constant-pool.cc 25.3 KB
Newer Older
1 2 3 4
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5
#include "src/codegen/constant-pool.h"
6
#include "src/codegen/assembler-arch.h"
7
#include "src/codegen/assembler-inl.h"
8 9 10 11

namespace v8 {
namespace internal {

12
#if defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_PPC64)
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

ConstantPoolBuilder::ConstantPoolBuilder(int ptr_reach_bits,
                                         int double_reach_bits) {
  info_[ConstantPoolEntry::INTPTR].entries.reserve(64);
  info_[ConstantPoolEntry::INTPTR].regular_reach_bits = ptr_reach_bits;
  info_[ConstantPoolEntry::DOUBLE].regular_reach_bits = double_reach_bits;
}

ConstantPoolEntry::Access ConstantPoolBuilder::NextAccess(
    ConstantPoolEntry::Type type) const {
  const PerTypeEntryInfo& info = info_[type];

  if (info.overflow()) return ConstantPoolEntry::OVERFLOWED;

  int dbl_count = info_[ConstantPoolEntry::DOUBLE].regular_count;
  int dbl_offset = dbl_count * kDoubleSize;
  int ptr_count = info_[ConstantPoolEntry::INTPTR].regular_count;
30
  int ptr_offset = ptr_count * kSystemPointerSize + dbl_offset;
31 32 33 34 35 36

  if (type == ConstantPoolEntry::DOUBLE) {
    // Double overflow detection must take into account the reach for both types
    int ptr_reach_bits = info_[ConstantPoolEntry::INTPTR].regular_reach_bits;
    if (!is_uintn(dbl_offset, info.regular_reach_bits) ||
        (ptr_count > 0 &&
37 38
         !is_uintn(ptr_offset + kDoubleSize - kSystemPointerSize,
                   ptr_reach_bits))) {
39 40 41 42 43 44 45 46 47 48 49 50 51
      return ConstantPoolEntry::OVERFLOWED;
    }
  } else {
    DCHECK(type == ConstantPoolEntry::INTPTR);
    if (!is_uintn(ptr_offset, info.regular_reach_bits)) {
      return ConstantPoolEntry::OVERFLOWED;
    }
  }

  return ConstantPoolEntry::REGULAR;
}

ConstantPoolEntry::Access ConstantPoolBuilder::AddEntry(
52
    ConstantPoolEntry* entry, ConstantPoolEntry::Type type) {
53 54 55 56 57
  DCHECK(!emitted_label_.is_bound());
  PerTypeEntryInfo& info = info_[type];
  const int entry_size = ConstantPoolEntry::size(type);
  bool merged = false;

58
  if (entry->sharing_ok()) {
59 60 61 62
    // Try to merge entries
    std::vector<ConstantPoolEntry>::iterator it = info.shared_entries.begin();
    int end = static_cast<int>(info.shared_entries.size());
    for (int i = 0; i < end; i++, it++) {
63
      if ((entry_size == kSystemPointerSize)
64 65
              ? entry->value() == it->value()
              : entry->value64() == it->value64()) {
66
        // Merge with found entry.
67
        entry->set_merged_index(i);
68 69 70 71 72 73 74
        merged = true;
        break;
      }
    }
  }

  // By definition, merged entries have regular access.
75
  DCHECK(!merged || entry->merged_index() < info.regular_count);
76 77 78 79 80
  ConstantPoolEntry::Access access =
      (merged ? ConstantPoolEntry::REGULAR : NextAccess(type));

  // Enforce an upper bound on search time by limiting the search to
  // unique sharable entries which fit in the regular section.
81 82
  if (entry->sharing_ok() && !merged && access == ConstantPoolEntry::REGULAR) {
    info.shared_entries.push_back(*entry);
83
  } else {
84
    info.entries.push_back(*entry);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  }

  // We're done if we found a match or have already triggered the
  // overflow state.
  if (merged || info.overflow()) return access;

  if (access == ConstantPoolEntry::REGULAR) {
    info.regular_count++;
  } else {
    info.overflow_start = static_cast<int>(info.entries.size()) - 1;
  }

  return access;
}

void ConstantPoolBuilder::EmitSharedEntries(Assembler* assm,
                                            ConstantPoolEntry::Type type) {
  PerTypeEntryInfo& info = info_[type];
  std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
  const int entry_size = ConstantPoolEntry::size(type);
  int base = emitted_label_.pos();
  DCHECK_GT(base, 0);
  int shared_end = static_cast<int>(shared_entries.size());
  std::vector<ConstantPoolEntry>::iterator shared_it = shared_entries.begin();
  for (int i = 0; i < shared_end; i++, shared_it++) {
    int offset = assm->pc_offset() - base;
    shared_it->set_offset(offset);  // Save offset for merged entries.
112
    if (entry_size == kSystemPointerSize) {
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
      assm->dp(shared_it->value());
    } else {
      assm->dq(shared_it->value64());
    }
    DCHECK(is_uintn(offset, info.regular_reach_bits));

    // Patch load sequence with correct offset.
    assm->PatchConstantPoolAccessInstruction(shared_it->position(), offset,
                                             ConstantPoolEntry::REGULAR, type);
  }
}

void ConstantPoolBuilder::EmitGroup(Assembler* assm,
                                    ConstantPoolEntry::Access access,
                                    ConstantPoolEntry::Type type) {
  PerTypeEntryInfo& info = info_[type];
  const bool overflow = info.overflow();
  std::vector<ConstantPoolEntry>& entries = info.entries;
  std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
  const int entry_size = ConstantPoolEntry::size(type);
  int base = emitted_label_.pos();
  DCHECK_GT(base, 0);
  int begin;
  int end;

  if (access == ConstantPoolEntry::REGULAR) {
    // Emit any shared entries first
    EmitSharedEntries(assm, type);
  }

  if (access == ConstantPoolEntry::REGULAR) {
    begin = 0;
    end = overflow ? info.overflow_start : static_cast<int>(entries.size());
  } else {
    DCHECK(access == ConstantPoolEntry::OVERFLOWED);
    if (!overflow) return;
    begin = info.overflow_start;
    end = static_cast<int>(entries.size());
  }

  std::vector<ConstantPoolEntry>::iterator it = entries.begin();
  if (begin > 0) std::advance(it, begin);
  for (int i = begin; i < end; i++, it++) {
    // Update constant pool if necessary and get the entry's offset.
    int offset;
    ConstantPoolEntry::Access entry_access;
    if (!it->is_merged()) {
      // Emit new entry
      offset = assm->pc_offset() - base;
      entry_access = access;
163
      if (entry_size == kSystemPointerSize) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        assm->dp(it->value());
      } else {
        assm->dq(it->value64());
      }
    } else {
      // Retrieve offset from shared entry.
      offset = shared_entries[it->merged_index()].offset();
      entry_access = ConstantPoolEntry::REGULAR;
    }

    DCHECK(entry_access == ConstantPoolEntry::OVERFLOWED ||
           is_uintn(offset, info.regular_reach_bits));

    // Patch load sequence with correct offset.
    assm->PatchConstantPoolAccessInstruction(it->position(), offset,
                                             entry_access, type);
  }
}

183
// Emit and return size of pool.
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
int ConstantPoolBuilder::Emit(Assembler* assm) {
  bool emitted = emitted_label_.is_bound();
  bool empty = IsEmpty();

  if (!emitted) {
    // Mark start of constant pool.  Align if necessary.
    if (!empty) assm->DataAlign(kDoubleSize);
    assm->bind(&emitted_label_);
    if (!empty) {
      // Emit in groups based on access and type.
      // Emit doubles first for alignment purposes.
      EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::DOUBLE);
      EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::INTPTR);
      if (info_[ConstantPoolEntry::DOUBLE].overflow()) {
        assm->DataAlign(kDoubleSize);
        EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
                  ConstantPoolEntry::DOUBLE);
      }
      if (info_[ConstantPoolEntry::INTPTR].overflow()) {
        EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
                  ConstantPoolEntry::INTPTR);
      }
    }
  }

209
  return !empty ? (assm->pc_offset() - emitted_label_.pos()) : 0;
210 211
}

212
#endif  // defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_PPC64)
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
#if defined(V8_TARGET_ARCH_ARM64)

// Constant Pool.

ConstantPool::ConstantPool(Assembler* assm) : assm_(assm) {}
ConstantPool::~ConstantPool() { DCHECK_EQ(blocked_nesting_, 0); }

RelocInfoStatus ConstantPool::RecordEntry(uint32_t data,
                                          RelocInfo::Mode rmode) {
  ConstantPoolKey key(data, rmode);
  CHECK(key.is_value32());
  return RecordKey(std::move(key), assm_->pc_offset());
}

RelocInfoStatus ConstantPool::RecordEntry(uint64_t data,
                                          RelocInfo::Mode rmode) {
  ConstantPoolKey key(data, rmode);
  CHECK(!key.is_value32());
  return RecordKey(std::move(key), assm_->pc_offset());
}

RelocInfoStatus ConstantPool::RecordKey(ConstantPoolKey key, int offset) {
  RelocInfoStatus write_reloc_info = GetRelocInfoStatusFor(key);
  if (write_reloc_info == RelocInfoStatus::kMustRecord) {
    if (key.is_value32()) {
      if (entry32_count_ == 0) first_use_32_ = offset;
      ++entry32_count_;
    } else {
      if (entry64_count_ == 0) first_use_64_ = offset;
      ++entry64_count_;
    }
  }
  entries_.insert(std::make_pair(key, offset));

  if (Entry32Count() + Entry64Count() > ConstantPool::kApproxMaxEntryCount) {
    // Request constant pool emission after the next instruction.
    SetNextCheckIn(1);
  }

  return write_reloc_info;
}

RelocInfoStatus ConstantPool::GetRelocInfoStatusFor(
    const ConstantPoolKey& key) {
  if (key.AllowsDeduplication()) {
    auto existing = entries_.find(key);
    if (existing != entries_.end()) {
      return RelocInfoStatus::kMustOmitForDuplicate;
    }
  }
  return RelocInfoStatus::kMustRecord;
}

void ConstantPool::EmitAndClear(Jump require_jump) {
  DCHECK(!IsBlocked());
  // Prevent recursive pool emission.
  Assembler::BlockPoolsScope block_pools(assm_, PoolEmissionCheck::kSkip);
  Alignment require_alignment =
      IsAlignmentRequiredIfEmittedAt(require_jump, assm_->pc_offset());
  int size = ComputeSize(require_jump, require_alignment);
  Label size_check;
  assm_->bind(&size_check);
  assm_->RecordConstPool(size);

  // Emit the constant pool. It is preceded by an optional branch if
  // {require_jump} and a header which will:
  //  1) Encode the size of the constant pool, for use by the disassembler.
  //  2) Terminate the program, to try to prevent execution from accidentally
  //     flowing into the constant pool.
  //  3) align the 64bit pool entries to 64-bit.
  // TODO(all): Make the alignment part less fragile. Currently code is
  // allocated as a byte array so there are no guarantees the alignment will
  // be preserved on compaction. Currently it works as allocation seems to be
  // 64-bit aligned.

  Label after_pool;
  if (require_jump == Jump::kRequired) assm_->b(&after_pool);

  assm_->RecordComment("[ Constant Pool");
  EmitPrologue(require_alignment);
  if (require_alignment == Alignment::kRequired) assm_->Align(kInt64Size);
  EmitEntries();
  assm_->RecordComment("]");

  if (after_pool.is_linked()) assm_->bind(&after_pool);

  DCHECK_EQ(assm_->SizeOfCodeGeneratedSince(&size_check), size);
  Clear();
}

void ConstantPool::Clear() {
  entries_.clear();
  first_use_32_ = -1;
  first_use_64_ = -1;
  entry32_count_ = 0;
  entry64_count_ = 0;
  next_check_ = 0;
}

void ConstantPool::StartBlock() {
  if (blocked_nesting_ == 0) {
    // Prevent constant pool checks from happening by setting the next check to
    // the biggest possible offset.
    next_check_ = kMaxInt;
  }
  ++blocked_nesting_;
}

void ConstantPool::EndBlock() {
  --blocked_nesting_;
  if (blocked_nesting_ == 0) {
    DCHECK(IsInImmRangeIfEmittedAt(assm_->pc_offset()));
    // Make sure a check happens quickly after getting unblocked.
    next_check_ = 0;
  }
}

bool ConstantPool::IsBlocked() const { return blocked_nesting_ > 0; }

void ConstantPool::SetNextCheckIn(size_t instructions) {
  next_check_ =
      assm_->pc_offset() + static_cast<int>(instructions * kInstrSize);
}

void ConstantPool::EmitEntries() {
  for (auto iter = entries_.begin(); iter != entries_.end();) {
    DCHECK(iter->first.is_value32() || IsAligned(assm_->pc_offset(), 8));
    auto range = entries_.equal_range(iter->first);
    bool shared = iter->first.AllowsDeduplication();
    for (auto it = range.first; it != range.second; ++it) {
      SetLoadOffsetToConstPoolEntry(it->second, assm_->pc(), it->first);
      if (!shared) Emit(it->first);
    }
    if (shared) Emit(iter->first);
    iter = range.second;
  }
}

void ConstantPool::Emit(const ConstantPoolKey& key) {
  if (key.is_value32()) {
    assm_->dd(key.value32());
  } else {
    assm_->dq(key.value64());
  }
}

bool ConstantPool::ShouldEmitNow(Jump require_jump, size_t margin) const {
  if (IsEmpty()) return false;
  if (Entry32Count() + Entry64Count() > ConstantPool::kApproxMaxEntryCount) {
    return true;
  }
  // We compute {dist32/64}, i.e. the distance from the first instruction
  // accessing a 32bit/64bit entry in the constant pool to any of the
  // 32bit/64bit constant pool entries, respectively. This is required because
  // we do not guarantee that entries are emitted in order of reference, i.e. it
  // is possible that the entry with the earliest reference is emitted last.
  // The constant pool should be emitted if either of the following is true:
  // (A) {dist32/64} will be out of range at the next check in.
  // (B) Emission can be done behind an unconditional branch and {dist32/64}
  // exceeds {kOpportunityDist*}.
  // (C) {dist32/64} exceeds the desired approximate distance to the pool.
  int worst_case_size = ComputeSize(Jump::kRequired, Alignment::kRequired);
  size_t pool_end_32 = assm_->pc_offset() + margin + worst_case_size;
  size_t pool_end_64 = pool_end_32 - Entry32Count() * kInt32Size;
  if (Entry64Count() != 0) {
    // The 64-bit constants are always emitted before the 32-bit constants, so
    // we subtract the size of the 32-bit constants from {size}.
    size_t dist64 = pool_end_64 - first_use_64_;
    bool next_check_too_late = dist64 + 2 * kCheckInterval >= kMaxDistToPool64;
    bool opportune_emission_without_jump =
        require_jump == Jump::kOmitted && (dist64 >= kOpportunityDistToPool64);
    bool approximate_distance_exceeded = dist64 >= kApproxDistToPool64;
    if (next_check_too_late || opportune_emission_without_jump ||
        approximate_distance_exceeded) {
      return true;
    }
  }
  if (Entry32Count() != 0) {
    size_t dist32 = pool_end_32 - first_use_32_;
    bool next_check_too_late = dist32 + 2 * kCheckInterval >= kMaxDistToPool32;
    bool opportune_emission_without_jump =
        require_jump == Jump::kOmitted && (dist32 >= kOpportunityDistToPool32);
    bool approximate_distance_exceeded = dist32 >= kApproxDistToPool32;
    if (next_check_too_late || opportune_emission_without_jump ||
        approximate_distance_exceeded) {
      return true;
    }
  }
  return false;
}

int ConstantPool::ComputeSize(Jump require_jump,
                              Alignment require_alignment) const {
  int size_up_to_marker = PrologueSize(require_jump);
  int alignment = require_alignment == Alignment::kRequired ? kInstrSize : 0;
  size_t size_after_marker =
      Entry32Count() * kInt32Size + alignment + Entry64Count() * kInt64Size;
  return size_up_to_marker + static_cast<int>(size_after_marker);
}

Alignment ConstantPool::IsAlignmentRequiredIfEmittedAt(Jump require_jump,
                                                       int pc_offset) const {
  int size_up_to_marker = PrologueSize(require_jump);
  if (Entry64Count() != 0 &&
      !IsAligned(pc_offset + size_up_to_marker, kInt64Size)) {
    return Alignment::kRequired;
  }
  return Alignment::kOmitted;
}

bool ConstantPool::IsInImmRangeIfEmittedAt(int pc_offset) {
  // Check that all entries are in range if the pool is emitted at {pc_offset}.
  // This ignores kPcLoadDelta (conservatively, since all offsets are positive),
  // and over-estimates the last entry's address with the pool's end.
  Alignment require_alignment =
      IsAlignmentRequiredIfEmittedAt(Jump::kRequired, pc_offset);
  size_t pool_end_32 =
      pc_offset + ComputeSize(Jump::kRequired, require_alignment);
  size_t pool_end_64 = pool_end_32 - Entry32Count() * kInt32Size;
  bool entries_in_range_32 =
      Entry32Count() == 0 || (pool_end_32 < first_use_32_ + kMaxDistToPool32);
  bool entries_in_range_64 =
      Entry64Count() == 0 || (pool_end_64 < first_use_64_ + kMaxDistToPool64);
  return entries_in_range_32 && entries_in_range_64;
}

ConstantPool::BlockScope::BlockScope(Assembler* assm, size_t margin)
    : pool_(&assm->constpool_) {
  pool_->assm_->EmitConstPoolWithJumpIfNeeded(margin);
  pool_->StartBlock();
}

ConstantPool::BlockScope::BlockScope(Assembler* assm, PoolEmissionCheck check)
    : pool_(&assm->constpool_) {
  DCHECK_EQ(check, PoolEmissionCheck::kSkip);
  pool_->StartBlock();
}

ConstantPool::BlockScope::~BlockScope() { pool_->EndBlock(); }

void ConstantPool::MaybeCheck() {
  if (assm_->pc_offset() >= next_check_) {
    Check(Emission::kIfNeeded, Jump::kRequired);
  }
}

#endif  // defined(V8_TARGET_ARCH_ARM64)

Brice Dobry's avatar
Brice Dobry committed
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
#if defined(V8_TARGET_ARCH_RISCV64)

// Constant Pool.

ConstantPool::ConstantPool(Assembler* assm) : assm_(assm) {}
ConstantPool::~ConstantPool() { DCHECK_EQ(blocked_nesting_, 0); }

RelocInfoStatus ConstantPool::RecordEntry(uint32_t data,
                                          RelocInfo::Mode rmode) {
  ConstantPoolKey key(data, rmode);
  CHECK(key.is_value32());
  return RecordKey(std::move(key), assm_->pc_offset());
}

RelocInfoStatus ConstantPool::RecordEntry(uint64_t data,
                                          RelocInfo::Mode rmode) {
  ConstantPoolKey key(data, rmode);
  CHECK(!key.is_value32());
  return RecordKey(std::move(key), assm_->pc_offset());
}

RelocInfoStatus ConstantPool::RecordKey(ConstantPoolKey key, int offset) {
  RelocInfoStatus write_reloc_info = GetRelocInfoStatusFor(key);
  if (write_reloc_info == RelocInfoStatus::kMustRecord) {
    if (key.is_value32()) {
      if (entry32_count_ == 0) first_use_32_ = offset;
      ++entry32_count_;
    } else {
      if (entry64_count_ == 0) first_use_64_ = offset;
      ++entry64_count_;
    }
  }
  entries_.insert(std::make_pair(key, offset));

  if (Entry32Count() + Entry64Count() > ConstantPool::kApproxMaxEntryCount) {
    // Request constant pool emission after the next instruction.
    SetNextCheckIn(1);
  }

  return write_reloc_info;
}

RelocInfoStatus ConstantPool::GetRelocInfoStatusFor(
    const ConstantPoolKey& key) {
  if (key.AllowsDeduplication()) {
    auto existing = entries_.find(key);
    if (existing != entries_.end()) {
      return RelocInfoStatus::kMustOmitForDuplicate;
    }
  }
  return RelocInfoStatus::kMustRecord;
}

void ConstantPool::EmitAndClear(Jump require_jump) {
  DCHECK(!IsBlocked());
  // Prevent recursive pool emission.
  Assembler::BlockPoolsScope block_pools(assm_, PoolEmissionCheck::kSkip);
  Alignment require_alignment =
      IsAlignmentRequiredIfEmittedAt(require_jump, assm_->pc_offset());
  int size = ComputeSize(require_jump, require_alignment);
  Label size_check;
  assm_->bind(&size_check);
  assm_->RecordConstPool(size);

  // Emit the constant pool. It is preceded by an optional branch if
  // {require_jump} and a header which will:
  //  1) Encode the size of the constant pool, for use by the disassembler.
  //  2) Terminate the program, to try to prevent execution from accidentally
  //     flowing into the constant pool.
  //  3) align the 64bit pool entries to 64-bit.
  // TODO(all): Make the alignment part less fragile. Currently code is
  // allocated as a byte array so there are no guarantees the alignment will
  // be preserved on compaction. Currently it works as allocation seems to be
  // 64-bit aligned.
  DEBUG_PRINTF("\tConstant Pool start\n")
  Label after_pool;
  if (require_jump == Jump::kRequired) assm_->b(&after_pool);

  assm_->RecordComment("[ Constant Pool");

  EmitPrologue(require_alignment);
  if (require_alignment == Alignment::kRequired) assm_->DataAlign(kInt64Size);
  EmitEntries();
  assm_->RecordComment("]");
  assm_->bind(&after_pool);
  DEBUG_PRINTF("\tConstant Pool end\n")

  DCHECK_LE(assm_->SizeOfCodeGeneratedSince(&size_check) - size, 3);
  Clear();
}

void ConstantPool::Clear() {
  entries_.clear();
  first_use_32_ = -1;
  first_use_64_ = -1;
  entry32_count_ = 0;
  entry64_count_ = 0;
  next_check_ = 0;
}

void ConstantPool::StartBlock() {
  if (blocked_nesting_ == 0) {
    // Prevent constant pool checks from happening by setting the next check to
    // the biggest possible offset.
    next_check_ = kMaxInt;
  }
  ++blocked_nesting_;
}

void ConstantPool::EndBlock() {
  --blocked_nesting_;
  if (blocked_nesting_ == 0) {
    DCHECK(IsInImmRangeIfEmittedAt(assm_->pc_offset()));
    // Make sure a check happens quickly after getting unblocked.
    next_check_ = 0;
  }
}

bool ConstantPool::IsBlocked() const { return blocked_nesting_ > 0; }

void ConstantPool::SetNextCheckIn(size_t instructions) {
  next_check_ =
      assm_->pc_offset() + static_cast<int>(instructions * kInstrSize);
}

void ConstantPool::EmitEntries() {
  for (auto iter = entries_.begin(); iter != entries_.end();) {
    DCHECK(iter->first.is_value32() || IsAligned(assm_->pc_offset(), 8));
    auto range = entries_.equal_range(iter->first);
    bool shared = iter->first.AllowsDeduplication();
    for (auto it = range.first; it != range.second; ++it) {
      SetLoadOffsetToConstPoolEntry(it->second, assm_->pc(), it->first);
      if (!shared) Emit(it->first);
    }
    if (shared) Emit(iter->first);
    iter = range.second;
  }
}

void ConstantPool::Emit(const ConstantPoolKey& key) {
  if (key.is_value32()) {
    assm_->dd(key.value32());
  } else {
    assm_->dq(key.value64());
  }
}

bool ConstantPool::ShouldEmitNow(Jump require_jump, size_t margin) const {
  if (IsEmpty()) return false;
  if (Entry32Count() + Entry64Count() > ConstantPool::kApproxMaxEntryCount) {
    return true;
  }
  // We compute {dist32/64}, i.e. the distance from the first instruction
  // accessing a 32bit/64bit entry in the constant pool to any of the
  // 32bit/64bit constant pool entries, respectively. This is required because
  // we do not guarantee that entries are emitted in order of reference, i.e. it
  // is possible that the entry with the earliest reference is emitted last.
  // The constant pool should be emitted if either of the following is true:
  // (A) {dist32/64} will be out of range at the next check in.
  // (B) Emission can be done behind an unconditional branch and {dist32/64}
  // exceeds {kOpportunityDist*}.
  // (C) {dist32/64} exceeds the desired approximate distance to the pool.
  int worst_case_size = ComputeSize(Jump::kRequired, Alignment::kRequired);
  size_t pool_end_32 = assm_->pc_offset() + margin + worst_case_size;
  size_t pool_end_64 = pool_end_32 - Entry32Count() * kInt32Size;
  if (Entry64Count() != 0) {
    // The 64-bit constants are always emitted before the 32-bit constants, so
    // we subtract the size of the 32-bit constants from {size}.
    size_t dist64 = pool_end_64 - first_use_64_;
    bool next_check_too_late = dist64 + 2 * kCheckInterval >= kMaxDistToPool64;
    bool opportune_emission_without_jump =
        require_jump == Jump::kOmitted && (dist64 >= kOpportunityDistToPool64);
    bool approximate_distance_exceeded = dist64 >= kApproxDistToPool64;
    if (next_check_too_late || opportune_emission_without_jump ||
        approximate_distance_exceeded) {
      return true;
    }
  }
  if (Entry32Count() != 0) {
    size_t dist32 = pool_end_32 - first_use_32_;
    bool next_check_too_late = dist32 + 2 * kCheckInterval >= kMaxDistToPool32;
    bool opportune_emission_without_jump =
        require_jump == Jump::kOmitted && (dist32 >= kOpportunityDistToPool32);
    bool approximate_distance_exceeded = dist32 >= kApproxDistToPool32;
    if (next_check_too_late || opportune_emission_without_jump ||
        approximate_distance_exceeded) {
      return true;
    }
  }
  return false;
}

int ConstantPool::ComputeSize(Jump require_jump,
                              Alignment require_alignment) const {
  int size_up_to_marker = PrologueSize(require_jump);
  int alignment = require_alignment == Alignment::kRequired ? kInstrSize : 0;
  size_t size_after_marker =
      Entry32Count() * kInt32Size + alignment + Entry64Count() * kInt64Size;
  return size_up_to_marker + static_cast<int>(size_after_marker);
}

Alignment ConstantPool::IsAlignmentRequiredIfEmittedAt(Jump require_jump,
                                                       int pc_offset) const {
  int size_up_to_marker = PrologueSize(require_jump);
  if (Entry64Count() != 0 &&
      !IsAligned(pc_offset + size_up_to_marker, kInt64Size)) {
    return Alignment::kRequired;
  }
  return Alignment::kOmitted;
}

bool ConstantPool::IsInImmRangeIfEmittedAt(int pc_offset) {
  // Check that all entries are in range if the pool is emitted at {pc_offset}.
  // This ignores kPcLoadDelta (conservatively, since all offsets are positive),
  // and over-estimates the last entry's address with the pool's end.
  Alignment require_alignment =
      IsAlignmentRequiredIfEmittedAt(Jump::kRequired, pc_offset);
  size_t pool_end_32 =
      pc_offset + ComputeSize(Jump::kRequired, require_alignment);
  size_t pool_end_64 = pool_end_32 - Entry32Count() * kInt32Size;
  bool entries_in_range_32 =
      Entry32Count() == 0 || (pool_end_32 < first_use_32_ + kMaxDistToPool32);
  bool entries_in_range_64 =
      Entry64Count() == 0 || (pool_end_64 < first_use_64_ + kMaxDistToPool64);
  return entries_in_range_32 && entries_in_range_64;
}

ConstantPool::BlockScope::BlockScope(Assembler* assm, size_t margin)
    : pool_(&assm->constpool_) {
  pool_->assm_->EmitConstPoolWithJumpIfNeeded(margin);
  pool_->StartBlock();
}

ConstantPool::BlockScope::BlockScope(Assembler* assm, PoolEmissionCheck check)
    : pool_(&assm->constpool_) {
  DCHECK_EQ(check, PoolEmissionCheck::kSkip);
  pool_->StartBlock();
}

ConstantPool::BlockScope::~BlockScope() { pool_->EndBlock(); }

void ConstantPool::MaybeCheck() {
  if (assm_->pc_offset() >= next_check_) {
    Check(Emission::kIfNeeded, Jump::kRequired);
  }
}

#endif  // defined(V8_TARGET_ARCH_RISCV64)

711 712
}  // namespace internal
}  // namespace v8