statistics-for-json.R 5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
# Copyright 2016 the V8 project authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.

# Do statistical tests on benchmark results
# This script requires the libraries rjson, R.utils, ggplot2 and data.table
# Install them prior to running

# To use the script, first get some benchmark results, for example via
# tools/run_perf.py ../v8-perf/benchmarks/Octane2.1/Octane2.1-TF.json
11
#  --outdir=out/x64.release-on --outdir-secondary=out/x64.release-off
12
# --json-test-results=results-on.json
13
# --json-test-results-secondary=results-off.json
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
# then run this script
# Rscript statistics-for-json.R results-on.json results-off.json ~/SVG
# to produce graphs (and get stdio output of statistical tests).


suppressMessages(library("rjson"))       # for fromJson
suppressMessages(library("R.utils"))     # for printf
suppressMessages(library("ggplot2"))     # for plotting
suppressMessages(library("data.table"))  # less broken than data.frame

# Clear all variables from environment
rm(list=ls())

args <- commandArgs(TRUE)
if (length(args) != 3) {
  printf(paste("usage: Rscript %%this_script patched-results.json",
               "unpatched-results.json\n"))
} else {
  patch <- fromJSON(file=args[1])
  nopatch <- fromJSON(file=args[2])
  outputPath <- args[3]
  df <- data.table(L = numeric(), R = numeric(), E = numeric(), 
                   p.value = numeric(), yL = character(), 
                   p.value.sig = logical())
  
  for (i in seq(1, length(patch$traces))) {
    testName <- patch$traces[[i]]$graphs[[2]]
    printf("%s\n", testName)
    
    nopatch_res <- as.integer(nopatch$traces[[i]]$results)
    patch_res <- as.integer(patch$traces[[i]]$results)
    if (length(nopatch_res) > 0) {
      patch_norm <- shapiro.test(patch_res);
      nopatch_norm <- shapiro.test(nopatch_res);

      # Shaprio-Wilk test indicates whether data is not likely to 
      # come from a normal distribution. The p-value is the probability
      # to obtain the sample from a normal distribution. This means, the
      # smaller p, the more likely the sample was not drawn from a normal
      # distribution. See [wikipedia:Shapiro-Wilk-Test].
      printf("  Patched scores look %s distributed (W=%.4f, p=%.4f)\n", 
             ifelse(patch_norm$p.value < 0.05, "not normally", "normally"), 
             patch_norm$statistic, patch_norm$p.value);
      printf("  Unpatched scores look %s distributed (W=%.4f, p=%.4f)\n", 
             ifelse(nopatch_norm$p.value < 0.05, "not normally", "normally"), 
             nopatch_norm$statistic, nopatch_norm$p.value);
      
      hist <- ggplot(data=data.frame(x=as.integer(patch_res)), aes(x)) +
        theme_bw() + 
        geom_histogram(bins=50) +
        ylab("Points") +
        xlab(patch$traces[[i]]$graphs[[2]])
      ggsave(filename=sprintf("%s/%s.svg", outputPath, testName), 
             plot=hist, width=7, height=7)
      
      hist <- ggplot(data=data.frame(x=as.integer(nopatch_res)), aes(x)) +
        theme_bw() + 
        geom_histogram(bins=50) +
        ylab("Points") +
        xlab(patch$traces[[i]]$graphs[[2]])
      ggsave(filename=sprintf("%s/%s-before.svg", outputPath, testName), 
             plot=hist, width=7, height=7)
      
      # The Wilcoxon rank-sum test 
      mww <- wilcox.test(patch_res, nopatch_res, conf.int = TRUE, exact=TRUE)
      printf(paste("  Wilcoxon U-test W=%.4f, p=%.4f,",
                   "confidence interval [%.1f, %.1f],",
                   "est. effect size %.1f \n"),
                   mww$statistic, mww$p.value,
                   mww$conf.int[1], mww$conf.int[2], mww$estimate);
      df <-rbind(df, list(mww$conf.int[1], mww$conf.int[2], 
                          unname(mww$estimate), unname(mww$p.value),
                          testName, ifelse(mww$p.value < 0.05, TRUE, FALSE)))
      # t-test
      t <- t.test(patch_res, nopatch_res, paired=FALSE)
      printf(paste("  Welch t-test t=%.4f, df = %.2f, p=%.4f,",
                   "confidence interval [%.1f, %.1f], mean diff %.1f \n"),
             t$statistic, t$parameter, t$p.value, 
             t$conf.int[1], t$conf.int[2], t$estimate[1]-t$estimate[2]);
    }
  }
  df2 <- cbind(x=1:nrow(df), df[order(E),])
  speedup <- ggplot(df2, aes(x = x, y = E, colour=p.value.sig)) +
    geom_errorbar(aes(ymax = L, ymin = R), colour="black") +
    geom_point(size = 4) +
    scale_x_discrete(limits=df2$yL,
                       name=paste("Benchmark, n=", length(patch_res))) +
    theme_bw() +
    geom_hline(yintercept = 0) +
    ylab("Est. Effect Size in Points") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)) +
    theme(legend.position = "bottom") +
    scale_colour_manual(name="Statistical Significance (MWW, p < 0.05)",
                          values=c("red", "green"),
                          labels=c("not significant", "significant")) +
    theme(legend.justification=c(0,1), legend.position=c(0,1))
  print(speedup)
  ggsave(filename=sprintf("%s/speedup-estimates.svg", outputPath), 
         plot=speedup, width=7, height=7)
}