builtins-s390.cc 102 KB
Newer Older
1 2 3 4 5 6
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_S390

7
#include "src/assembler-inl.h"
8
#include "src/code-factory.h"
9
#include "src/code-stubs.h"
10 11
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
12 13
#include "src/frame-constants.h"
#include "src/frames.h"
14
#include "src/objects/js-generator.h"
15
#include "src/runtime/runtime.h"
16
#include "src/wasm/wasm-objects.h"
17 18 19 20 21 22

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

23
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
24
                                ExitFrameType exit_frame_type) {
25
  __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
26 27 28 29 30 31 32 33 34 35
  if (exit_frame_type == BUILTIN_EXIT) {
    __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
            RelocInfo::CODE_TARGET);
  } else {
    DCHECK(exit_frame_type == EXIT);
    __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
            RelocInfo::CODE_TARGET);
  }
}

36
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
37 38 39 40 41 42 43 44 45 46 47
  // ----------- S t a t e -------------
  //  -- r2     : number of arguments
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------
  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;

  if (FLAG_debug_code) {
    // Initial map for the builtin InternalArray functions should be maps.
    __ LoadP(r4, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
    __ TestIfSmi(r4);
48 49
    __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction,
              cr0);
50
    __ CompareObjectType(r4, r5, r6, MAP_TYPE);
51
    __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
52 53 54 55 56
  }

  // Run the native code for the InternalArray function called as a normal
  // function.
  // tail call a stub
57
  __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
58 59
  __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
          RelocInfo::CODE_TARGET);
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
}

static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
                                           Runtime::FunctionId function_id) {
  // ----------- S t a t e -------------
  //  -- r2 : argument count (preserved for callee)
  //  -- r3 : target function (preserved for callee)
  //  -- r5 : new target (preserved for callee)
  // -----------------------------------
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    // Push the number of arguments to the callee.
    // Push a copy of the target function and the new target.
    // Push function as parameter to the runtime call.
    __ SmiTag(r2);
    __ Push(r2, r3, r5, r3);

    __ CallRuntime(function_id, 1);
    __ LoadRR(r4, r2);

    // Restore target function and new target.
    __ Pop(r2, r3, r5);
    __ SmiUntag(r2);
  }
84 85 86
  static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
  __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ JumpToJSEntry(r4);
87 88
}

89 90
namespace {

91
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
92
  Label post_instantiation_deopt_entry;
93 94 95 96
  // ----------- S t a t e -------------
  //  -- r2     : number of arguments
  //  -- r3     : constructor function
  //  -- r5     : new target
97
  //  -- cp     : context
98 99 100 101 102 103 104 105 106
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  // Enter a construct frame.
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);

    // Preserve the incoming parameters on the stack.
107 108 109 110 111
    __ SmiTag(r2);
    __ Push(cp, r2);
    __ SmiUntag(r2);
    // The receiver for the builtin/api call.
    __ PushRoot(Heap::kTheHoleValueRootIndex);
112
    // Set up pointer to last argument.
113
    __ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset));
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    // Copy arguments and receiver to the expression stack.
    // r2: number of arguments
    // r3: constructor function
    // r4: address of last argument (caller sp)
    // r5: new target
    // cr0: condition indicating whether r2 is zero
    // sp[0]: receiver
    // sp[1]: receiver
    // sp[2]: number of arguments (smi-tagged)
    Label loop, no_args;
    __ beq(&no_args);
    __ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2));
    __ SubP(sp, sp, ip);
    __ LoadRR(r1, r2);
    __ bind(&loop);
    __ lay(ip, MemOperand(ip, -kPointerSize));
131
    __ LoadP(r0, MemOperand(ip, r6));
132 133 134 135 136 137 138 139
    __ StoreP(r0, MemOperand(ip, sp));
    __ BranchOnCount(r1, &loop);
    __ bind(&no_args);

    // Call the function.
    // r2: number of arguments
    // r3: constructor function
    // r5: new target
140 141

    ParameterCount actual(r2);
142
    __ InvokeFunction(r3, r5, actual, CALL_FUNCTION);
143 144

    // Restore context from the frame.
145
    __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
146 147
    // Restore smi-tagged arguments count from the frame.
    __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
148 149 150

    // Leave construct frame.
  }
151 152
  // Remove caller arguments from the stack and return.
  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
153 154 155 156 157

  __ SmiToPtrArrayOffset(r3, r3);
  __ AddP(sp, sp, r3);
  __ AddP(sp, sp, Operand(kPointerSize));
  __ Ret();
158
}
159

160 161
}  // namespace

162
// The construct stub for ES5 constructor functions and ES6 class constructors.
163
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  // ----------- S t a t e -------------
  //  --      r2: number of arguments (untagged)
  //  --      r3: constructor function
  //  --      r5: new target
  //  --      cp: context
  //  --      lr: return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  // Enter a construct frame.
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
    Label post_instantiation_deopt_entry, not_create_implicit_receiver;

    // Preserve the incoming parameters on the stack.
    __ SmiTag(r2);
180 181 182
    __ Push(cp, r2, r3);
    __ PushRoot(Heap::kUndefinedValueRootIndex);
    __ Push(r5);
183 184 185

    // ----------- S t a t e -------------
    //  --        sp[0*kPointerSize]: new target
186 187 188 189
    //  --        sp[1*kPointerSize]: padding
    //  -- r3 and sp[2*kPointerSize]: constructor function
    //  --        sp[3*kPointerSize]: number of arguments (tagged)
    //  --        sp[4*kPointerSize]: context
190 191 192
    // -----------------------------------

    __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
193
    __ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset));
194
    __ TestBitMask(r6, SharedFunctionInfo::IsDerivedConstructorBit::kMask, r0);
195 196 197 198 199
    __ bne(&not_create_implicit_receiver);

    // If not derived class constructor: Allocate the new receiver object.
    __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
                        r6, r7);
200
    __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
201
            RelocInfo::CODE_TARGET);
202 203 204 205 206
    __ b(&post_instantiation_deopt_entry);

    // Else: use TheHoleValue as receiver for constructor call
    __ bind(&not_create_implicit_receiver);
    __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
207 208

    // ----------- S t a t e -------------
209
    //  --                          r2: receiver
210 211 212 213 214
    //  -- Slot 4 / sp[0*kPointerSize]: new target
    //  -- Slot 3 / sp[1*kPointerSize]: padding
    //  -- Slot 2 / sp[2*kPointerSize]: constructor function
    //  -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
    //  -- Slot 0 / sp[4*kPointerSize]: context
215
    // -----------------------------------
216 217 218 219
    // Deoptimizer enters here.
    masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
        masm->pc_offset());
    __ bind(&post_instantiation_deopt_entry);
220

221 222 223 224 225
    // Restore new target.
    __ Pop(r5);
    // Push the allocated receiver to the stack. We need two copies
    // because we may have to return the original one and the calling
    // conventions dictate that the called function pops the receiver.
226 227
    __ Push(r2, r2);

228 229 230 231
    // ----------- S t a t e -------------
    //  --                 r5: new target
    //  -- sp[0*kPointerSize]: implicit receiver
    //  -- sp[1*kPointerSize]: implicit receiver
232 233 234 235
    //  -- sp[2*kPointerSize]: padding
    //  -- sp[3*kPointerSize]: constructor function
    //  -- sp[4*kPointerSize]: number of arguments (tagged)
    //  -- sp[5*kPointerSize]: context
236 237 238 239
    // -----------------------------------

    // Restore constructor function and argument count.
    __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
240 241 242
    __ LoadP(r2, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
    __ SmiUntag(r2);

243 244 245 246 247 248 249 250 251 252 253 254
    // Set up pointer to last argument.
    __ la(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset));

    // Copy arguments and receiver to the expression stack.
    Label loop, no_args;
    // ----------- S t a t e -------------
    //  --                        r2: number of arguments (untagged)
    //  --                        r5: new target
    //  --                        r6: pointer to last argument
    //  --                        cr0: condition indicating whether r2 is zero
    //  --        sp[0*kPointerSize]: implicit receiver
    //  --        sp[1*kPointerSize]: implicit receiver
255 256 257 258
    //  --        sp[2*kPointerSize]: padding
    //  -- r3 and sp[3*kPointerSize]: constructor function
    //  --        sp[4*kPointerSize]: number of arguments (tagged)
    //  --        sp[5*kPointerSize]: context
259 260 261
    // -----------------------------------

    __ beq(&no_args);
262
    __ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2));
263 264 265 266 267 268 269 270
    __ SubP(sp, sp, ip);
    __ LoadRR(r1, r2);
    __ bind(&loop);
    __ lay(ip, MemOperand(ip, -kPointerSize));
    __ LoadP(r0, MemOperand(ip, r6));
    __ StoreP(r0, MemOperand(ip, sp));
    __ BranchOnCount(r1, &loop);
    __ bind(&no_args);
271

272 273
    // Call the function.
    ParameterCount actual(r2);
274
    __ InvokeFunction(r3, r5, actual, CALL_FUNCTION);
275

276 277 278
    // ----------- S t a t e -------------
    //  --                 r0: constructor result
    //  -- sp[0*kPointerSize]: implicit receiver
279 280 281 282
    //  -- sp[1*kPointerSize]: padding
    //  -- sp[2*kPointerSize]: constructor function
    //  -- sp[3*kPointerSize]: number of arguments
    //  -- sp[4*kPointerSize]: context
283
    // -----------------------------------
284

285 286 287
    // Store offset of return address for deoptimizer.
    masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
        masm->pc_offset());
288

289 290
    // Restore the context from the frame.
    __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
291

292 293 294
    // If the result is an object (in the ECMA sense), we should get rid
    // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    // on page 74.
295
    Label use_receiver, do_throw, leave_frame;
296

297 298 299 300 301 302 303
    // If the result is undefined, we jump out to using the implicit receiver.
    __ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &use_receiver);

    // Otherwise we do a smi check and fall through to check if the return value
    // is a valid receiver.

    // If the result is a smi, it is *not* an object in the ECMA sense.
304
    __ JumpIfSmi(r2, &use_receiver);
305 306 307 308 309 310

    // If the type of the result (stored in its map) is less than
    // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
    __ CompareObjectType(r2, r6, r6, FIRST_JS_RECEIVER_TYPE);
    __ bge(&leave_frame);
311
    __ b(&use_receiver);
312 313

    __ bind(&do_throw);
314
    __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

    // Throw away the result of the constructor invocation and use the
    // on-stack receiver as the result.
    __ bind(&use_receiver);
    __ LoadP(r2, MemOperand(sp));
    __ JumpIfRoot(r2, Heap::kTheHoleValueRootIndex, &do_throw);

    __ bind(&leave_frame);
    // Restore smi-tagged arguments count from the frame.
    __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
    // Leave construct frame.
  }

  // Remove caller arguments from the stack and return.
  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);

  __ SmiToPtrArrayOffset(r3, r3);
  __ AddP(sp, sp, r3);
  __ AddP(sp, sp, Operand(kPointerSize));
  __ Ret();
335 336
}

337 338
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
  Generate_JSBuiltinsConstructStubHelper(masm);
339 340
}

341 342 343 344 345 346 347 348 349 350 351 352
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
                                          Register sfi_data,
                                          Register scratch1) {
  Label done;

  __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
  __ bne(&done, Label::kNear);
  __ LoadP(sfi_data,
           FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
  __ bind(&done);
}

353 354 355 356 357 358 359
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2 : the value to pass to the generator
  //  -- r3 : the JSGeneratorObject to resume
  //  -- lr : return address
  // -----------------------------------
360
  __ AssertGeneratorObject(r3);
361 362

  // Store input value into generator object.
363 364 365 366
  __ StoreP(r2, FieldMemOperand(r3, JSGeneratorObject::kInputOrDebugPosOffset),
            r0);
  __ RecordWriteField(r3, JSGeneratorObject::kInputOrDebugPosOffset, r2, r5,
                      kLRHasNotBeenSaved, kDontSaveFPRegs);
367 368 369

  // Load suspended function and context.
  __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
370
  __ LoadP(cp, FieldMemOperand(r6, JSFunction::kContextOffset));
371 372

  // Flood function if we are stepping.
373 374
  Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
  Label stepping_prepared;
375 376
  ExternalReference debug_hook =
      ExternalReference::debug_hook_on_function_call_address(masm->isolate());
377
  __ Move(ip, debug_hook);
378
  __ LoadB(ip, MemOperand(ip));
379 380
  __ CmpSmiLiteral(ip, Smi::kZero, r0);
  __ bne(&prepare_step_in_if_stepping);
381 382 383 384 385 386

  // Flood function if we need to continue stepping in the suspended generator.

  ExternalReference debug_suspended_generator =
      ExternalReference::debug_suspended_generator_address(masm->isolate());

387
  __ Move(ip, debug_suspended_generator);
388 389 390 391
  __ LoadP(ip, MemOperand(ip));
  __ CmpP(ip, r3);
  __ beq(&prepare_step_in_suspended_generator);
  __ bind(&stepping_prepared);
392

393 394 395 396 397 398
  // Check the stack for overflow. We are not trying to catch interruptions
  // (i.e. debug break and preemption) here, so check the "real stack limit".
  Label stack_overflow;
  __ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
  __ blt(&stack_overflow);

399 400 401 402 403 404 405 406 407 408 409 410
  // Push receiver.
  __ LoadP(ip, FieldMemOperand(r3, JSGeneratorObject::kReceiverOffset));
  __ Push(ip);

  // ----------- S t a t e -------------
  //  -- r3    : the JSGeneratorObject to resume
  //  -- r6    : generator function
  //  -- cp    : generator context
  //  -- lr    : return address
  //  -- sp[0] : generator receiver
  // -----------------------------------

411
  // Copy the function arguments from the generator object's register file.
412
  __ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
413
  __ LoadLogicalHalfWordP(
414 415 416
      r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
  __ LoadP(r4, FieldMemOperand(
                   r3, JSGeneratorObject::kParametersAndRegistersOffset));
417 418
  {
    Label loop, done_loop;
419 420 421
    __ ShiftLeftP(r5, r5, Operand(kPointerSizeLog2));
    __ SubP(sp, r5);

422
    // ip = stack offset
423
    // r5 = parameter array offset
424
    __ LoadImmP(ip, Operand::Zero());
425 426 427
    __ SubP(r5, Operand(kPointerSize));
    __ blt(&done_loop);

428 429
    __ lgfi(r1, Operand(-kPointerSize));

430
    __ bind(&loop);
431 432 433

    // parameter copy loop
    __ LoadP(r0, FieldMemOperand(r4, r5, FixedArray::kHeaderSize));
434
    __ StoreP(r0, MemOperand(sp, ip));
435 436

    // update offsets
437
    __ lay(ip, MemOperand(ip, kPointerSize));
438

439
    __ BranchRelativeOnIdxHighP(r5, r1, &loop);
440

441 442 443
    __ bind(&done_loop);
  }

444 445
  // Underlying function needs to have bytecode available.
  if (FLAG_debug_code) {
446
    __ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset));
447
    __ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset));
448
    GetSharedFunctionInfoBytecode(masm, r5, ip);
449
    __ CompareObjectType(r5, r5, r5, BYTECODE_ARRAY_TYPE);
450
    __ Assert(eq, AbortReason::kMissingBytecodeArray);
451
  }
452

453
  // Resume (Ignition/TurboFan) generator object.
454
  {
455 456 457 458 459
    // We abuse new.target both to indicate that this is a resume call and to
    // pass in the generator object.  In ordinary calls, new.target is always
    // undefined because generator functions are non-constructable.
    __ LoadRR(r5, r3);
    __ LoadRR(r3, r6);
460 461 462 463
    static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
    __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
    __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
    __ JumpToJSEntry(r4);
464
  }
465 466 467 468

  __ bind(&prepare_step_in_if_stepping);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
469
    __ Push(r3, r6);
470 471
    // Push hole as receiver since we do not use it for stepping.
    __ PushRoot(Heap::kTheHoleValueRootIndex);
472
    __ CallRuntime(Runtime::kDebugOnFunctionCall);
473
    __ Pop(r3);
474 475 476 477 478 479 480
    __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
  }
  __ b(&stepping_prepared);

  __ bind(&prepare_step_in_suspended_generator);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
481
    __ Push(r3);
482
    __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
483
    __ Pop(r3);
484 485 486
    __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset));
  }
  __ b(&stepping_prepared);
487 488 489 490 491 492 493

  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ bkpt(0);  // This should be unreachable.
  }
494 495
}

496 497 498 499 500 501 502
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
  FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
  __ push(r3);
  __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}

// Clobbers r4; preserves all other registers.
503
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc) {
504 505 506 507 508 509 510 511 512
  // Check the stack for overflow. We are not trying to catch
  // interruptions (e.g. debug break and preemption) here, so the "real stack
  // limit" is checked.
  Label okay;
  __ LoadRoot(r4, Heap::kRealStackLimitRootIndex);
  // Make r4 the space we have left. The stack might already be overflowed
  // here which will cause r4 to become negative.
  __ SubP(r4, sp, r4);
  // Check if the arguments will overflow the stack.
513
  __ ShiftLeftP(r0, argc, Operand(kPointerSizeLog2));
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
  __ CmpP(r4, r0);
  __ bgt(&okay);  // Signed comparison.

  // Out of stack space.
  __ CallRuntime(Runtime::kThrowStackOverflow);

  __ bind(&okay);
}

static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  // Called from Generate_JS_Entry
  // r2: new.target
  // r3: function
  // r4: receiver
  // r5: argc
  // r6: argv
  // r0,r7-r9, cp may be clobbered
532
  ProfileEntryHookStub::MaybeCallEntryHook(masm);
533 534 535 536 537 538 539

  // Enter an internal frame.
  {
    // FrameScope ends up calling MacroAssembler::EnterFrame here
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Setup the context (we need to use the caller context from the isolate).
540 541
    ExternalReference context_address = ExternalReference::Create(
        IsolateAddressId::kContextAddress, masm->isolate());
542
    __ Move(cp, context_address);
543 544 545 546 547 548 549
    __ LoadP(cp, MemOperand(cp));

    // Push the function and the receiver onto the stack.
    __ Push(r3, r4);

    // Check if we have enough stack space to push all arguments.
    // Clobbers r4.
550
    Generate_CheckStackOverflow(masm, r5);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

    // Copy arguments to the stack in a loop from argv to sp.
    // The arguments are actually placed in reverse order on sp
    // compared to argv (i.e. arg1 is highest memory in sp).
    // r3: function
    // r5: argc
    // r6: argv, i.e. points to first arg
    // r7: scratch reg to hold scaled argc
    // r8: scratch reg to hold arg handle
    // r9: scratch reg to hold index into argv
    Label argLoop, argExit;
    intptr_t zero = 0;
    __ ShiftLeftP(r7, r5, Operand(kPointerSizeLog2));
    __ SubRR(sp, r7);                // Buy the stack frame to fit args
    __ LoadImmP(r9, Operand(zero));  // Initialize argv index
    __ bind(&argLoop);
    __ CmpPH(r7, Operand(zero));
    __ beq(&argExit, Label::kNear);
    __ lay(r7, MemOperand(r7, -kPointerSize));
    __ LoadP(r8, MemOperand(r9, r6));         // read next parameter
    __ la(r9, MemOperand(r9, kPointerSize));  // r9++;
    __ LoadP(r0, MemOperand(r8));             // dereference handle
    __ StoreP(r0, MemOperand(r7, sp));        // push parameter
    __ b(&argLoop);
    __ bind(&argExit);

    // Setup new.target and argc.
    __ LoadRR(r6, r2);
    __ LoadRR(r2, r5);
    __ LoadRR(r5, r6);

    // Initialize all JavaScript callee-saved registers, since they will be seen
    // by the garbage collector as part of handlers.
    __ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
    __ LoadRR(r7, r6);
    __ LoadRR(r8, r6);
    __ LoadRR(r9, r6);

    // Invoke the code.
    Handle<Code> builtin = is_construct
591
                               ? BUILTIN_CODE(masm->isolate(), Construct)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
                               : masm->isolate()->builtins()->Call();
    __ Call(builtin, RelocInfo::CODE_TARGET);

    // Exit the JS frame and remove the parameters (except function), and
    // return.
  }
  __ b(r14);

  // r2: result
}

void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
}

void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}

611 612
static void ReplaceClosureCodeWithOptimizedCode(
    MacroAssembler* masm, Register optimized_code, Register closure,
613 614
    Register scratch1, Register scratch2, Register scratch3) {
  // Store code entry in the closure.
615 616 617 618 619 620 621
  __ StoreP(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset),
            r0);
  __ LoadRR(scratch1,
            optimized_code);  // Write barrier clobbers scratch1 below.
  __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
                      kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
622 623
}

624 625 626 627 628 629 630 631 632 633
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
  Register args_count = scratch;

  // Get the arguments + receiver count.
  __ LoadP(args_count,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ LoadlW(args_count,
            FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));

  // Leave the frame (also dropping the register file).
634
  __ LeaveFrame(StackFrame::INTERPRETED);
635 636 637 638

  __ AddP(sp, sp, args_count);
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
                                          Register smi_entry,
                                          OptimizationMarker marker,
                                          Runtime::FunctionId function_id) {
  Label no_match;
  __ CmpSmiLiteral(smi_entry, Smi::FromEnum(marker), r0);
  __ bne(&no_match);
  GenerateTailCallToReturnedCode(masm, function_id);
  __ bind(&no_match);
}

static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
                                           Register feedback_vector,
                                           Register scratch1, Register scratch2,
                                           Register scratch3) {
  // ----------- S t a t e -------------
  //  -- r0 : argument count (preserved for callee if needed, and caller)
  //  -- r3 : new target (preserved for callee if needed, and caller)
  //  -- r1 : target function (preserved for callee if needed, and caller)
  //  -- feedback vector (preserved for caller if needed)
  // -----------------------------------
  DCHECK(
      !AreAliased(feedback_vector, r2, r3, r5, scratch1, scratch2, scratch3));

664
  Label optimized_code_slot_is_weak_ref, fallthrough;
665 666 667 668

  Register closure = r3;
  Register optimized_code_entry = scratch1;

669 670 671
  __ LoadP(
      optimized_code_entry,
      FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
672 673

  // Check if the code entry is a Smi. If yes, we interpret it as an
674
  // optimisation marker. Otherwise, interpret it as a weak reference to a code
675
  // object.
676
  __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
677 678 679 680 681 682 683 684 685

  {
    // Optimized code slot is a Smi optimization marker.

    // Fall through if no optimization trigger.
    __ CmpSmiLiteral(optimized_code_entry,
                     Smi::FromEnum(OptimizationMarker::kNone), r0);
    __ beq(&fallthrough);

686 687 688
    TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
                                  OptimizationMarker::kLogFirstExecution,
                                  Runtime::kFunctionFirstExecution);
689 690 691 692 693 694 695 696 697
    TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
                                  OptimizationMarker::kCompileOptimized,
                                  Runtime::kCompileOptimized_NotConcurrent);
    TailCallRuntimeIfMarkerEquals(
        masm, optimized_code_entry,
        OptimizationMarker::kCompileOptimizedConcurrent,
        Runtime::kCompileOptimized_Concurrent);

    {
698 699
      // Otherwise, the marker is InOptimizationQueue, so fall through hoping
      // that an interrupt will eventually update the slot with optimized code.
700 701 702 703
      if (FLAG_debug_code) {
        __ CmpSmiLiteral(
            optimized_code_entry,
            Smi::FromEnum(OptimizationMarker::kInOptimizationQueue), r0);
704
        __ Assert(eq, AbortReason::kExpectedOptimizationSentinel);
705
      }
706
      __ b(&fallthrough, Label::kNear);
707 708 709 710
    }
  }

  {
711 712
    // Optimized code slot is a weak reference.
    __ bind(&optimized_code_slot_is_weak_ref);
713

714
    __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough);
715 716 717 718

    // Check if the optimized code is marked for deopt. If it is, call the
    // runtime to clear it.
    Label found_deoptimized_code;
719 720 721 722 723
    __ LoadP(scratch2, FieldMemOperand(optimized_code_entry,
                                       Code::kCodeDataContainerOffset));
    __ LoadW(
        scratch2,
        FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset));
724 725 726 727 728 729 730
    __ TestBit(scratch2, Code::kMarkedForDeoptimizationBit, r0);
    __ bne(&found_deoptimized_code);

    // Optimized code is good, get it into the closure and link the closure into
    // the optimized functions list, then tail call the optimized code.
    // The feedback vector is no longer used, so re-use it as a scratch
    // register.
731 732
    ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
                                        scratch2, scratch3, feedback_vector);
733 734
    static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
    __ AddP(r4, optimized_code_entry,
735
            Operand(Code::kHeaderSize - kHeapObjectTag));
736
    __ Jump(r4);
737 738 739 740 741 742 743 744 745 746 747 748

    // Optimized code slot contains deoptimized code, evict it and re-enter the
    // closure's code.
    __ bind(&found_deoptimized_code);
    GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
  }

  // Fall-through if the optimized code cell is clear and there is no
  // optimization marker.
  __ bind(&fallthrough);
}

749
// Advance the current bytecode offset. This simulates what all bytecode
750 751 752 753 754 755 756
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
                                          Register bytecode_array,
                                          Register bytecode_offset,
                                          Register bytecode, Register scratch1,
                                          Label* if_return) {
757
  Register bytecode_size_table = scratch1;
758
  Register scratch2 = bytecode;
759 760
  DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
                     bytecode));
761 762
  __ Move(bytecode_size_table,
          ExternalReference::bytecode_size_table_address());
763 764

  // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
765
  Label process_bytecode, extra_wide;
766 767
  STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
  STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
768 769 770 771
  STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
  STATIC_ASSERT(3 ==
                static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
  __ CmpP(bytecode, Operand(0x3));
772
  __ bgt(&process_bytecode);
773 774
  __ tmll(bytecode, Operand(0x1));
  __ bne(&extra_wide);
775 776 777 778 779 780

  // Load the next bytecode and update table to the wide scaled table.
  __ AddP(bytecode_offset, bytecode_offset, Operand(1));
  __ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset));
  __ AddP(bytecode_size_table, bytecode_size_table,
          Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
781
  __ b(&process_bytecode);
782 783 784 785 786 787 788

  __ bind(&extra_wide);
  // Load the next bytecode and update table to the extra wide scaled table.
  __ AddP(bytecode_offset, bytecode_offset, Operand(1));
  __ LoadlB(bytecode, MemOperand(bytecode_array, bytecode_offset));
  __ AddP(bytecode_size_table, bytecode_size_table,
          Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
789

790
  // Load the size of the current bytecode.
791 792 793 794 795 796 797 798 799 800 801
  __ bind(&process_bytecode);

// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME)                                           \
  __ CmpP(bytecode,                                                   \
          Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
  __ beq(if_return);
  RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL

  // Otherwise, load the size of the current bytecode and advance the offset.
802 803 804 805 806
  __ ShiftLeftP(scratch2, bytecode, Operand(2));
  __ LoadlW(scratch2, MemOperand(bytecode_size_table, scratch2));
  __ AddP(bytecode_offset, bytecode_offset, scratch2);
}

807 808 809 810 811 812 813
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.  The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
//   o r3: the JS function object being called.
814
//   o r5: the incoming new target or generator object
815 816 817 818 819 820 821 822 823
//   o cp: our context
//   o pp: the caller's constant pool pointer (if enabled)
//   o fp: the caller's frame pointer
//   o sp: stack pointer
//   o lr: return address
//
// The function builds an interpreter frame.  See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
824 825
  ProfileEntryHookStub::MaybeCallEntryHook(masm);

826 827 828 829 830
  Register closure = r3;
  Register feedback_vector = r4;

  // Load the feedback vector from the closure.
  __ LoadP(feedback_vector,
831
           FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
832 833 834 835 836 837
  __ LoadP(feedback_vector,
           FieldMemOperand(feedback_vector, Cell::kValueOffset));
  // Read off the optimized code slot in the feedback vector, and if there
  // is optimized code or an optimization marker, call that instead.
  MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r6, r8, r7);

838 839 840 841
  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done below).
  FrameScope frame_scope(masm, StackFrame::MANUAL);
842
  __ PushStandardFrame(closure);
843

844 845
  // Get the bytecode array from the function object and load it into
  // kInterpreterBytecodeArrayRegister.
846
  __ LoadP(r2, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
847
  // Load original bytecode array or the debug copy.
848 849
  __ LoadP(kInterpreterBytecodeArrayRegister,
           FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset));
850
  GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r6);
851

852
  // Increment invocation count for the function.
853
  __ LoadW(r1, FieldMemOperand(feedback_vector,
854 855
                               FeedbackVector::kInvocationCountOffset));
  __ AddP(r1, r1, Operand(1));
856
  __ StoreW(r1, FieldMemOperand(feedback_vector,
857
                                FeedbackVector::kInvocationCountOffset));
858

859
  // Check function data field is actually a BytecodeArray object.
860 861
  if (FLAG_debug_code) {
    __ TestIfSmi(kInterpreterBytecodeArrayRegister);
862 863
    __ Assert(
        ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
864 865
    __ CompareObjectType(kInterpreterBytecodeArrayRegister, r2, no_reg,
                         BYTECODE_ARRAY_TYPE);
866 867
    __ Assert(
        eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
868 869
  }

870 871 872 873 874 875
  // Reset code age.
  __ mov(r1, Operand(BytecodeArray::kNoAgeBytecodeAge));
  __ StoreByte(r1, FieldMemOperand(kInterpreterBytecodeArrayRegister,
                                   BytecodeArray::kBytecodeAgeOffset),
               r0);

876 877 878 879
  // Load the initial bytecode offset.
  __ mov(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));

880
  // Push bytecode array and Smi tagged bytecode array offset.
881
  __ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
882
  __ Push(kInterpreterBytecodeArrayRegister, r4);
883 884 885 886 887 888 889 890 891

  // Allocate the local and temporary register file on the stack.
  {
    // Load frame size (word) from the BytecodeArray object.
    __ LoadlW(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
                                  BytecodeArray::kFrameSizeOffset));

    // Do a stack check to ensure we don't go over the limit.
    Label ok;
892
    __ SubP(r8, sp, r4);
893
    __ LoadRoot(r0, Heap::kRealStackLimitRootIndex);
894
    __ CmpLogicalP(r8, r0);
895 896 897 898 899 900 901
    __ bge(&ok);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ bind(&ok);

    // If ok, push undefined as the initial value for all register file entries.
    // TODO(rmcilroy): Consider doing more than one push per loop iteration.
    Label loop, no_args;
902
    __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
903 904 905 906 907
    __ ShiftRightP(r4, r4, Operand(kPointerSizeLog2));
    __ LoadAndTestP(r4, r4);
    __ beq(&no_args);
    __ LoadRR(r1, r4);
    __ bind(&loop);
908
    __ push(r8);
909 910 911 912 913
    __ SubP(r1, Operand(1));
    __ bne(&loop);
    __ bind(&no_args);
  }

914 915 916 917 918 919 920 921 922 923 924 925
  // If the bytecode array has a valid incoming new target or generator object
  // register, initialize it with incoming value which was passed in r6.
  Label no_incoming_new_target_or_generator_register;
  __ LoadW(r8, FieldMemOperand(
                   kInterpreterBytecodeArrayRegister,
                   BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
  __ CmpP(r8, Operand::Zero());
  __ beq(&no_incoming_new_target_or_generator_register);
  __ ShiftLeftP(r8, r8, Operand(kPointerSizeLog2));
  __ StoreP(r5, MemOperand(fp, r8));
  __ bind(&no_incoming_new_target_or_generator_register);

926
  // Load accumulator with undefined.
927
  __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
928 929 930 931
  // Load the dispatch table into a register and dispatch to the bytecode
  // handler at the current bytecode offset.
  Label do_dispatch;
  __ bind(&do_dispatch);
932 933 934 935
  __ mov(kInterpreterDispatchTableRegister,
         Operand(ExternalReference::interpreter_dispatch_table_address(
             masm->isolate())));

936 937 938 939 940 941
  __ LoadlB(r5, MemOperand(kInterpreterBytecodeArrayRegister,
                           kInterpreterBytecodeOffsetRegister));
  __ ShiftLeftP(r5, r5, Operand(kPointerSizeLog2));
  __ LoadP(kJavaScriptCallCodeStartRegister,
           MemOperand(kInterpreterDispatchTableRegister, r5));
  __ Call(kJavaScriptCallCodeStartRegister);
942

943 944
  masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());

945 946 947
  // Any returns to the entry trampoline are either due to the return bytecode
  // or the interpreter tail calling a builtin and then a dispatch.

948 949 950 951 952 953 954
  // Get bytecode array and bytecode offset from the stack frame.
  __ LoadP(kInterpreterBytecodeArrayRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ LoadP(kInterpreterBytecodeOffsetRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

955
  // Either return, or advance to the next bytecode and dispatch.
956 957 958
  Label do_return;
  __ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
                           kInterpreterBytecodeOffsetRegister));
959 960 961
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, r3, r4,
                                &do_return);
962
  __ b(&do_dispatch);
963

964 965 966 967
  __ bind(&do_return);
  // The return value is in r2.
  LeaveInterpreterFrame(masm, r4);
  __ Ret();
968 969
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
                                        Register scratch,
                                        Label* stack_overflow) {
  // Check the stack for overflow. We are not trying to catch
  // interruptions (e.g. debug break and preemption) here, so the "real stack
  // limit" is checked.
  __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
  // Make scratch the space we have left. The stack might already be overflowed
  // here which will cause scratch to become negative.
  __ SubP(scratch, sp, scratch);
  // Check if the arguments will overflow the stack.
  __ ShiftLeftP(r0, num_args, Operand(kPointerSizeLog2));
  __ CmpP(scratch, r0);
  __ ble(stack_overflow);  // Signed comparison.
}

986 987
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
                                         Register num_args, Register index,
988
                                         Register count, Register scratch) {
989 990 991
  Label loop, skip;
  __ CmpP(count, Operand::Zero());
  __ beq(&skip);
992 993 994 995 996 997 998 999
  __ AddP(index, index, Operand(kPointerSize));  // Bias up for LoadPU
  __ LoadRR(r0, count);
  __ bind(&loop);
  __ LoadP(scratch, MemOperand(index, -kPointerSize));
  __ lay(index, MemOperand(index, -kPointerSize));
  __ push(scratch);
  __ SubP(r0, Operand(1));
  __ bne(&loop);
1000
  __ bind(&skip);
1001 1002 1003
}

// static
1004
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
1005
    MacroAssembler* masm, ConvertReceiverMode receiver_mode,
1006
    InterpreterPushArgsMode mode) {
1007
  DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
1008 1009 1010 1011 1012 1013 1014
  // ----------- S t a t e -------------
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r4 : the address of the first argument to be pushed. Subsequent
  //          arguments should be consecutive above this, in the same order as
  //          they are to be pushed onto the stack.
  //  -- r3 : the target to call (can be any Object).
  // -----------------------------------
1015
  Label stack_overflow;
1016 1017 1018

  // Calculate number of arguments (AddP one for receiver).
  __ AddP(r5, r2, Operand(1));
1019 1020 1021 1022 1023 1024 1025
  Generate_StackOverflowCheck(masm, r5, ip, &stack_overflow);

  // Push "undefined" as the receiver arg if we need to.
  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
    __ PushRoot(Heap::kUndefinedValueRootIndex);
    __ LoadRR(r5, r2);  // Argument count is correct.
  }
1026 1027

  // Push the arguments.
1028
  Generate_InterpreterPushArgs(masm, r5, r4, r5, r6);
1029 1030 1031 1032
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Pop(r4);                   // Pass the spread in a register
    __ SubP(r2, r2, Operand(1));  // Subtract one for spread
  }
1033 1034

  // Call the target.
1035
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1036
    __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
1037
            RelocInfo::CODE_TARGET);
1038
  } else {
1039
    __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
1040 1041
            RelocInfo::CODE_TARGET);
  }
1042 1043 1044 1045 1046 1047 1048

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable Code.
    __ bkpt(0);
  }
1049 1050 1051
}

// static
1052
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1053
    MacroAssembler* masm, InterpreterPushArgsMode mode) {
1054 1055 1056 1057
  // ----------- S t a t e -------------
  // -- r2 : argument count (not including receiver)
  // -- r5 : new target
  // -- r3 : constructor to call
1058 1059
  // -- r4 : allocation site feedback if available, undefined otherwise.
  // -- r6 : address of the first argument
1060
  // -----------------------------------
1061
  Label stack_overflow;
1062 1063 1064 1065 1066 1067 1068 1069 1070

  // Push a slot for the receiver to be constructed.
  __ LoadImmP(r0, Operand::Zero());
  __ push(r0);

  // Push the arguments (skip if none).
  Label skip;
  __ CmpP(r2, Operand::Zero());
  __ beq(&skip);
1071 1072
  Generate_StackOverflowCheck(masm, r2, ip, &stack_overflow);
  Generate_InterpreterPushArgs(masm, r2, r6, r2, r7);
1073 1074
  __ bind(&skip);

1075 1076 1077 1078 1079 1080
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Pop(r4);                   // Pass the spread in a register
    __ SubP(r2, r2, Operand(1));  // Subtract one for spread
  } else {
    __ AssertUndefinedOrAllocationSite(r4, r7);
  }
1081
  if (mode == InterpreterPushArgsMode::kArrayFunction) {
1082 1083
    __ AssertFunction(r3);

1084
    // Tail call to the array construct stub (still in the caller
1085
    // context at this point).
1086 1087
    Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
    __ Jump(code, RelocInfo::CODE_TARGET);
1088
  } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1089
    // Call the constructor with r2, r3, and r5 unmodified.
1090
    __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1091
            RelocInfo::CODE_TARGET);
1092
  } else {
1093
    DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1094
    // Call the constructor with r2, r3, and r5 unmodified.
1095
    __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1096
  }
1097 1098 1099 1100 1101 1102 1103

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable Code.
    __ bkpt(0);
  }
1104 1105
}

1106
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1107 1108
  // Set the return address to the correct point in the interpreter entry
  // trampoline.
1109
  Label builtin_trampoline, trampoline_loaded;
1110 1111
  Smi* interpreter_entry_return_pc_offset(
      masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1112
  DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

  // If the SFI function_data is an InterpreterData, get the trampoline stored
  // in it, otherwise get the trampoline from the builtins list.
  __ LoadP(r4, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
  __ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
  __ LoadP(r4, FieldMemOperand(r4, SharedFunctionInfo::kFunctionDataOffset));
  __ CompareObjectType(r4, kInterpreterDispatchTableRegister,
                       kInterpreterDispatchTableRegister,
                       INTERPRETER_DATA_TYPE);
  __ bne(&builtin_trampoline);

  __ LoadP(r4,
           FieldMemOperand(r4, InterpreterData::kInterpreterTrampolineOffset));
  __ b(&trampoline_loaded);

  __ bind(&builtin_trampoline);
1129
  __ Move(r4, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
1130 1131

  __ bind(&trampoline_loaded);
1132 1133 1134
  __ AddP(r14, r4, Operand(interpreter_entry_return_pc_offset->value() +
                           Code::kHeaderSize - kHeapObjectTag));

1135
  // Initialize the dispatch table register.
1136 1137 1138
  __ Move(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1139 1140

  // Get the bytecode array pointer from the frame.
1141 1142
  __ LoadP(kInterpreterBytecodeArrayRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1143 1144 1145 1146

  if (FLAG_debug_code) {
    // Check function data field is actually a BytecodeArray object.
    __ TestIfSmi(kInterpreterBytecodeArrayRegister);
1147 1148
    __ Assert(
        ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1149 1150
    __ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg,
                         BYTECODE_ARRAY_TYPE);
1151 1152
    __ Assert(
        eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1153 1154 1155 1156
  }

  // Get the target bytecode offset from the frame.
  __ LoadP(kInterpreterBytecodeOffsetRegister,
1157
           MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1158 1159 1160
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

  // Dispatch to the target bytecode.
1161 1162 1163 1164 1165 1166
  __ LoadlB(ip, MemOperand(kInterpreterBytecodeArrayRegister,
                           kInterpreterBytecodeOffsetRegister));
  __ ShiftLeftP(ip, ip, Operand(kPointerSizeLog2));
  __ LoadP(kJavaScriptCallCodeStartRegister,
           MemOperand(kInterpreterDispatchTableRegister, ip));
  __ Jump(kJavaScriptCallCodeStartRegister);
1167 1168
}

1169
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1170 1171 1172 1173
  // Get bytecode array and bytecode offset from the stack frame.
  __ LoadP(kInterpreterBytecodeArrayRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ LoadP(kInterpreterBytecodeOffsetRegister,
1174
           MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1175 1176
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

1177 1178 1179 1180
  // Load the current bytecode.
  __ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister,
                           kInterpreterBytecodeOffsetRegister));

1181
  // Advance to the next bytecode.
1182 1183 1184 1185
  Label if_return;
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, r3, r4,
                                &if_return);
1186 1187 1188

  // Convert new bytecode offset to a Smi and save in the stackframe.
  __ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
1189 1190 1191 1192
  __ StoreP(r4,
            MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  Generate_InterpreterEnterBytecode(masm);
1193 1194 1195 1196

  // We should never take the if_return path.
  __ bind(&if_return);
  __ Abort(AbortReason::kInvalidBytecodeAdvance);
1197 1198 1199 1200 1201 1202
}

void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
  Generate_InterpreterEnterBytecode(masm);
}

1203 1204 1205 1206 1207 1208 1209 1210 1211
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2 : argument count (preserved for callee)
  //  -- r3 : new target (preserved for callee)
  //  -- r5 : target function (preserved for callee)
  // -----------------------------------
  Label failed;
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
1212
    // Preserve argument count for later compare.
1213
    __ Move(r6, r2);
1214 1215 1216 1217 1218 1219
    // Push a copy of the target function and the new target.
    __ SmiTag(r2);
    // Push another copy as a parameter to the runtime call.
    __ Push(r2, r3, r5, r3);

    // Copy arguments from caller (stdlib, foreign, heap).
1220 1221 1222 1223
    Label args_done;
    for (int j = 0; j < 4; ++j) {
      Label over;
      if (j < 3) {
1224
        __ CmpP(r6, Operand(j));
1225 1226 1227
        __ b(ne, &over);
      }
      for (int i = j - 1; i >= 0; --i) {
1228
        __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
1229
                                        i * kPointerSize));
1230
        __ push(r6);
1231 1232 1233 1234 1235 1236 1237 1238
      }
      for (int i = 0; i < 3 - j; ++i) {
        __ PushRoot(Heap::kUndefinedValueRootIndex);
      }
      if (j < 3) {
        __ jmp(&args_done);
        __ bind(&over);
      }
1239
    }
1240 1241
    __ bind(&args_done);

1242 1243 1244 1245
    // Call runtime, on success unwind frame, and parent frame.
    __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
    // A smi 0 is returned on failure, an object on success.
    __ JumpIfSmi(r2, &failed);
1246 1247

    __ Drop(2);
1248 1249
    __ pop(r6);
    __ SmiUntag(r6);
1250
    scope.GenerateLeaveFrame();
1251

1252 1253
    __ AddP(r6, r6, Operand(1));
    __ Drop(r6);
1254 1255 1256 1257 1258 1259 1260
    __ Ret();

    __ bind(&failed);
    // Restore target function and new target.
    __ Pop(r2, r3, r5);
    __ SmiUntag(r2);
  }
1261 1262
  // On failure, tail call back to regular js by re-calling the function
  // which has be reset to the compile lazy builtin.
1263 1264 1265 1266
  static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
  __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
  __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ JumpToJSEntry(r4);
1267 1268
}

1269 1270 1271 1272
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
                                      bool java_script_builtin,
                                      bool with_result) {
1273
  const RegisterConfiguration* config(RegisterConfiguration::Default());
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
  int allocatable_register_count = config->num_allocatable_general_registers();
  if (with_result) {
    // Overwrite the hole inserted by the deoptimizer with the return value from
    // the LAZY deopt point.
    __ StoreP(
        r2, MemOperand(
                sp, config->num_allocatable_general_registers() * kPointerSize +
                        BuiltinContinuationFrameConstants::kFixedFrameSize));
  }
  for (int i = allocatable_register_count - 1; i >= 0; --i) {
    int code = config->GetAllocatableGeneralCode(i);
    __ Pop(Register::from_code(code));
    if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
      __ SmiUntag(Register::from_code(code));
    }
  }
  __ LoadP(
      fp,
      MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
  __ Pop(ip);
  __ AddP(sp, sp,
          Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
  __ Pop(r0);
  __ LoadRR(r14, r0);
  __ AddP(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ Jump(ip);
}
}  // namespace

void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, false);
}

void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, true);
}

void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, false);
}

void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, true);
}

1321
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1322 1323 1324 1325 1326
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kNotifyDeoptimized);
  }

1327
  DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r2.code());
1328
  __ pop(r2);
1329 1330 1331
  __ Ret();
}

1332 1333
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
                                              bool has_handler_frame) {
1334
  // Lookup the function in the JavaScript frame.
1335 1336 1337 1338 1339 1340 1341
  if (has_handler_frame) {
    __ LoadP(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
    __ LoadP(r2, MemOperand(r2, JavaScriptFrameConstants::kFunctionOffset));
  } else {
    __ LoadP(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
  }

1342 1343 1344 1345 1346 1347 1348
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    // Pass function as argument.
    __ push(r2);
    __ CallRuntime(Runtime::kCompileForOnStackReplacement);
  }

1349
  // If the code object is null, just return to the caller.
1350
  Label skip;
1351
  __ CmpSmiLiteral(r2, Smi::kZero, r0);
1352 1353 1354 1355 1356
  __ bne(&skip);
  __ Ret();

  __ bind(&skip);

1357 1358 1359 1360 1361 1362
  // Drop any potential handler frame that is be sitting on top of the actual
  // JavaScript frame. This is the case then OSR is triggered from bytecode.
  if (has_handler_frame) {
    __ LeaveFrame(StackFrame::STUB);
  }

1363 1364 1365 1366 1367 1368
  // Load deoptimization data from the code object.
  // <deopt_data> = <code>[#deoptimization_data_offset]
  __ LoadP(r3, FieldMemOperand(r2, Code::kDeoptimizationDataOffset));

  // Load the OSR entrypoint offset from the deoptimization data.
  // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1369 1370
  __ LoadP(r3, FieldMemOperand(r3, FixedArray::OffsetOfElementAt(
                                       DeoptimizationData::kOsrPcOffsetIndex)));
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
  __ SmiUntag(r3);

  // Compute the target address = code_obj + header_size + osr_offset
  // <entry_addr> = <code_obj> + #header_size + <osr_offset>
  __ AddP(r2, r3);
  __ AddP(r0, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ LoadRR(r14, r0);

  // And "return" to the OSR entry point of the function.
  __ Ret();
}

1383 1384 1385 1386 1387 1388 1389 1390
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
  Generate_OnStackReplacementHelper(masm, false);
}

void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
  Generate_OnStackReplacementHelper(masm, true);
}

1391 1392 1393 1394 1395 1396 1397 1398 1399
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2    : argc
  //  -- sp[0] : argArray
  //  -- sp[4] : thisArg
  //  -- sp[8] : receiver
  // -----------------------------------

1400
  // 1. Load receiver into r3, argArray into r4 (if present), remove all
1401 1402 1403 1404
  // arguments from the stack (including the receiver), and push thisArg (if
  // present) instead.
  {
    Label skip;
1405
    Register arg_size = r7;
1406 1407 1408 1409
    Register new_sp = r5;
    Register scratch = r6;
    __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
    __ AddP(new_sp, sp, arg_size);
1410 1411
    __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
    __ LoadRR(r4, scratch);
1412 1413 1414 1415 1416
    __ LoadP(r3, MemOperand(new_sp, 0));  // receiver
    __ CmpP(arg_size, Operand(kPointerSize));
    __ blt(&skip);
    __ LoadP(scratch, MemOperand(new_sp, 1 * -kPointerSize));  // thisArg
    __ beq(&skip);
1417
    __ LoadP(r4, MemOperand(new_sp, 2 * -kPointerSize));  // argArray
1418 1419 1420 1421 1422 1423
    __ bind(&skip);
    __ LoadRR(sp, new_sp);
    __ StoreP(scratch, MemOperand(sp, 0));
  }

  // ----------- S t a t e -------------
1424
  //  -- r4    : argArray
1425 1426 1427 1428
  //  -- r3    : receiver
  //  -- sp[0] : thisArg
  // -----------------------------------

1429 1430 1431
  // 2. We don't need to check explicitly for callable receiver here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.
1432 1433 1434

  // 3. Tail call with no arguments if argArray is null or undefined.
  Label no_arguments;
1435 1436
  __ JumpIfRoot(r4, Heap::kNullValueRootIndex, &no_arguments);
  __ JumpIfRoot(r4, Heap::kUndefinedValueRootIndex, &no_arguments);
1437

1438
  // 4a. Apply the receiver to the given argArray.
1439
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1440
          RelocInfo::CODE_TARGET);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

  // 4b. The argArray is either null or undefined, so we tail call without any
  // arguments to the receiver.
  __ bind(&no_arguments);
  {
    __ LoadImmP(r2, Operand::Zero());
    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
  }
}

// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
  // 1. Make sure we have at least one argument.
  // r2: actual number of arguments
  {
    Label done;
    __ CmpP(r2, Operand::Zero());
    __ bne(&done, Label::kNear);
    __ PushRoot(Heap::kUndefinedValueRootIndex);
    __ AddP(r2, Operand(1));
    __ bind(&done);
  }

  // r2: actual number of arguments
  // 2. Get the callable to call (passed as receiver) from the stack.
  __ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2));
  __ LoadP(r3, MemOperand(sp, r4));

  // 3. Shift arguments and return address one slot down on the stack
  //    (overwriting the original receiver).  Adjust argument count to make
  //    the original first argument the new receiver.
  // r2: actual number of arguments
  // r3: callable
  {
    Label loop;
    // Calculate the copy start address (destination). Copy end address is sp.
    __ AddP(r4, sp, r4);

    __ bind(&loop);
    __ LoadP(ip, MemOperand(r4, -kPointerSize));
    __ StoreP(ip, MemOperand(r4));
    __ SubP(r4, Operand(kPointerSize));
    __ CmpP(r4, sp);
    __ bne(&loop);
    // Adjust the actual number of arguments and remove the top element
    // (which is a copy of the last argument).
    __ SubP(r2, Operand(1));
    __ pop();
  }

  // 4. Call the callable.
  __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}

void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2     : argc
  //  -- sp[0]  : argumentsList
  //  -- sp[4]  : thisArgument
  //  -- sp[8]  : target
  //  -- sp[12] : receiver
  // -----------------------------------

1504
  // 1. Load target into r3 (if present), argumentsList into r4 (if present),
1505 1506 1507 1508
  // remove all arguments from the stack (including the receiver), and push
  // thisArgument (if present) instead.
  {
    Label skip;
1509
    Register arg_size = r7;
1510 1511 1512 1513 1514 1515
    Register new_sp = r5;
    Register scratch = r6;
    __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
    __ AddP(new_sp, sp, arg_size);
    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
    __ LoadRR(scratch, r3);
1516
    __ LoadRR(r4, r3);
1517 1518 1519 1520 1521 1522 1523
    __ CmpP(arg_size, Operand(kPointerSize));
    __ blt(&skip);
    __ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize));  // target
    __ beq(&skip);
    __ LoadP(scratch, MemOperand(new_sp, 2 * -kPointerSize));  // thisArgument
    __ CmpP(arg_size, Operand(2 * kPointerSize));
    __ beq(&skip);
1524
    __ LoadP(r4, MemOperand(new_sp, 3 * -kPointerSize));  // argumentsList
1525 1526 1527 1528 1529 1530
    __ bind(&skip);
    __ LoadRR(sp, new_sp);
    __ StoreP(scratch, MemOperand(sp, 0));
  }

  // ----------- S t a t e -------------
1531
  //  -- r4    : argumentsList
1532 1533 1534 1535
  //  -- r3    : target
  //  -- sp[0] : thisArgument
  // -----------------------------------

1536 1537 1538
  // 2. We don't need to check explicitly for callable target here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.
1539

1540
  // 3 Apply the target to the given argumentsList.
1541
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1542
          RelocInfo::CODE_TARGET);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
}

void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2     : argc
  //  -- sp[0]  : new.target (optional)
  //  -- sp[4]  : argumentsList
  //  -- sp[8]  : target
  //  -- sp[12] : receiver
  // -----------------------------------

1554
  // 1. Load target into r3 (if present), argumentsList into r4 (if present),
1555 1556 1557 1558 1559
  // new.target into r5 (if present, otherwise use target), remove all
  // arguments from the stack (including the receiver), and push thisArgument
  // (if present) instead.
  {
    Label skip;
1560
    Register arg_size = r7;
1561 1562 1563 1564
    Register new_sp = r6;
    __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2));
    __ AddP(new_sp, sp, arg_size);
    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1565
    __ LoadRR(r4, r3);
1566 1567 1568 1569 1570 1571 1572
    __ LoadRR(r5, r3);
    __ StoreP(r3, MemOperand(new_sp, 0));  // receiver (undefined)
    __ CmpP(arg_size, Operand(kPointerSize));
    __ blt(&skip);
    __ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize));  // target
    __ LoadRR(r5, r3);  // new.target defaults to target
    __ beq(&skip);
1573
    __ LoadP(r4, MemOperand(new_sp, 2 * -kPointerSize));  // argumentsList
1574 1575 1576 1577 1578 1579 1580 1581
    __ CmpP(arg_size, Operand(2 * kPointerSize));
    __ beq(&skip);
    __ LoadP(r5, MemOperand(new_sp, 3 * -kPointerSize));  // new.target
    __ bind(&skip);
    __ LoadRR(sp, new_sp);
  }

  // ----------- S t a t e -------------
1582
  //  -- r4    : argumentsList
1583 1584 1585 1586 1587
  //  -- r5    : new.target
  //  -- r3    : target
  //  -- sp[0] : receiver (undefined)
  // -----------------------------------

1588 1589 1590
  // 2. We don't need to check explicitly for constructor target here,
  // since that's the first thing the Construct/ConstructWithArrayLike
  // builtins will do.
1591

1592 1593 1594
  // 3. We don't need to check explicitly for constructor new.target here,
  // since that's the second thing the Construct/ConstructWithArrayLike
  // builtins will do.
1595

1596
  // 4. Construct the target with the given new.target and argumentsList.
1597
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
1598
          RelocInfo::CODE_TARGET);
1599 1600 1601 1602
}

static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
  __ SmiTag(r2);
1603
  __ Load(r6, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1604 1605 1606 1607 1608 1609
  // Stack updated as such:
  //    old SP --->
  //                 R14 Return Addr
  //                 Old FP                     <--- New FP
  //                 Argument Adapter SMI
  //                 Function
1610 1611
  //                 ArgC as SMI
  //                 Padding                    <--- New SP
1612 1613 1614 1615 1616 1617 1618 1619 1620
  __ lay(sp, MemOperand(sp, -5 * kPointerSize));

  // Cleanse the top nibble of 31-bit pointers.
  __ CleanseP(r14);
  __ StoreP(r14, MemOperand(sp, 4 * kPointerSize));
  __ StoreP(fp, MemOperand(sp, 3 * kPointerSize));
  __ StoreP(r6, MemOperand(sp, 2 * kPointerSize));
  __ StoreP(r3, MemOperand(sp, 1 * kPointerSize));
  __ StoreP(r2, MemOperand(sp, 0 * kPointerSize));
1621 1622 1623
  __ Push(Smi::kZero);  // Padding.
  __ la(fp,
        MemOperand(sp, ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
1624 1625 1626 1627 1628 1629 1630 1631
}

static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2 : result being passed through
  // -----------------------------------
  // Get the number of arguments passed (as a smi), tear down the frame and
  // then tear down the parameters.
1632
  __ LoadP(r3, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1633 1634 1635 1636 1637 1638 1639
  int stack_adjustment = kPointerSize;  // adjust for receiver
  __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment);
  __ SmiToPtrArrayOffset(r3, r3);
  __ lay(sp, MemOperand(sp, r3));
}

// static
1640 1641
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
                                               Handle<Code> code) {
1642
  // ----------- S t a t e -------------
1643 1644 1645 1646 1647
  //  -- r3 : target
  //  -- r2 : number of parameters on the stack (not including the receiver)
  //  -- r4 : arguments list (a FixedArray)
  //  -- r6 : len (number of elements to push from args)
  //  -- r5 : new.target (for [[Construct]])
1648 1649
  // -----------------------------------

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
  Register scratch = ip;

  if (masm->emit_debug_code()) {
    // Allow r4 to be a FixedArray, or a FixedDoubleArray if r6 == 0.
    Label ok, fail;
    __ AssertNotSmi(r4);
    __ LoadP(scratch, FieldMemOperand(r4, HeapObject::kMapOffset));
    __ LoadHalfWordP(scratch,
                     FieldMemOperand(scratch, Map::kInstanceTypeOffset));
    __ CmpP(scratch, Operand(FIXED_ARRAY_TYPE));
    __ beq(&ok);
    __ CmpP(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE));
    __ bne(&fail);
    __ CmpP(r6, Operand::Zero());
    __ beq(&ok);
    // Fall through.
    __ bind(&fail);
    __ Abort(AbortReason::kOperandIsNotAFixedArray);

    __ bind(&ok);
  }

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
  // Check for stack overflow.
  {
    // Check the stack for overflow. We are not trying to catch interruptions
    // (i.e. debug break and preemption) here, so check the "real stack limit".
    Label done;
    __ LoadRoot(ip, Heap::kRealStackLimitRootIndex);
    // Make ip the space we have left. The stack might already be overflowed
    // here which will cause ip to become negative.
    __ SubP(ip, sp, ip);
    // Check if the arguments will overflow the stack.
1682
    __ ShiftLeftP(r0, r6, Operand(kPointerSizeLog2));
1683 1684 1685 1686 1687 1688 1689 1690
    __ CmpP(ip, r0);  // Signed comparison.
    __ bgt(&done);
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    __ bind(&done);
  }

  // Push arguments onto the stack (thisArgument is already on the stack).
  {
1691
    Label loop, no_args, skip;
1692
    __ CmpP(r6, Operand::Zero());
1693
    __ beq(&no_args);
1694
    __ AddP(r4, r4,
1695
            Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
1696
    __ LoadRR(r1, r6);
1697
    __ bind(&loop);
1698 1699
    __ LoadP(ip, MemOperand(r4, kPointerSize));
    __ la(r4, MemOperand(r4, kPointerSize));
1700 1701
    __ CompareRoot(ip, Heap::kTheHoleValueRootIndex);
    __ bne(&skip, Label::kNear);
1702
    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1703 1704
    __ bind(&skip);
    __ push(ip);
1705 1706
    __ BranchOnCount(r1, &loop);
    __ bind(&no_args);
1707
    __ AddP(r2, r2, r6);
1708 1709
  }

1710 1711
  // Tail-call to the actual Call or Construct builtin.
  __ Jump(code, RelocInfo::CODE_TARGET);
1712 1713
}

1714
// static
1715
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
1716
                                                      CallOrConstructMode mode,
1717
                                                      Handle<Code> code) {
1718
  // ----------- S t a t e -------------
1719 1720 1721 1722
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r5 : the new.target (for [[Construct]] calls)
  //  -- r3 : the target to call (can be any Object)
  //  -- r4 : start index (to support rest parameters)
1723 1724
  // -----------------------------------

1725 1726 1727 1728 1729 1730 1731
  Register scratch = r8;

  if (mode == CallOrConstructMode::kConstruct) {
    Label new_target_constructor, new_target_not_constructor;
    __ JumpIfSmi(r5, &new_target_not_constructor);
    __ LoadP(scratch, FieldMemOperand(r5, HeapObject::kMapOffset));
    __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
1732
    __ tmll(scratch, Operand(Map::IsConstructorBit::kShift));
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    __ bne(&new_target_constructor);
    __ bind(&new_target_not_constructor);
    {
      FrameScope scope(masm, StackFrame::MANUAL);
      __ EnterFrame(StackFrame::INTERNAL);
      __ Push(r5);
      __ CallRuntime(Runtime::kThrowNotConstructor);
    }
    __ bind(&new_target_constructor);
  }

1744 1745
  // Check if we have an arguments adaptor frame below the function frame.
  Label arguments_adaptor, arguments_done;
1746 1747
  __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
  __ LoadP(ip, MemOperand(r6, CommonFrameConstants::kContextOrFrameTypeOffset));
1748
  __ CmpP(ip, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1749 1750
  __ beq(&arguments_adaptor);
  {
1751 1752
    __ LoadP(r7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
    __ LoadP(r7, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
1753 1754 1755
    __ LoadLogicalHalfWordP(
        r7,
        FieldMemOperand(r7, SharedFunctionInfo::kFormalParameterCountOffset));
1756
    __ LoadRR(r6, fp);
1757 1758 1759 1760 1761
  }
  __ b(&arguments_done);
  __ bind(&arguments_adaptor);
  {
    // Load the length from the ArgumentsAdaptorFrame.
1762 1763
    __ LoadP(r7, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
    __ SmiUntag(r7);
1764 1765 1766
  }
  __ bind(&arguments_done);

1767 1768 1769 1770
  Label stack_done, stack_overflow;
  __ SubP(r7, r7, r4);
  __ CmpP(r7, Operand::Zero());
  __ ble(&stack_done);
1771 1772
  {
    // Check for stack overflow.
1773
    Generate_StackOverflowCheck(masm, r7, r4, &stack_overflow);
1774 1775 1776 1777

    // Forward the arguments from the caller frame.
    {
      Label loop;
1778 1779
      __ AddP(r6, r6, Operand(kPointerSize));
      __ AddP(r2, r2, r7);
1780 1781
      __ bind(&loop);
      {
1782 1783
        __ ShiftLeftP(ip, r7, Operand(kPointerSizeLog2));
        __ LoadP(ip, MemOperand(r6, ip));
1784
        __ push(ip);
1785 1786
        __ SubP(r7, r7, Operand(1));
        __ CmpP(r7, Operand::Zero());
1787 1788 1789 1790 1791 1792 1793 1794 1795
        __ bne(&loop);
      }
    }
  }
  __ b(&stack_done);
  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
  __ bind(&stack_done);

1796
  // Tail-call to the {code} handler.
1797 1798 1799
  __ Jump(code, RelocInfo::CODE_TARGET);
}

1800 1801
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
1802
                                     ConvertReceiverMode mode) {
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
  // ----------- S t a t e -------------
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r3 : the function to call (checked to be a JSFunction)
  // -----------------------------------
  __ AssertFunction(r3);

  // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
  // Check that the function is not a "classConstructor".
  Label class_constructor;
  __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
1813
  __ LoadlW(r5, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
1814
  __ TestBitMask(r5, SharedFunctionInfo::IsClassConstructorBit::kMask, r0);
1815 1816 1817 1818 1819 1820 1821 1822
  __ bne(&class_constructor);

  // Enter the context of the function; ToObject has to run in the function
  // context, and we also need to take the global proxy from the function
  // context in case of conversion.
  __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
  // We need to convert the receiver for non-native sloppy mode functions.
  Label done_convert;
1823 1824 1825
  __ AndP(r0, r5,
          Operand(SharedFunctionInfo::IsStrictBit::kMask |
                  SharedFunctionInfo::IsNativeBit::kMask));
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
  __ bne(&done_convert);
  {
    // ----------- S t a t e -------------
    //  -- r2 : the number of arguments (not including the receiver)
    //  -- r3 : the function to call (checked to be a JSFunction)
    //  -- r4 : the shared function info.
    //  -- cp : the function context.
    // -----------------------------------

    if (mode == ConvertReceiverMode::kNullOrUndefined) {
      // Patch receiver to global proxy.
      __ LoadGlobalProxy(r5);
    } else {
      Label convert_to_object, convert_receiver;
      __ ShiftLeftP(r5, r2, Operand(kPointerSizeLog2));
      __ LoadP(r5, MemOperand(sp, r5));
      __ JumpIfSmi(r5, &convert_to_object);
      STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
      __ CompareObjectType(r5, r6, r6, FIRST_JS_RECEIVER_TYPE);
      __ bge(&done_convert);
      if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
        Label convert_global_proxy;
        __ JumpIfRoot(r5, Heap::kUndefinedValueRootIndex,
                      &convert_global_proxy);
        __ JumpIfNotRoot(r5, Heap::kNullValueRootIndex, &convert_to_object);
        __ bind(&convert_global_proxy);
        {
          // Patch receiver to global proxy.
          __ LoadGlobalProxy(r5);
        }
        __ b(&convert_receiver);
      }
      __ bind(&convert_to_object);
      {
        // Convert receiver using ToObject.
        // TODO(bmeurer): Inline the allocation here to avoid building the frame
        // in the fast case? (fall back to AllocateInNewSpace?)
        FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
        __ SmiTag(r2);
        __ Push(r2, r3);
        __ LoadRR(r2, r5);
1867
        __ Push(cp);
1868
        __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
1869
                RelocInfo::CODE_TARGET);
1870
        __ Pop(cp);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        __ LoadRR(r5, r2);
        __ Pop(r2, r3);
        __ SmiUntag(r2);
      }
      __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
      __ bind(&convert_receiver);
    }
    __ ShiftLeftP(r6, r2, Operand(kPointerSizeLog2));
    __ StoreP(r5, MemOperand(sp, r6));
  }
  __ bind(&done_convert);

  // ----------- S t a t e -------------
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r3 : the function to call (checked to be a JSFunction)
  //  -- r4 : the shared function info.
  //  -- cp : the function context.
  // -----------------------------------

1890
  __ LoadLogicalHalfWordP(
1891 1892 1893
      r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset));
  ParameterCount actual(r2);
  ParameterCount expected(r4);
1894
  __ InvokeFunctionCode(r3, no_reg, expected, actual, JUMP_FUNCTION);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

  // The function is a "classConstructor", need to raise an exception.
  __ bind(&class_constructor);
  {
    FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL);
    __ push(r3);
    __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
  }
}

namespace {

void Generate_PushBoundArguments(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r3 : target (checked to be a JSBoundFunction)
  //  -- r5 : new.target (only in case of [[Construct]])
  // -----------------------------------

  // Load [[BoundArguments]] into r4 and length of that into r6.
  Label no_bound_arguments;
  __ LoadP(r4, FieldMemOperand(r3, JSBoundFunction::kBoundArgumentsOffset));
  __ LoadP(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
  __ SmiUntag(r6);
  __ LoadAndTestP(r6, r6);
  __ beq(&no_bound_arguments);
  {
    // ----------- S t a t e -------------
    //  -- r2 : the number of arguments (not including the receiver)
    //  -- r3 : target (checked to be a JSBoundFunction)
    //  -- r4 : the [[BoundArguments]] (implemented as FixedArray)
    //  -- r5 : new.target (only in case of [[Construct]])
    //  -- r6 : the number of [[BoundArguments]]
    // -----------------------------------

    // Reserve stack space for the [[BoundArguments]].
    {
      Label done;
      __ LoadRR(r8, sp);  // preserve previous stack pointer
      __ ShiftLeftP(r9, r6, Operand(kPointerSizeLog2));
      __ SubP(sp, sp, r9);
      // Check the stack for overflow. We are not trying to catch interruptions
      // (i.e. debug break and preemption) here, so check the "real stack
      // limit".
      __ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
      __ bgt(&done);  // Signed comparison.
      // Restore the stack pointer.
      __ LoadRR(sp, r8);
      {
        FrameScope scope(masm, StackFrame::MANUAL);
        __ EnterFrame(StackFrame::INTERNAL);
        __ CallRuntime(Runtime::kThrowStackOverflow);
      }
      __ bind(&done);
    }

    // Relocate arguments down the stack.
    //  -- r2 : the number of arguments (not including the receiver)
    //  -- r8 : the previous stack pointer
    //  -- r9: the size of the [[BoundArguments]]
    {
      Label skip, loop;
      __ LoadImmP(r7, Operand::Zero());
      __ CmpP(r2, Operand::Zero());
      __ beq(&skip);
      __ LoadRR(r1, r2);
      __ bind(&loop);
      __ LoadP(r0, MemOperand(r8, r7));
      __ StoreP(r0, MemOperand(sp, r7));
      __ AddP(r7, r7, Operand(kPointerSize));
      __ BranchOnCount(r1, &loop);
      __ bind(&skip);
    }

    // Copy [[BoundArguments]] to the stack (below the arguments).
    {
      Label loop;
      __ AddP(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
      __ AddP(r4, r4, r9);
      __ LoadRR(r1, r6);
      __ bind(&loop);
      __ LoadP(r0, MemOperand(r4, -kPointerSize));
      __ lay(r4, MemOperand(r4, -kPointerSize));
      __ StoreP(r0, MemOperand(sp, r7));
      __ AddP(r7, r7, Operand(kPointerSize));
      __ BranchOnCount(r1, &loop);
      __ AddP(r2, r2, r6);
    }
  }
  __ bind(&no_bound_arguments);
}

}  // namespace

// static
1990
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
  // ----------- S t a t e -------------
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r3 : the function to call (checked to be a JSBoundFunction)
  // -----------------------------------
  __ AssertBoundFunction(r3);

  // Patch the receiver to [[BoundThis]].
  __ LoadP(ip, FieldMemOperand(r3, JSBoundFunction::kBoundThisOffset));
  __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
  __ StoreP(ip, MemOperand(sp, r1));

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Call the [[BoundTargetFunction]] via the Call builtin.
  __ LoadP(r3,
           FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
2008 2009
  __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
          RelocInfo::CODE_TARGET);
2010 2011 2012
}

// static
2013
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2014 2015 2016 2017 2018 2019 2020 2021 2022
  // ----------- S t a t e -------------
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r3 : the target to call (can be any Object).
  // -----------------------------------

  Label non_callable, non_function, non_smi;
  __ JumpIfSmi(r3, &non_callable);
  __ bind(&non_smi);
  __ CompareObjectType(r3, r6, r7, JS_FUNCTION_TYPE);
2023
  __ Jump(masm->isolate()->builtins()->CallFunction(mode),
2024 2025
          RelocInfo::CODE_TARGET, eq);
  __ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE));
2026
  __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2027
          RelocInfo::CODE_TARGET, eq);
2028 2029 2030

  // Check if target has a [[Call]] internal method.
  __ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
2031
  __ TestBit(r6, Map::IsCallableBit::kShift);
2032 2033
  __ beq(&non_callable);

2034
  // Check if target is a proxy and call CallProxy external builtin
2035 2036
  __ CmpP(r7, Operand(JS_PROXY_TYPE));
  __ bne(&non_function);
2037
  __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

  // 2. Call to something else, which might have a [[Call]] internal method (if
  // not we raise an exception).
  __ bind(&non_function);
  // Overwrite the original receiver the (original) target.
  __ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2));
  __ StoreP(r3, MemOperand(sp, r7));
  // Let the "call_as_function_delegate" take care of the rest.
  __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r3);
  __ Jump(masm->isolate()->builtins()->CallFunction(
2048
              ConvertReceiverMode::kNotNullOrUndefined),
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
          RelocInfo::CODE_TARGET);

  // 3. Call to something that is not callable.
  __ bind(&non_callable);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    __ Push(r3);
    __ CallRuntime(Runtime::kThrowCalledNonCallable);
  }
}

// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r3 : the constructor to call (checked to be a JSFunction)
  //  -- r5 : the new target (checked to be a constructor)
  // -----------------------------------
2067
  __ AssertConstructor(r3, r1);
2068 2069 2070 2071 2072 2073
  __ AssertFunction(r3);

  // Calling convention for function specific ConstructStubs require
  // r4 to contain either an AllocationSite or undefined.
  __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);

2074 2075 2076
  Label call_generic_stub;

  // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2077
  __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
2078
  __ LoadlW(r6, FieldMemOperand(r6, SharedFunctionInfo::kFlagsOffset));
2079 2080 2081 2082 2083 2084 2085
  __ AndP(r6, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
  __ beq(&call_generic_stub);

  __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
          RelocInfo::CODE_TARGET);

  __ bind(&call_generic_stub);
2086
  __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2087
          RelocInfo::CODE_TARGET);
2088 2089 2090 2091 2092 2093 2094 2095 2096
}

// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r3 : the function to call (checked to be a JSBoundFunction)
  //  -- r5 : the new target (checked to be a constructor)
  // -----------------------------------
2097
  __ AssertConstructor(r3, r1);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
  __ AssertBoundFunction(r3);

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
  Label skip;
  __ CmpP(r3, r5);
  __ bne(&skip);
  __ LoadP(r5,
           FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
  __ bind(&skip);

  // Construct the [[BoundTargetFunction]] via the Construct builtin.
  __ LoadP(r3,
           FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset));
2114
  __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
}

// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2 : the number of arguments (not including the receiver)
  //  -- r3 : the constructor to call (can be any Object)
  //  -- r5 : the new target (either the same as the constructor or
  //          the JSFunction on which new was invoked initially)
  // -----------------------------------

  // Check if target is a Smi.
2127
  Label non_constructor, non_proxy;
2128 2129 2130
  __ JumpIfSmi(r3, &non_constructor);

  // Check if target has a [[Construct]] internal method.
2131
  __ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset));
2132
  __ LoadlB(r4, FieldMemOperand(r6, Map::kBitFieldOffset));
2133
  __ TestBit(r4, Map::IsConstructorBit::kShift);
2134 2135
  __ beq(&non_constructor);

2136 2137 2138 2139 2140
  // Dispatch based on instance type.
  __ CompareInstanceType(r6, r7, JS_FUNCTION_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
          RelocInfo::CODE_TARGET, eq);

2141 2142 2143
  // Only dispatch to bound functions after checking whether they are
  // constructors.
  __ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE));
2144
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2145 2146 2147 2148
          RelocInfo::CODE_TARGET, eq);

  // Only dispatch to proxies after checking whether they are constructors.
  __ CmpP(r7, Operand(JS_PROXY_TYPE));
2149
  __ bne(&non_proxy);
2150 2151
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
          RelocInfo::CODE_TARGET);
2152 2153

  // Called Construct on an exotic Object with a [[Construct]] internal method.
2154
  __ bind(&non_proxy);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
  {
    // Overwrite the original receiver with the (original) target.
    __ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2));
    __ StoreP(r3, MemOperand(sp, r7));
    // Let the "call_as_constructor_delegate" take care of the rest.
    __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r3);
    __ Jump(masm->isolate()->builtins()->CallFunction(),
            RelocInfo::CODE_TARGET);
  }

  // Called Construct on an Object that doesn't have a [[Construct]] internal
  // method.
  __ bind(&non_constructor);
2168
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
          RelocInfo::CODE_TARGET);
}

void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2 : actual number of arguments
  //  -- r3 : function (passed through to callee)
  //  -- r4 : expected number of arguments
  //  -- r5 : new target (passed through to callee)
  // -----------------------------------

  Label invoke, dont_adapt_arguments, stack_overflow;

  Label enough, too_few;
2183 2184 2185
  __ tmll(r4, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
  __ b(Condition(1), &dont_adapt_arguments);
  __ CmpLogicalP(r2, r4);
2186 2187 2188 2189 2190
  __ blt(&too_few);

  {  // Enough parameters: actual >= expected
    __ bind(&enough);
    EnterArgumentsAdaptorFrame(masm);
2191
    Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow);
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

    // Calculate copy start address into r2 and copy end address into r6.
    // r2: actual number of arguments as a smi
    // r3: function
    // r4: expected number of arguments
    // r5: new target (passed through to callee)
    __ SmiToPtrArrayOffset(r2, r2);
    __ AddP(r2, fp);
    // adjust for return address and receiver
    __ AddP(r2, r2, Operand(2 * kPointerSize));
    __ ShiftLeftP(r6, r4, Operand(kPointerSizeLog2));
    __ SubP(r6, r2, r6);

    // Copy the arguments (including the receiver) to the new stack frame.
    // r2: copy start address
    // r3: function
    // r4: expected number of arguments
    // r5: new target (passed through to callee)
    // r6: copy end address

    Label copy;
    __ bind(&copy);
    __ LoadP(r0, MemOperand(r2, 0));
    __ push(r0);
    __ CmpP(r2, r6);  // Compare before moving to next argument.
    __ lay(r2, MemOperand(r2, -kPointerSize));
    __ bne(&copy);

    __ b(&invoke);
  }

  {  // Too few parameters: Actual < expected
    __ bind(&too_few);

    EnterArgumentsAdaptorFrame(masm);
2227
    Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

    // Calculate copy start address into r0 and copy end address is fp.
    // r2: actual number of arguments as a smi
    // r3: function
    // r4: expected number of arguments
    // r5: new target (passed through to callee)
    __ SmiToPtrArrayOffset(r2, r2);
    __ lay(r2, MemOperand(r2, fp));

    // Copy the arguments (including the receiver) to the new stack frame.
    // r2: copy start address
    // r3: function
    // r4: expected number of arguments
    // r5: new target (passed through to callee)
    Label copy;
    __ bind(&copy);
    // Adjust load for return address and receiver.
    __ LoadP(r0, MemOperand(r2, 2 * kPointerSize));
    __ push(r0);
    __ CmpP(r2, fp);  // Compare before moving to next argument.
    __ lay(r2, MemOperand(r2, -kPointerSize));
    __ bne(&copy);

    // Fill the remaining expected arguments with undefined.
    // r3: function
    // r4: expected number of argumentus
    __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
    __ ShiftLeftP(r6, r4, Operand(kPointerSizeLog2));
    __ SubP(r6, fp, r6);
    // Adjust for frame.
2258 2259 2260
    __ SubP(r6, r6,
            Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
                    kPointerSize));
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274

    Label fill;
    __ bind(&fill);
    __ push(r0);
    __ CmpP(sp, r6);
    __ bne(&fill);
  }

  // Call the entry point.
  __ bind(&invoke);
  __ LoadRR(r2, r4);
  // r2 : expected number of arguments
  // r3 : function (passed through to callee)
  // r5 : new target (passed through to callee)
2275 2276 2277 2278
  static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
  __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
  __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ CallJSEntry(r4);
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

  // Store offset of return address for deoptimizer.
  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());

  // Exit frame and return.
  LeaveArgumentsAdaptorFrame(masm);
  __ Ret();

  // -------------------------------------------
  // Dont adapt arguments.
  // -------------------------------------------
  __ bind(&dont_adapt_arguments);
2291 2292 2293 2294
  static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
  __ LoadP(r4, FieldMemOperand(r3, JSFunction::kCodeOffset));
  __ AddP(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ JumpToJSEntry(r4);
2295 2296 2297 2298 2299 2300 2301 2302 2303

  __ bind(&stack_overflow);
  {
    FrameScope frame(masm, StackFrame::MANUAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ bkpt(0);
  }
}

2304
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2305 2306 2307
  // The function index was put in r7 by the jump table trampoline.
  // Convert to Smi for the runtime call.
  __ SmiTag(r7, r7);
2308
  {
2309
    HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2310
    FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
2311 2312 2313 2314

    // Save all parameter registers (see wasm-linkage.cc). They might be
    // overwritten in the runtime call below. We don't have any callee-saved
    // registers in wasm, so no need to store anything else.
2315
    constexpr RegList gp_regs = Register::ListOf<r2, r3, r4, r5, r6>();
2316
#if V8_TARGET_ARCH_S390X
2317
    constexpr RegList fp_regs = DoubleRegister::ListOf<d0, d2, d4, d6>();
2318
#else
2319
    constexpr RegList fp_regs = DoubleRegister::ListOf<d0, d2>();
2320 2321 2322 2323
#endif
    __ MultiPush(gp_regs);
    __ MultiPushDoubles(fp_regs);

2324 2325 2326
    // Pass instance and function index as explicit arguments to the runtime
    // function.
    __ Push(kWasmInstanceRegister, r7);
2327 2328 2329
    // Load the correct CEntry builtin from the instance object.
    __ LoadP(r4, FieldMemOperand(kWasmInstanceRegister,
                                 WasmInstanceObject::kCEntryStubOffset));
2330
    // Initialize the JavaScript context with 0. CEntry will use it to
2331
    // set the current context on the isolate.
2332
    __ LoadSmiLiteral(cp, Smi::kZero);
2333
    __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, r4);
2334
    // The entrypoint address is the return value.
2335
    __ LoadRR(ip, r2);
2336 2337 2338 2339 2340

    // Restore registers.
    __ MultiPopDoubles(fp_regs);
    __ MultiPop(gp_regs);
  }
2341
  // Finally, jump to the entrypoint.
2342 2343 2344
  __ Jump(ip);
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
                               SaveFPRegsMode save_doubles, ArgvMode argv_mode,
                               bool builtin_exit_frame) {
  // Called from JavaScript; parameters are on stack as if calling JS function.
  // r2: number of arguments including receiver
  // r3: pointer to builtin function
  // fp: frame pointer  (restored after C call)
  // sp: stack pointer  (restored as callee's sp after C call)
  // cp: current context  (C callee-saved)
  //
  // If argv_mode == kArgvInRegister:
  // r4: pointer to the first argument
  ProfileEntryHookStub::MaybeCallEntryHook(masm);

  __ LoadRR(r7, r3);

  if (argv_mode == kArgvInRegister) {
    // Move argv into the correct register.
    __ LoadRR(r3, r4);
  } else {
    // Compute the argv pointer.
    __ ShiftLeftP(r3, r2, Operand(kPointerSizeLog2));
    __ lay(r3, MemOperand(r3, sp, -kPointerSize));
  }

  // Enter the exit frame that transitions from JavaScript to C++.
  FrameScope scope(masm, StackFrame::MANUAL);

  // Need at least one extra slot for return address location.
  int arg_stack_space = 1;

  // Pass buffer for return value on stack if necessary
  bool needs_return_buffer =
      result_size == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS;
  if (needs_return_buffer) {
    arg_stack_space += result_size;
  }

#if V8_TARGET_ARCH_S390X
  // 64-bit linux pass Argument object by reference not value
  arg_stack_space += 2;
#endif

  __ EnterExitFrame(
      save_doubles, arg_stack_space,
      builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);

  // Store a copy of argc, argv in callee-saved registers for later.
  __ LoadRR(r6, r2);
  __ LoadRR(r8, r3);
  // r2, r6: number of arguments including receiver  (C callee-saved)
  // r3, r8: pointer to the first argument
  // r7: pointer to builtin function  (C callee-saved)

  // Result returned in registers or stack, depending on result size and ABI.

  Register isolate_reg = r4;
  if (needs_return_buffer) {
    // The return value is 16-byte non-scalar value.
    // Use frame storage reserved by calling function to pass return
    // buffer as implicit first argument in R2.  Shfit original parameters
    // by one register each.
    __ LoadRR(r4, r3);
    __ LoadRR(r3, r2);
    __ la(r2, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
    isolate_reg = r5;
  }
  // Call C built-in.
  __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate()));

  Register target = r7;

  // To let the GC traverse the return address of the exit frames, we need to
  // know where the return address is. The CEntryStub is unmovable, so
  // we can store the address on the stack to be able to find it again and
  // we never have to restore it, because it will not change.
  {
    Label return_label;
    __ larl(r14, &return_label);  // Generate the return addr of call later.
    __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));

    // zLinux ABI requires caller's frame to have sufficient space for callee
    // preserved regsiter save area.
    // __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize));
    __ b(target);
    __ bind(&return_label);
    // __ la(sp, MemOperand(sp, +kCalleeRegisterSaveAreaSize));
  }

  // If return value is on the stack, pop it to registers.
  if (needs_return_buffer) {
    __ LoadP(r3, MemOperand(r2, kPointerSize));
    __ LoadP(r2, MemOperand(r2));
  }

  // Check result for exception sentinel.
  Label exception_returned;
  __ CompareRoot(r2, Heap::kExceptionRootIndex);
  __ beq(&exception_returned, Label::kNear);

  // Check that there is no pending exception, otherwise we
  // should have returned the exception sentinel.
  if (FLAG_debug_code) {
    Label okay;
    ExternalReference pending_exception_address = ExternalReference::Create(
        IsolateAddressId::kPendingExceptionAddress, masm->isolate());
    __ Move(r1, pending_exception_address);
    __ LoadP(r1, MemOperand(r1));
    __ CompareRoot(r1, Heap::kTheHoleValueRootIndex);
    // Cannot use check here as it attempts to generate call into runtime.
    __ beq(&okay, Label::kNear);
    __ stop("Unexpected pending exception");
    __ bind(&okay);
  }

  // Exit C frame and return.
  // r2:r3: result
  // sp: stack pointer
  // fp: frame pointer
  Register argc = argv_mode == kArgvInRegister
                      // We don't want to pop arguments so set argc to no_reg.
                      ? no_reg
                      // r6: still holds argc (callee-saved).
                      : r6;
  __ LeaveExitFrame(save_doubles, argc);
  __ b(r14);

  // Handling of exception.
  __ bind(&exception_returned);

  ExternalReference pending_handler_context_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
  ExternalReference pending_handler_entrypoint_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
  ExternalReference pending_handler_fp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
  ExternalReference pending_handler_sp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());

  // Ask the runtime for help to determine the handler. This will set r3 to
  // contain the current pending exception, don't clobber it.
  ExternalReference find_handler =
      ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
  {
    FrameScope scope(masm, StackFrame::MANUAL);
    __ PrepareCallCFunction(3, 0, r2);
    __ LoadImmP(r2, Operand::Zero());
    __ LoadImmP(r3, Operand::Zero());
    __ Move(r4, ExternalReference::isolate_address(masm->isolate()));
    __ CallCFunction(find_handler, 3);
  }

  // Retrieve the handler context, SP and FP.
  __ Move(cp, pending_handler_context_address);
  __ LoadP(cp, MemOperand(cp));
  __ Move(sp, pending_handler_sp_address);
  __ LoadP(sp, MemOperand(sp));
  __ Move(fp, pending_handler_fp_address);
  __ LoadP(fp, MemOperand(fp));

  // If the handler is a JS frame, restore the context to the frame. Note that
  // the context will be set to (cp == 0) for non-JS frames.
  Label skip;
  __ CmpP(cp, Operand::Zero());
  __ beq(&skip, Label::kNear);
  __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  __ bind(&skip);

  // Reset the masking register.
  if (FLAG_branch_load_poisoning) {
    __ ResetSpeculationPoisonRegister();
  }

  // Compute the handler entry address and jump to it.
  __ Move(r3, pending_handler_entrypoint_address);
  __ LoadP(r3, MemOperand(r3));
  __ Jump(r3);
}

2525 2526 2527 2528
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
  Label out_of_range, only_low, negate, done, fastpath_done;
  Register result_reg = r2;

2529
  HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2530

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
  // Immediate values for this stub fit in instructions, so it's safe to use ip.
  Register scratch = GetRegisterThatIsNotOneOf(result_reg);
  Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch);
  Register scratch_high =
      GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low);
  DoubleRegister double_scratch = kScratchDoubleReg;

  __ Push(result_reg, scratch);
  // Account for saved regs.
  int argument_offset = 2 * kPointerSize;

  // Load double input.
  __ LoadDouble(double_scratch, MemOperand(sp, argument_offset));

  // Do fast-path convert from double to int.
  __ ConvertDoubleToInt64(result_reg, double_scratch);

  // Test for overflow
  __ TestIfInt32(result_reg);
  __ beq(&fastpath_done, Label::kNear);

  __ Push(scratch_high, scratch_low);
  // Account for saved regs.
  argument_offset += 2 * kPointerSize;

  __ LoadlW(scratch_high,
            MemOperand(sp, argument_offset + Register::kExponentOffset));
  __ LoadlW(scratch_low,
            MemOperand(sp, argument_offset + Register::kMantissaOffset));

  __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
  // Load scratch with exponent - 1. This is faster than loading
  // with exponent because Bias + 1 = 1024 which is a *S390* immediate value.
  STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
  __ SubP(scratch, Operand(HeapNumber::kExponentBias + 1));
  // If exponent is greater than or equal to 84, the 32 less significant
  // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
  // the result is 0.
  // Compare exponent with 84 (compare exponent - 1 with 83).
  __ CmpP(scratch, Operand(83));
  __ bge(&out_of_range, Label::kNear);

  // If we reach this code, 31 <= exponent <= 83.
  // So, we don't have to handle cases where 0 <= exponent <= 20 for
  // which we would need to shift right the high part of the mantissa.
  // Scratch contains exponent - 1.
  // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
  __ Load(r0, Operand(51));
  __ SubP(scratch, r0, scratch);
  __ CmpP(scratch, Operand::Zero());
  __ ble(&only_low, Label::kNear);
  // 21 <= exponent <= 51, shift scratch_low and scratch_high
  // to generate the result.
  __ ShiftRight(scratch_low, scratch_low, scratch);
  // Scratch contains: 52 - exponent.
  // We needs: exponent - 20.
  // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
  __ Load(r0, Operand(32));
  __ SubP(scratch, r0, scratch);
  __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
  // Set the implicit 1 before the mantissa part in scratch_high.
  STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
  __ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
  __ ShiftLeftP(r0, r0, Operand(16));
  __ OrP(result_reg, result_reg, r0);
  __ ShiftLeft(r0, result_reg, scratch);
  __ OrP(result_reg, scratch_low, r0);
  __ b(&negate, Label::kNear);

  __ bind(&out_of_range);
  __ mov(result_reg, Operand::Zero());
  __ b(&done, Label::kNear);

  __ bind(&only_low);
  // 52 <= exponent <= 83, shift only scratch_low.
  // On entry, scratch contains: 52 - exponent.
  __ LoadComplementRR(scratch, scratch);
  __ ShiftLeft(result_reg, scratch_low, scratch);

  __ bind(&negate);
  // If input was positive, scratch_high ASR 31 equals 0 and
  // scratch_high LSR 31 equals zero.
  // New result = (result eor 0) + 0 = result.
  // If the input was negative, we have to negate the result.
  // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1.
  // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
  __ ShiftRightArith(r0, scratch_high, Operand(31));
#if V8_TARGET_ARCH_S390X
  __ lgfr(r0, r0);
  __ ShiftRightP(r0, r0, Operand(32));
#endif
  __ XorP(result_reg, r0);
  __ ShiftRight(r0, scratch_high, Operand(31));
  __ AddP(result_reg, r0);

  __ bind(&done);
  __ Pop(scratch_high, scratch_low);
  argument_offset -= 2 * kPointerSize;

  __ bind(&fastpath_done);
  __ StoreP(result_reg, MemOperand(sp, argument_offset));
  __ Pop(result_reg, scratch);

  __ Ret();
}

void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
2638
  const Register exponent = r4;
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
  const DoubleRegister double_base = d1;
  const DoubleRegister double_exponent = d2;
  const DoubleRegister double_result = d3;
  const DoubleRegister double_scratch = d0;
  const Register scratch = r1;
  const Register scratch2 = r9;

  Label call_runtime, done, int_exponent;

  // Detect integer exponents stored as double.
  __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2, double_scratch);
  __ beq(&int_exponent, Label::kNear);

  __ push(r14);
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ PrepareCallCFunction(0, 2, scratch);
    __ MovToFloatParameters(double_base, double_exponent);
2657
    __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
  }
  __ pop(r14);
  __ MovFromFloatResult(double_result);
  __ b(&done);

  // Calculate power with integer exponent.
  __ bind(&int_exponent);

  // Get two copies of exponent in the registers scratch and exponent.
  // Exponent has previously been stored into scratch as untagged integer.
  __ LoadRR(exponent, scratch);

  __ ldr(double_scratch, double_base);  // Back up base.
  __ LoadImmP(scratch2, Operand(1));
  __ ConvertIntToDouble(double_result, scratch2);

  // Get absolute value of exponent.
  Label positive_exponent;
  __ CmpP(scratch, Operand::Zero());
  __ bge(&positive_exponent, Label::kNear);
  __ LoadComplementRR(scratch, scratch);
  __ bind(&positive_exponent);

  Label while_true, no_carry, loop_end;
  __ bind(&while_true);
  __ mov(scratch2, Operand(1));
  __ AndP(scratch2, scratch);
  __ beq(&no_carry, Label::kNear);
  __ mdbr(double_result, double_scratch);
  __ bind(&no_carry);
  __ ShiftRightP(scratch, scratch, Operand(1));
  __ LoadAndTestP(scratch, scratch);
  __ beq(&loop_end, Label::kNear);
  __ mdbr(double_scratch, double_scratch);
  __ b(&while_true);
  __ bind(&loop_end);

  __ CmpP(exponent, Operand::Zero());
  __ bge(&done);

  // get 1/double_result:
  __ ldr(double_scratch, double_result);
  __ LoadImmP(scratch2, Operand(1));
  __ ConvertIntToDouble(double_result, scratch2);
  __ ddbr(double_result, double_scratch);

  // Test whether result is zero.  Bail out to check for subnormal result.
  // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
  __ lzdr(kDoubleRegZero);
  __ cdbr(double_result, kDoubleRegZero);
  __ bne(&done, Label::kNear);
  // double_exponent may not containe the exponent value if the input was a
  // smi.  We set it with exponent value before bailing out.
  __ ConvertIntToDouble(double_exponent, exponent);

  // Returning or bailing out.
  __ push(r14);
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ PrepareCallCFunction(0, 2, scratch);
    __ MovToFloatParameters(double_base, double_exponent);
2719
    __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
2720 2721 2722 2723 2724 2725 2726 2727
  }
  __ pop(r14);
  __ MovFromFloatResult(double_result);

  __ bind(&done);
  __ Ret();
}

2728 2729
namespace {

2730 2731 2732 2733
void GenerateInternalArrayConstructorCase(MacroAssembler* masm,
                                          ElementsKind kind) {
  __ CmpLogicalP(r2, Operand(1));

2734 2735 2736
  __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind)
              .code(),
          RelocInfo::CODE_TARGET, lt);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

  __ Jump(BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor),
          RelocInfo::CODE_TARGET, gt);

  if (IsFastPackedElementsKind(kind)) {
    // We might need to create a holey array
    // look at the first argument
    __ LoadP(r5, MemOperand(sp, 0));
    __ CmpP(r5, Operand::Zero());

2747 2748 2749 2750
    __ Jump(CodeFactory::InternalArraySingleArgumentConstructor(
                masm->isolate(), GetHoleyElementsKind(kind))
                .code(),
            RelocInfo::CODE_TARGET, ne);
2751 2752
  }

2753 2754 2755 2756
  __ Jump(
      CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind)
          .code(),
      RelocInfo::CODE_TARGET);
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
}

}  // namespace

void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r2 : argc
  //  -- r3 : constructor
  //  -- sp[0] : return address
  //  -- sp[4] : last argument
  // -----------------------------------

  if (FLAG_debug_code) {
    // The array construct code is only set for the global and natives
    // builtin Array functions which always have maps.

    // Initial map for the builtin Array function should be a map.
    __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a nullptr and a Smi.
    __ TestIfSmi(r5);
    __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0);
    __ CompareObjectType(r5, r5, r6, MAP_TYPE);
    __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);
  }

  // Figure out the right elements kind
  __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
  // Load the map's "bit field 2" into |result|.
  __ LoadlB(r5, FieldMemOperand(r5, Map::kBitField2Offset));
  // Retrieve elements_kind from bit field 2.
  __ DecodeField<Map::ElementsKindBits>(r5);

  if (FLAG_debug_code) {
    Label done;
    __ CmpP(r5, Operand(PACKED_ELEMENTS));
    __ beq(&done);
    __ CmpP(r5, Operand(HOLEY_ELEMENTS));
    __ Assert(
        eq,
        AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
    __ bind(&done);
  }

  Label fast_elements_case;
  __ CmpP(r5, Operand(PACKED_ELEMENTS));
  __ beq(&fast_elements_case);
  GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS);

  __ bind(&fast_elements_case);
  GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS);
}

2809 2810 2811 2812 2813 2814
#undef __

}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_S390