assembler-ia32-inl.h 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
33
// Copyright 2012 the V8 project authors. All rights reserved.
34 35 36

// A light-weight IA32 Assembler.

37 38
#ifndef V8_IA32_ASSEMBLER_IA32_INL_H_
#define V8_IA32_ASSEMBLER_IA32_INL_H_
39

40
#include "src/ia32/assembler-ia32.h"
41

42
#include "src/assembler.h"
43
#include "src/debug/debug.h"
44
#include "src/objects-inl.h"
45

46 47
namespace v8 {
namespace internal {
48

49
bool CpuFeatures::SupportsOptimizer() { return true; }
50

51
bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(SSE4_1); }
52

53

54
// The modes possibly affected by apply must be in kApplyMask.
55
void RelocInfo::apply(intptr_t delta) {
56 57 58 59
  DCHECK_EQ(kApplyMask, (RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
                         RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
                         RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET) |
                         RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY)));
60
  if (IsRuntimeEntry(rmode_) || IsCodeTarget(rmode_) ||
61
      IsOffHeapTarget(rmode_)) {
62
    int32_t* p = reinterpret_cast<int32_t*>(pc_);
63
    *p -= delta;  // Relocate entry.
64
  } else if (IsInternalReference(rmode_)) {
65 66
    // absolute code pointer inside code object moves with the code object.
    int32_t* p = reinterpret_cast<int32_t*>(pc_);
67
    *p += delta;  // Relocate entry.
68 69 70 71 72
  }
}


Address RelocInfo::target_address() {
73
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
74
  return Assembler::target_address_at(pc_, constant_pool_);
75 76
}

77
Address RelocInfo::target_address_address() {
78
  DCHECK(HasTargetAddressAddress());
79
  return pc_;
80 81 82
}


83 84 85 86 87
Address RelocInfo::constant_pool_entry_address() {
  UNREACHABLE();
}


88
int RelocInfo::target_address_size() {
89
  return Assembler::kSpecialTargetSize;
90 91
}

92
HeapObject RelocInfo::target_object() {
93
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
94
  return HeapObject::cast(Object(Memory<Address>(pc_)));
95 96
}

97
Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
98
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
99
  return Handle<HeapObject>::cast(Memory<Handle<Object>>(pc_));
100 101
}

102
void RelocInfo::set_target_object(Heap* heap, HeapObject target,
103 104
                                  WriteBarrierMode write_barrier_mode,
                                  ICacheFlushMode icache_flush_mode) {
105
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
106
  Memory<Address>(pc_) = target->ptr();
107
  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
108
    Assembler::FlushICache(pc_, sizeof(Address));
109
  }
110
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null()) {
111
    WriteBarrierForCode(host(), this, target);
112
  }
113 114
}

115
Address RelocInfo::target_external_reference() {
116
  DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
117
  return Memory<Address>(pc_);
118 119
}

120 121 122
void RelocInfo::set_target_external_reference(
    Address target, ICacheFlushMode icache_flush_mode) {
  DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
123
  Memory<Address>(pc_) = target;
124 125 126 127
  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
    Assembler::FlushICache(pc_, sizeof(Address));
  }
}
128

129 130
Address RelocInfo::target_internal_reference() {
  DCHECK(rmode_ == INTERNAL_REFERENCE);
131
  return Memory<Address>(pc_);
132 133 134
}


135
Address RelocInfo::target_internal_reference_address() {
136
  DCHECK(rmode_ == INTERNAL_REFERENCE);
137
  return pc_;
138 139
}

140
Address RelocInfo::target_runtime_entry(Assembler* origin) {
141
  DCHECK(IsRuntimeEntry(rmode_));
142
  return static_cast<Address>(*reinterpret_cast<int32_t*>(pc_));
143 144
}

145
void RelocInfo::set_target_runtime_entry(Address target,
146 147
                                         WriteBarrierMode write_barrier_mode,
                                         ICacheFlushMode icache_flush_mode) {
148
  DCHECK(IsRuntimeEntry(rmode_));
149
  if (target_address() != target) {
150
    set_target_address(target, write_barrier_mode, icache_flush_mode);
151
  }
152 153
}

154 155
Address RelocInfo::target_off_heap_target() {
  DCHECK(IsOffHeapTarget(rmode_));
156
  return Assembler::target_address_at(pc_, constant_pool_);
157 158
}

159
void RelocInfo::WipeOut() {
160 161
  if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
      IsInternalReference(rmode_)) {
162
    Memory<Address>(pc_) = kNullAddress;
163 164
  } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
             IsOffHeapTarget(rmode_)) {
165
    // Effectively write zero into the relocation.
166
    Assembler::set_target_address_at(pc_, constant_pool_,
167
                                     pc_ + sizeof(int32_t));
168 169 170 171 172
  } else {
    UNREACHABLE();
  }
}

173
template <typename ObjectVisitor>
174
void RelocInfo::Visit(ObjectVisitor* visitor) {
175 176
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
177
    visitor->VisitEmbeddedPointer(host(), this);
178
    Assembler::FlushICache(pc_, sizeof(Address));
179
  } else if (RelocInfo::IsCodeTargetMode(mode)) {
180
    visitor->VisitCodeTarget(host(), this);
181
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
182
    visitor->VisitExternalReference(host(), this);
183
  } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
184
    visitor->VisitInternalReference(host(), this);
185
  } else if (IsRuntimeEntry(mode)) {
186
    visitor->VisitRuntimeEntry(host(), this);
187 188
  } else if (RelocInfo::IsOffHeapTarget(mode)) {
    visitor->VisitOffHeapTarget(host(), this);
189 190 191
  }
}

192 193 194 195 196 197
void Assembler::emit(uint32_t x) {
  *reinterpret_cast<uint32_t*>(pc_) = x;
  pc_ += sizeof(uint32_t);
}


198 199 200 201 202
void Assembler::emit_q(uint64_t x) {
  *reinterpret_cast<uint64_t*>(pc_) = x;
  pc_ += sizeof(uint64_t);
}

203
void Assembler::emit(Handle<HeapObject> handle) {
204
  emit(handle.address(), RelocInfo::EMBEDDED_OBJECT);
205 206
}

207
void Assembler::emit(uint32_t x, RelocInfo::Mode rmode) {
208
  if (!RelocInfo::IsNone(rmode)) {
209 210
    RecordRelocInfo(rmode);
  }
211 212 213
  emit(x);
}

214
void Assembler::emit(Handle<Code> code, RelocInfo::Mode rmode) {
215
  emit(code.address(), rmode);
216 217 218
}


219
void Assembler::emit(const Immediate& x) {
220
  if (x.rmode_ == RelocInfo::INTERNAL_REFERENCE) {
221
    Label* label = reinterpret_cast<Label*>(x.immediate());
222 223 224
    emit_code_relative_offset(label);
    return;
  }
225
  if (!RelocInfo::IsNone(x.rmode_)) RecordRelocInfo(x.rmode_);
226 227
  if (x.is_heap_object_request()) {
    RequestHeapObject(x.heap_object_request());
228 229 230 231
    emit(0);
  } else {
    emit(x.immediate());
  }
232 233 234
}


235 236 237 238 239 240 241 242 243 244
void Assembler::emit_code_relative_offset(Label* label) {
  if (label->is_bound()) {
    int32_t pos;
    pos = label->pos() + Code::kHeaderSize - kHeapObjectTag;
    emit(pos);
  } else {
    emit_disp(label, Displacement::CODE_RELATIVE);
  }
}

245 246
void Assembler::emit_b(Immediate x) {
  DCHECK(x.is_int8() || x.is_uint8());
247
  uint8_t value = static_cast<uint8_t>(x.immediate());
248 249
  *pc_++ = value;
}
250

251
void Assembler::emit_w(const Immediate& x) {
252
  DCHECK(RelocInfo::IsNone(x.rmode_));
253
  uint16_t value = static_cast<uint16_t>(x.immediate());
254 255 256 257 258
  reinterpret_cast<uint16_t*>(pc_)[0] = value;
  pc_ += sizeof(uint16_t);
}


259
Address Assembler::target_address_at(Address pc, Address constant_pool) {
260 261 262
  return pc + sizeof(int32_t) + *reinterpret_cast<int32_t*>(pc);
}

263 264
void Assembler::set_target_address_at(Address pc, Address constant_pool,
                                      Address target,
265
                                      ICacheFlushMode icache_flush_mode) {
266
  *reinterpret_cast<int32_t*>(pc) = target - (pc + sizeof(int32_t));
267
  if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
268
    Assembler::FlushICache(pc, sizeof(int32_t));
269
  }
270 271
}

272 273 274 275
Address Assembler::target_address_from_return_address(Address pc) {
  return pc - kCallTargetAddressOffset;
}

276
void Assembler::deserialization_set_special_target_at(
277
    Address instruction_payload, Code code, Address target) {
278
  set_target_address_at(instruction_payload,
279 280
                        !code.is_null() ? code->constant_pool() : kNullAddress,
                        target);
281
}
282

283 284 285 286 287
int Assembler::deserialization_special_target_size(
    Address instruction_payload) {
  return kSpecialTargetSize;
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
Displacement Assembler::disp_at(Label* L) {
  return Displacement(long_at(L->pos()));
}


void Assembler::disp_at_put(Label* L, Displacement disp) {
  long_at_put(L->pos(), disp.data());
}


void Assembler::emit_disp(Label* L, Displacement::Type type) {
  Displacement disp(L, type);
  L->link_to(pc_offset());
  emit(static_cast<int>(disp.data()));
}


305 306 307 308
void Assembler::emit_near_disp(Label* L) {
  byte disp = 0x00;
  if (L->is_near_linked()) {
    int offset = L->near_link_pos() - pc_offset();
309
    DCHECK(is_int8(offset));
310 311 312 313 314 315
    disp = static_cast<byte>(offset & 0xFF);
  }
  L->link_to(pc_offset(), Label::kNear);
  *pc_++ = disp;
}

316
void Assembler::deserialization_set_target_internal_reference_at(
317
    Address pc, Address target, RelocInfo::Mode mode) {
318
  Memory<Address>(pc) = target;
319 320 321
}


322
void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
323 324
  DCHECK_EQ(len_, 1);
  DCHECK_EQ(scale & -4, 0);
325
  // Use SIB with no index register only for base esp.
326
  DCHECK(index != esp || base == esp);
327 328 329 330 331 332
  buf_[1] = scale << 6 | index.code() << 3 | base.code();
  len_ = 2;
}


void Operand::set_disp8(int8_t disp) {
333
  DCHECK(len_ == 1 || len_ == 2);
334 335 336
  *reinterpret_cast<int8_t*>(&buf_[len_++]) = disp;
}

337 338
}  // namespace internal
}  // namespace v8
339

340
#endif  // V8_IA32_ASSEMBLER_IA32_INL_H_