59
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
}

bool StringShape::IsInternalized() {
  DCHECK(valid());
  STATIC_ASSERT(kNotInternalizedTag != 0);
  return (type_ & (kIsNotStringMask | kIsNotInternalizedMask)) ==
         (kStringTag | kInternalizedTag);
}

bool StringShape::HasOnlyOneByteChars() {
  return (type_ & kStringEncodingMask) == kOneByteStringTag ||
         (type_ & kOneByteDataHintMask) == kOneByteDataHintTag;
}

bool StringShape::IsCons() {
  return (type_ & kStringRepresentationMask) == kConsStringTag;
}

bool StringShape::IsThin() {
  return (type_ & kStringRepresentationMask) == kThinStringTag;
}

bool StringShape::IsSliced() {
  return (type_ & kStringRepresentationMask) == kSlicedStringTag;
}

bool StringShape::IsIndirect() {
  return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag;
}

bool StringShape::IsExternal() {
  return (type_ & kStringRepresentationMask) == kExternalStringTag;
}

bool StringShape::IsSequential() {
  return (type_ & kStringRepresentationMask) == kSeqStringTag;
}

StringRepresentationTag StringShape::representation_tag() {
  uint32_t tag = (type_ & kStringRepresentationMask);
  return static_cast<StringRepresentationTag>(tag);
}

uint32_t StringShape::encoding_tag() { return type_ & kStringEncodingMask; }

uint32_t StringShape::full_representation_tag() {
  return (type_ & (kStringRepresentationMask | kStringEncodingMask));
}

STATIC_ASSERT((kStringRepresentationMask | kStringEncodingMask) ==
              Internals::kFullStringRepresentationMask);

STATIC_ASSERT(static_cast<uint32_t>(kStringEncodingMask) ==
              Internals::kStringEncodingMask);

bool StringShape::IsSequentialOneByte() {
  return full_representation_tag() == (kSeqStringTag | kOneByteStringTag);
}

bool StringShape::IsSequentialTwoByte() {
  return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
}

bool StringShape::IsExternalOneByte() {
  return full_representation_tag() == (kExternalStringTag | kOneByteStringTag);
}

STATIC_ASSERT((kExternalStringTag | kOneByteStringTag) ==
              Internals::kExternalOneByteRepresentationTag);

STATIC_ASSERT(v8::String::ONE_BYTE_ENCODING == kOneByteStringTag);

bool StringShape::IsExternalTwoByte() {
  return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
}

STATIC_ASSERT((kExternalStringTag | kTwoByteStringTag) ==
              Internals::kExternalTwoByteRepresentationTag);

STATIC_ASSERT(v8::String::TWO_BYTE_ENCODING == kTwoByteStringTag);

bool String::IsOneByteRepresentation() const {
  uint32_t type = map()->instance_type();
  return (type & kStringEncodingMask) == kOneByteStringTag;
}

bool String::IsTwoByteRepresentation() const {
  uint32_t type = map()->instance_type();
  return (type & kStringEncodingMask) == kTwoByteStringTag;
}

bool String::IsOneByteRepresentationUnderneath() {
  uint32_t type = map()->instance_type();
  STATIC_ASSERT(kIsIndirectStringTag != 0);
  STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
  DCHECK(IsFlat());
  switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
    case kOneByteStringTag:
      return true;
    case kTwoByteStringTag:
      return false;
    default:  // Cons or sliced string.  Need to go deeper.
      return GetUnderlying()->IsOneByteRepresentation();
  }
}

bool String::IsTwoByteRepresentationUnderneath() {
  uint32_t type = map()->instance_type();
  STATIC_ASSERT(kIsIndirectStringTag != 0);
  STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
  DCHECK(IsFlat());
  switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
    case kOneByteStringTag:
      return false;
    case kTwoByteStringTag:
      return true;
    default:  // Cons or sliced string.  Need to go deeper.
      return GetUnderlying()->IsTwoByteRepresentation();
  }
}

bool String::HasOnlyOneByteChars() {
  uint32_t type = map()->instance_type();
  return (type & kOneByteDataHintMask) == kOneByteDataHintTag ||
         IsOneByteRepresentation();
}

uc32 FlatStringReader::Get(int index) {
  if (is_one_byte_) {
    return Get<uint8_t>(index);
  } else {
    return Get<uc16>(index);
  }
}

template <typename Char>
Char FlatStringReader::Get(int index) {
  DCHECK_EQ(is_one_byte_, sizeof(Char) == 1);
  DCHECK(0 <= index && index <= length_);
  if (sizeof(Char) == 1) {
    return static_cast<Char>(static_cast<const uint8_t*>(start_)[index]);
  } else {
    return static_cast<Char>(static_cast<const uc16*>(start_)[index]);
  }
}

template <typename Char>
207
class SequentialStringKey : public StringTableKey {
208
 public:
Yang Guo's avatar
Yang Guo committed
209
  explicit SequentialStringKey(Vector<const Char> string, uint64_t seed)
210 211 212
      : StringTableKey(StringHasher::HashSequentialString<Char>(
            string.start(), string.length(), seed)),
        string_(string) {}
213 214 215 216 217 218

  Vector<const Char> string_;
};

class OneByteStringKey : public SequentialStringKey<uint8_t> {
 public:
Yang Guo's avatar
Yang Guo committed
219
  OneByteStringKey(Vector<const uint8_t> str, uint64_t seed)
220 221 222 223 224 225
      : SequentialStringKey<uint8_t>(str, seed) {}

  bool IsMatch(Object* string) override {
    return String::cast(string)->IsOneByteEqualTo(string_);
  }

226
  Handle<String> AsHandle(Isolate* isolate) override;
227 228
};

229
class SeqOneByteSubStringKey : public StringTableKey {
230 231 232 233 234 235 236 237 238
 public:
// VS 2017 on official builds gives this spurious warning:
// warning C4789: buffer 'key' of size 16 bytes will be overrun; 4 bytes will
// be written starting at offset 16
// https://bugs.chromium.org/p/v8/issues/detail?id=6068
#if defined(V8_CC_MSVC)
#pragma warning(push)
#pragma warning(disable : 4789)
#endif
239 240
  SeqOneByteSubStringKey(Isolate* isolate, Handle<SeqOneByteString> string,
                         int from, int length)
241
      : StringTableKey(StringHasher::HashSequentialString(
242
            string->GetChars() + from, length, isolate->heap()->HashSeed())),
243 244 245 246 247 248
        string_(string),
        from_(from),
        length_(length) {
    DCHECK_LE(0, length_);
    DCHECK_LE(from_ + length_, string_->length());
    DCHECK(string_->IsSeqOneByteString());
249 250 251 252 253 254
  }
#if defined(V8_CC_MSVC)
#pragma warning(pop)
#endif

  bool IsMatch(Object* string) override;
255
  Handle<String> AsHandle(Isolate* isolate) override;
256 257 258 259 260 261 262 263 264

 private:
  Handle<SeqOneByteString> string_;
  int from_;
  int length_;
};

class TwoByteStringKey : public SequentialStringKey<uc16> {
 public:
Yang Guo's avatar
Yang Guo committed
265
  explicit TwoByteStringKey(Vector<const uc16> str, uint64_t seed)
266 267 268 269 270 271
      : SequentialStringKey<uc16>(str, seed) {}

  bool IsMatch(Object* string) override {
    return String::cast(string)->IsTwoByteEqualTo(string_);
  }

272
  Handle<String> AsHandle(Isolate* isolate) override;
273 274 275
};

// Utf8StringKey carries a vector of chars as key.
276
class Utf8StringKey : public StringTableKey {
277
 public:
Yang Guo's avatar
Yang Guo committed
278
  explicit Utf8StringKey(Vector<const char> string, uint64_t seed)
279 280
      : StringTableKey(StringHasher::ComputeUtf8Hash(string, seed, &chars_)),
        string_(string) {}
281 282 283 284 285

  bool IsMatch(Object* string) override {
    return String::cast(string)->IsUtf8EqualTo(string_);
  }

286
  Handle<String> AsHandle(Isolate* isolate) override {
287
    return isolate->factory()->NewInternalizedStringFromUtf8(string_, chars_,
288
                                                             HashField());
289 290
  }

291
 private:
292 293 294 295 296 297 298 299 300 301 302 303
  Vector<const char> string_;
  int chars_;  // Caches the number of characters when computing the hash code.
};

bool String::Equals(String* other) {
  if (other == this) return true;
  if (this->IsInternalizedString() && other->IsInternalizedString()) {
    return false;
  }
  return SlowEquals(other);
}

304
bool String::Equals(Isolate* isolate, Handle<String> one, Handle<String> two) {
305 306 307 308
  if (one.is_identical_to(two)) return true;
  if (one->IsInternalizedString() && two->IsInternalizedString()) {
    return false;
  }
309
  return SlowEquals(isolate, one, two);
310 311
}

312 313
Handle<String> String::Flatten(Isolate* isolate, Handle<String> string,
                               PretenureFlag pretenure) {
314 315 316
  if (string->IsConsString()) {
    Handle<ConsString> cons = Handle<ConsString>::cast(string);
    if (cons->IsFlat()) {
317
      string = handle(cons->first(), isolate);
318
    } else {
319
      return SlowFlatten(isolate, cons, pretenure);
320 321 322
    }
  }
  if (string->IsThinString()) {
323
    string = handle(Handle<ThinString>::cast(string)->actual(), isolate);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    DCHECK(!string->IsConsString());
  }
  return string;
}

uint16_t String::Get(int index) {
  DCHECK(index >= 0 && index < length());
  switch (StringShape(this).full_representation_tag()) {
    case kSeqStringTag | kOneByteStringTag:
      return SeqOneByteString::cast(this)->SeqOneByteStringGet(index);
    case kSeqStringTag | kTwoByteStringTag:
      return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
    case kConsStringTag | kOneByteStringTag:
    case kConsStringTag | kTwoByteStringTag:
      return ConsString::cast(this)->ConsStringGet(index);
    case kExternalStringTag | kOneByteStringTag:
      return ExternalOneByteString::cast(this)->ExternalOneByteStringGet(index);
    case kExternalStringTag | kTwoByteStringTag:
      return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
    case kSlicedStringTag | kOneByteStringTag:
    case kSlicedStringTag | kTwoByteStringTag:
      return SlicedString::cast(this)->SlicedStringGet(index);
    case kThinStringTag | kOneByteStringTag:
    case kThinStringTag | kTwoByteStringTag:
      return ThinString::cast(this)->ThinStringGet(index);
    default:
      break;
  }

  UNREACHABLE();
}

void String::Set(int index, uint16_t value) {
  DCHECK(index >= 0 && index < length());
  DCHECK(StringShape(this).IsSequential());

  return this->IsOneByteRepresentation()
             ? SeqOneByteString::cast(this)->SeqOneByteStringSet(index, value)
             : SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
}

bool String::IsFlat() {
  if (!StringShape(this).IsCons()) return true;
  return ConsString::cast(this)->second()->length() == 0;
}

String* String::GetUnderlying() {
  // Giving direct access to underlying string only makes sense if the
  // wrapping string is already flattened.
  DCHECK(this->IsFlat());
  DCHECK(StringShape(this).IsIndirect());
  STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset);
  STATIC_ASSERT(ConsString::kFirstOffset == ThinString::kActualOffset);
  const int kUnderlyingOffset = SlicedString::kParentOffset;
  return String::cast(READ_FIELD(this, kUnderlyingOffset));
}

template <class Visitor>
ConsString* String::VisitFlat(Visitor* visitor, String* string,
                              const int offset) {
  int slice_offset = offset;
  const int length = string->length();
  DCHECK(offset <= length);
  while (true) {
    int32_t type = string->map()->instance_type();
    switch (type & (kStringRepresentationMask | kStringEncodingMask)) {
      case kSeqStringTag | kOneByteStringTag:
        visitor->VisitOneByteString(
            SeqOneByteString::cast(string)->GetChars() + slice_offset,
            length - offset);
394
        return nullptr;
395 396 397 398 399

      case kSeqStringTag | kTwoByteStringTag:
        visitor->VisitTwoByteString(
            SeqTwoByteString::cast(string)->GetChars() + slice_offset,
            length - offset);
400
        return nullptr;
401 402 403 404 405

      case kExternalStringTag | kOneByteStringTag:
        visitor->VisitOneByteString(
            ExternalOneByteString::cast(string)->GetChars() + slice_offset,
            length - offset);
406
        return nullptr;
407 408 409 410 411

      case kExternalStringTag | kTwoByteStringTag:
        visitor->VisitTwoByteString(
            ExternalTwoByteString::cast(string)->GetChars() + slice_offset,
            length - offset);
412
        return nullptr;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

      case kSlicedStringTag | kOneByteStringTag:
      case kSlicedStringTag | kTwoByteStringTag: {
        SlicedString* slicedString = SlicedString::cast(string);
        slice_offset += slicedString->offset();
        string = slicedString->parent();
        continue;
      }

      case kConsStringTag | kOneByteStringTag:
      case kConsStringTag | kTwoByteStringTag:
        return ConsString::cast(string);

      case kThinStringTag | kOneByteStringTag:
      case kThinStringTag | kTwoByteStringTag:
        string = ThinString::cast(string)->actual();
        continue;

      default:
        UNREACHABLE();
    }
  }
}

template <>
inline Vector<const uint8_t> String::GetCharVector() {
  String::FlatContent flat = GetFlatContent();
  DCHECK(flat.IsOneByte());
  return flat.ToOneByteVector();
}

template <>
inline Vector<const uc16> String::GetCharVector() {
  String::FlatContent flat = GetFlatContent();
  DCHECK(flat.IsTwoByte());
  return flat.ToUC16Vector();
}

uint32_t String::ToValidIndex(Object* number) {
  uint32_t index = PositiveNumberToUint32(number);
  uint32_t length_value = static_cast<uint32_t>(length());
  if (index > length_value) return length_value;
  return index;
}

uint16_t SeqOneByteString::SeqOneByteStringGet(int index) {
  DCHECK(index >= 0 && index < length());
  return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}

void SeqOneByteString::SeqOneByteStringSet(int index, uint16_t value) {
  DCHECK(index >= 0 && index < length() && value <= kMaxOneByteCharCode);
  WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
                   static_cast<byte>(value));
}

Address SeqOneByteString::GetCharsAddress() {
  return FIELD_ADDR(this, kHeaderSize);
}

uint8_t* SeqOneByteString::GetChars() {
  return reinterpret_cast<uint8_t*>(GetCharsAddress());
}

Address SeqTwoByteString::GetCharsAddress() {
  return FIELD_ADDR(this, kHeaderSize);
}

uc16* SeqTwoByteString::GetChars() {
  return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
}

uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
  DCHECK(index >= 0 && index < length());
  return READ_UINT16_FIELD(this, kHeaderSize + index * kShortSize);
}

void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
  DCHECK(index >= 0 && index < length());
  WRITE_UINT16_FIELD(this, kHeaderSize + index * kShortSize, value);
}

int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
  return SizeFor(length());
}

int SeqOneByteString::SeqOneByteStringSize(InstanceType instance_type) {
  return SizeFor(length());
}

String* SlicedString::parent() {
  return String::cast(READ_FIELD(this, kParentOffset));
}

507 508
void SlicedString::set_parent(Isolate* isolate, String* parent,
                              WriteBarrierMode mode) {
509 510
  DCHECK(parent->IsSeqString() || parent->IsExternalString());
  WRITE_FIELD(this, kParentOffset, parent);
511
  CONDITIONAL_WRITE_BARRIER(this, kParentOffset, parent, mode);
512 513 514 515 516 517 518 519 520 521
}

SMI_ACCESSORS(SlicedString, offset, kOffsetOffset)

String* ConsString::first() {
  return String::cast(READ_FIELD(this, kFirstOffset));
}

Object* ConsString::unchecked_first() { return READ_FIELD(this, kFirstOffset); }

522 523
void ConsString::set_first(Isolate* isolate, String* value,
                           WriteBarrierMode mode) {
524
  WRITE_FIELD(this, kFirstOffset, value);
525
  CONDITIONAL_WRITE_BARRIER(this, kFirstOffset, value, mode);
526 527 528 529 530 531 532
}

String* ConsString::second() {
  return String::cast(READ_FIELD(this, kSecondOffset));
}

Object* ConsString::unchecked_second() {
533
  return RELAXED_READ_FIELD(this, kSecondOffset);
534 535
}

536 537
void ConsString::set_second(Isolate* isolate, String* value,
                            WriteBarrierMode mode) {
538
  WRITE_FIELD(this, kSecondOffset, value);
539
  CONDITIONAL_WRITE_BARRIER(this, kSecondOffset, value, mode);
540 541 542 543
}

ACCESSORS(ThinString, actual, String, kActualOffset);

544 545 546 547
HeapObject* ThinString::unchecked_actual() const {
  return reinterpret_cast<HeapObject*>(READ_FIELD(this, kActualOffset));
}

548
bool ExternalString::is_uncached() const {
549
  InstanceType type = map()->instance_type();
550
  return (type & kUncachedExternalStringMask) == kUncachedExternalStringTag;
551 552
}

553 554 555 556 557
Address ExternalString::resource_as_address() {
  return *reinterpret_cast<Address*>(FIELD_ADDR(this, kResourceOffset));
}

void ExternalString::set_address_as_resource(Address address) {
558
  DCHECK(IsAligned(address, kPointerSize));
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
  *reinterpret_cast<Address*>(FIELD_ADDR(this, kResourceOffset)) = address;
  if (IsExternalOneByteString()) {
    ExternalOneByteString::cast(this)->update_data_cache();
  } else {
    ExternalTwoByteString::cast(this)->update_data_cache();
  }
}

uint32_t ExternalString::resource_as_uint32() {
  return static_cast<uint32_t>(
      *reinterpret_cast<uintptr_t*>(FIELD_ADDR(this, kResourceOffset)));
}

void ExternalString::set_uint32_as_resource(uint32_t value) {
  *reinterpret_cast<uintptr_t*>(FIELD_ADDR(this, kResourceOffset)) = value;
574
  if (is_uncached()) return;
575 576 577 578 579
  const char** data_field =
      reinterpret_cast<const char**>(FIELD_ADDR(this, kResourceDataOffset));
  *data_field = nullptr;
}

580 581 582 583 584
const ExternalOneByteString::Resource* ExternalOneByteString::resource() {
  return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}

void ExternalOneByteString::update_data_cache() {
585
  if (is_uncached()) return;
586 587 588 589 590
  const char** data_field =
      reinterpret_cast<const char**>(FIELD_ADDR(this, kResourceDataOffset));
  *data_field = resource()->data();
}

591 592 593 594 595 596 597 598
void ExternalOneByteString::SetResource(
    Isolate* isolate, const ExternalOneByteString::Resource* resource) {
  set_resource(resource);
  size_t new_payload = resource == nullptr ? 0 : resource->length();
  if (new_payload > 0)
    isolate->heap()->UpdateExternalString(this, 0, new_payload);
}

599 600 601 602 603
void ExternalOneByteString::set_resource(
    const ExternalOneByteString::Resource* resource) {
  DCHECK(IsAligned(reinterpret_cast<intptr_t>(resource), kPointerSize));
  *reinterpret_cast<const Resource**>(FIELD_ADDR(this, kResourceOffset)) =
      resource;
604
  if (resource != nullptr) update_data_cache();
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
}

const uint8_t* ExternalOneByteString::GetChars() {
  return reinterpret_cast<const uint8_t*>(resource()->data());
}

uint16_t ExternalOneByteString::ExternalOneByteStringGet(int index) {
  DCHECK(index >= 0 && index < length());
  return GetChars()[index];
}

const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
  return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}

void ExternalTwoByteString::update_data_cache() {
621
  if (is_uncached()) return;
622 623 624 625 626
  const uint16_t** data_field =
      reinterpret_cast<const uint16_t**>(FIELD_ADDR(this, kResourceDataOffset));
  *data_field = resource()->data();
}

627 628 629 630 631 632 633 634
void ExternalTwoByteString::SetResource(
    Isolate* isolate, const ExternalTwoByteString::Resource* resource) {
  set_resource(resource);
  size_t new_payload = resource == nullptr ? 0 : resource->length() * 2;
  if (new_payload > 0)
    isolate->heap()->UpdateExternalString(this, 0, new_payload);
}

635 636 637 638
void ExternalTwoByteString::set_resource(
    const ExternalTwoByteString::Resource* resource) {
  *reinterpret_cast<const Resource**>(FIELD_ADDR(this, kResourceOffset)) =
      resource;
639
  if (resource != nullptr) update_data_cache();
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
}

const uint16_t* ExternalTwoByteString::GetChars() { return resource()->data(); }

uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) {
  DCHECK(index >= 0 && index < length());
  return GetChars()[index];
}

const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData(
    unsigned start) {
  return GetChars() + start;
}

int ConsStringIterator::OffsetForDepth(int depth) { return depth & kDepthMask; }

void ConsStringIterator::PushLeft(ConsString* string) {
  frames_[depth_++ & kDepthMask] = string;
}

void ConsStringIterator::PushRight(ConsString* string) {
  // Inplace update.
  frames_[(depth_ - 1) & kDepthMask] = string;
}

void ConsStringIterator::AdjustMaximumDepth() {
  if (depth_ > maximum_depth_) maximum_depth_ = depth_;
}

void ConsStringIterator::Pop() {
670
  DCHECK_GT(depth_, 0);
671 672 673 674 675
  DCHECK(depth_ <= maximum_depth_);
  depth_--;
}

uint16_t StringCharacterStream::GetNext() {
676
  DCHECK(buffer8_ != nullptr && end_ != nullptr);
677 678 679 680 681 682 683 684 685 686 687 688
  // Advance cursor if needed.
  if (buffer8_ == end_) HasMore();
  DCHECK(buffer8_ < end_);
  return is_one_byte_ ? *buffer8_++ : *buffer16_++;
}

StringCharacterStream::StringCharacterStream(String* string, int offset)
    : is_one_byte_(false) {
  Reset(string, offset);
}

void StringCharacterStream::Reset(String* string, int offset) {
689 690
  buffer8_ = nullptr;
  end_ = nullptr;
691 692
  ConsString* cons_string = String::VisitFlat(this, string, offset);
  iter_.Reset(cons_string, offset);
693
  if (cons_string != nullptr) {
694
    string = iter_.Next(&offset);
695
    if (string != nullptr) String::VisitFlat(this, string, offset);
696 697 698 699 700 701 702 703
  }
}

bool StringCharacterStream::HasMore() {
  if (buffer8_ != end_) return true;
  int offset;
  String* string = iter_.Next(&offset);
  DCHECK_EQ(offset, 0);
704
  if (string == nullptr) return false;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
  String::VisitFlat(this, string);
  DCHECK(buffer8_ != end_);
  return true;
}

void StringCharacterStream::VisitOneByteString(const uint8_t* chars,
                                               int length) {
  is_one_byte_ = true;
  buffer8_ = chars;
  end_ = chars + length;
}

void StringCharacterStream::VisitTwoByteString(const uint16_t* chars,
                                               int length) {
  is_one_byte_ = false;
  buffer16_ = chars;
  end_ = reinterpret_cast<const uint8_t*>(chars + length);
}

bool String::AsArrayIndex(uint32_t* index) {
  uint32_t field = hash_field();
  if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) {
    return false;
  }
  return SlowAsArrayIndex(index);
}

String::SubStringRange::SubStringRange(String* string, int first, int length)
    : string_(string),
      first_(first),
      length_(length == -1 ? string->length() : length) {}

class String::SubStringRange::iterator final {
 public:
  typedef std::forward_iterator_tag iterator_category;
  typedef int difference_type;
  typedef uc16 value_type;
  typedef uc16* pointer;
  typedef uc16& reference;

745
  iterator(const iterator& other) = default;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

  uc16 operator*() { return content_.Get(offset_); }
  bool operator==(const iterator& other) const {
    return content_.UsesSameString(other.content_) && offset_ == other.offset_;
  }
  bool operator!=(const iterator& other) const {
    return !content_.UsesSameString(other.content_) || offset_ != other.offset_;
  }
  iterator& operator++() {
    ++offset_;
    return *this;
  }
  iterator operator++(int);

 private:
  friend class String;
  iterator(String* from, int offset)
      : content_(from->GetFlatContent()), offset_(offset) {}
  String::FlatContent content_;
  int offset_;
};

String::SubStringRange::iterator String::SubStringRange::begin() {
  return String::SubStringRange::iterator(string_, first_);
}

String::SubStringRange::iterator String::SubStringRange::end() {
  return String::SubStringRange::iterator(string_, first_ + length_);
}

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_STRING_INL_H_