frames.cc 53.5 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6 7 8
#include "src/frames.h"

#include <sstream>

9
#include "src/v8.h"
10

11
#include "src/ast.h"
12
#include "src/base/bits.h"
13 14 15
#include "src/deoptimizer.h"
#include "src/frames-inl.h"
#include "src/full-codegen.h"
16
#include "src/heap/mark-compact.h"
17 18 19 20
#include "src/safepoint-table.h"
#include "src/scopeinfo.h"
#include "src/string-stream.h"
#include "src/vm-state-inl.h"
21

22 23
namespace v8 {
namespace internal {
24

25

26 27
ReturnAddressLocationResolver
    StackFrame::return_address_location_resolver_ = NULL;
28 29


30 31 32 33 34 35 36
// Iterator that supports traversing the stack handlers of a
// particular frame. Needs to know the top of the handler chain.
class StackHandlerIterator BASE_EMBEDDED {
 public:
  StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
      : limit_(frame->fp()), handler_(handler) {
    // Make sure the handler has already been unwound to this frame.
37
    DCHECK(frame->sp() <= handler->address());
38 39 40 41
  }

  StackHandler* handler() const { return handler_; }

42 43 44
  bool done() {
    return handler_ == NULL || handler_->address() > limit_;
  }
45
  void Advance() {
46
    DCHECK(!done());
47 48 49 50 51 52 53 54 55 56 57 58 59
    handler_ = handler_->next();
  }

 private:
  const Address limit_;
  StackHandler* handler_;
};


// -------------------------------------------------------------------------


#define INITIALIZE_SINGLETON(type, field) field##_(this),
60 61
StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate,
                                               bool can_access_heap_objects)
62 63 64
    : isolate_(isolate),
      STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
      frame_(NULL), handler_(NULL),
65
      can_access_heap_objects_(can_access_heap_objects) {
66
}
67 68 69 70 71 72
#undef INITIALIZE_SINGLETON


StackFrameIterator::StackFrameIterator(Isolate* isolate)
    : StackFrameIteratorBase(isolate, true) {
  Reset(isolate->thread_local_top());
73
}
74

75 76 77 78 79

StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t)
    : StackFrameIteratorBase(isolate, true) {
  Reset(t);
}
80 81


82
void StackFrameIterator::Advance() {
83
  DCHECK(!done());
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  // Compute the state of the calling frame before restoring
  // callee-saved registers and unwinding handlers. This allows the
  // frame code that computes the caller state to access the top
  // handler and the value of any callee-saved register if needed.
  StackFrame::State state;
  StackFrame::Type type = frame_->GetCallerState(&state);

  // Unwind handlers corresponding to the current frame.
  StackHandlerIterator it(frame_, handler_);
  while (!it.done()) it.Advance();
  handler_ = it.handler();

  // Advance to the calling frame.
  frame_ = SingletonFor(type, &state);

  // When we're done iterating over the stack frames, the handler
  // chain must have been completely unwound.
101
  DCHECK(!done() || handler_ == NULL);
102 103 104
}


105
void StackFrameIterator::Reset(ThreadLocalTop* top) {
106
  StackFrame::State state;
107 108 109
  StackFrame::Type type = ExitFrame::GetStateForFramePointer(
      Isolate::c_entry_fp(top), &state);
  handler_ = StackHandler::FromAddress(Isolate::handler(top));
110
  if (SingletonFor(type) == NULL) return;
111 112 113 114
  frame_ = SingletonFor(type, &state);
}


115
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type,
116
                                             StackFrame::State* state) {
117 118
  if (type == StackFrame::NONE) return NULL;
  StackFrame* result = SingletonFor(type);
119
  DCHECK(result != NULL);
120 121 122 123 124
  result->state_ = *state;
  return result;
}


125
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) {
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#define FRAME_TYPE_CASE(type, field) \
  case StackFrame::type: result = &field##_; break;

  StackFrame* result = NULL;
  switch (type) {
    case StackFrame::NONE: return NULL;
    STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
    default: break;
  }
  return result;

#undef FRAME_TYPE_CASE
}


// -------------------------------------------------------------------------


144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
JavaScriptFrameIterator::JavaScriptFrameIterator(
    Isolate* isolate, StackFrame::Id id)
    : iterator_(isolate) {
  while (!done()) {
    Advance();
    if (frame()->id() == id) return;
  }
}


void JavaScriptFrameIterator::Advance() {
  do {
    iterator_.Advance();
  } while (!iterator_.done() && !iterator_.frame()->is_java_script());
}


void JavaScriptFrameIterator::AdvanceToArgumentsFrame() {
  if (!frame()->has_adapted_arguments()) return;
  iterator_.Advance();
164
  DCHECK(iterator_.frame()->is_arguments_adaptor());
165 166 167 168 169 170
}


// -------------------------------------------------------------------------


171 172 173 174 175 176
StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate)
    : JavaScriptFrameIterator(isolate) {
  if (!done() && !IsValidFrame()) Advance();
}


177
void StackTraceFrameIterator::Advance() {
178
  while (true) {
179 180
    JavaScriptFrameIterator::Advance();
    if (done()) return;
181
    if (IsValidFrame()) return;
182 183 184
  }
}

185

186 187
bool StackTraceFrameIterator::IsValidFrame() {
    if (!frame()->function()->IsJSFunction()) return false;
188
    Object* script = frame()->function()->shared()->script();
189 190 191 192 193
    // Don't show functions from native scripts to user.
    return (script->IsScript() &&
            Script::TYPE_NATIVE != Script::cast(script)->type()->value());
}

194

195 196 197 198
// -------------------------------------------------------------------------


SafeStackFrameIterator::SafeStackFrameIterator(
199
    Isolate* isolate,
200 201 202 203
    Address fp, Address sp, Address js_entry_sp)
    : StackFrameIteratorBase(isolate, false),
      low_bound_(sp),
      high_bound_(js_entry_sp),
204 205
      top_frame_type_(StackFrame::NONE),
      external_callback_scope_(isolate->external_callback_scope()) {
206 207 208 209 210
  StackFrame::State state;
  StackFrame::Type type;
  ThreadLocalTop* top = isolate->thread_local_top();
  if (IsValidTop(top)) {
    type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state);
211
    top_frame_type_ = type;
212
  } else if (IsValidStackAddress(fp)) {
213
    DCHECK(fp != NULL);
214 215
    state.fp = fp;
    state.sp = sp;
216
    state.pc_address = StackFrame::ResolveReturnAddressLocation(
217
        reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp)));
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    // StackFrame::ComputeType will read both kContextOffset and kMarkerOffset,
    // we check only that kMarkerOffset is within the stack bounds and do
    // compile time check that kContextOffset slot is pushed on the stack before
    // kMarkerOffset.
    STATIC_ASSERT(StandardFrameConstants::kMarkerOffset <
                  StandardFrameConstants::kContextOffset);
    Address frame_marker = fp + StandardFrameConstants::kMarkerOffset;
    if (IsValidStackAddress(frame_marker)) {
      type = StackFrame::ComputeType(this, &state);
      top_frame_type_ = type;
    } else {
      // Mark the frame as JAVA_SCRIPT if we cannot determine its type.
      // The frame anyways will be skipped.
      type = StackFrame::JAVA_SCRIPT;
      // Top frame is incomplete so we cannot reliably determine its type.
      top_frame_type_ = StackFrame::NONE;
    }
235 236 237 238 239
  } else {
    return;
  }
  if (SingletonFor(type) == NULL) return;
  frame_ = SingletonFor(type, &state);
240 241 242
  if (frame_ == NULL) return;

  Advance();
243

244 245 246 247 248 249 250
  if (frame_ != NULL && !frame_->is_exit() &&
      external_callback_scope_ != NULL &&
      external_callback_scope_->scope_address() < frame_->fp()) {
    // Skip top ExternalCallbackScope if we already advanced to a JS frame
    // under it. Sampler will anyways take this top external callback.
    external_callback_scope_ = external_callback_scope_->previous();
  }
251 252 253
}


254
bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const {
255 256
  Address c_entry_fp = Isolate::c_entry_fp(top);
  if (!IsValidExitFrame(c_entry_fp)) return false;
257
  // There should be at least one JS_ENTRY stack handler.
258 259 260 261
  Address handler = Isolate::handler(top);
  if (handler == NULL) return false;
  // Check that there are no js frames on top of the native frames.
  return c_entry_fp < handler;
262 263 264
}


265
void SafeStackFrameIterator::AdvanceOneFrame() {
266
  DCHECK(!done());
267
  StackFrame* last_frame = frame_;
268
  Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
269 270 271 272 273
  // Before advancing to the next stack frame, perform pointer validity tests.
  if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) {
    frame_ = NULL;
    return;
  }
274

275 276 277 278 279 280 281 282 283 284
  // Advance to the previous frame.
  StackFrame::State state;
  StackFrame::Type type = frame_->GetCallerState(&state);
  frame_ = SingletonFor(type, &state);
  if (frame_ == NULL) return;

  // Check that we have actually moved to the previous frame in the stack.
  if (frame_->sp() < last_sp || frame_->fp() < last_fp) {
    frame_ = NULL;
  }
285 286 287 288
}


bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
289
  return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
290 291 292 293 294
}


bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
  StackFrame::State state;
295 296 297 298 299 300
  if (frame->is_entry() || frame->is_entry_construct()) {
    // See EntryFrame::GetCallerState. It computes the caller FP address
    // and calls ExitFrame::GetStateForFramePointer on it. We need to be
    // sure that caller FP address is valid.
    Address caller_fp = Memory::Address_at(
        frame->fp() + EntryFrameConstants::kCallerFPOffset);
301
    if (!IsValidExitFrame(caller_fp)) return false;
302 303 304 305 306 307 308 309 310 311
  } else if (frame->is_arguments_adaptor()) {
    // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
    // the number of arguments is stored on stack as Smi. We need to check
    // that it really an Smi.
    Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
        GetExpression(0);
    if (!number_of_args->IsSmi()) {
      return false;
    }
  }
312 313
  frame->ComputeCallerState(&state);
  return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
314 315 316 317 318 319 320 321 322 323 324 325 326 327
      SingletonFor(frame->GetCallerState(&state)) != NULL;
}


bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const {
  if (!IsValidStackAddress(fp)) return false;
  Address sp = ExitFrame::ComputeStackPointer(fp);
  if (!IsValidStackAddress(sp)) return false;
  StackFrame::State state;
  ExitFrame::FillState(fp, sp, &state);
  if (!IsValidStackAddress(reinterpret_cast<Address>(state.pc_address))) {
    return false;
  }
  return *state.pc_address != NULL;
328 329 330
}


331
void SafeStackFrameIterator::Advance() {
332
  while (true) {
333 334
    AdvanceOneFrame();
    if (done()) return;
335
    if (frame_->is_java_script()) return;
336 337 338 339 340 341 342 343 344 345 346 347 348
    if (frame_->is_exit() && external_callback_scope_) {
      // Some of the EXIT frames may have ExternalCallbackScope allocated on
      // top of them. In that case the scope corresponds to the first EXIT
      // frame beneath it. There may be other EXIT frames on top of the
      // ExternalCallbackScope, just skip them as we cannot collect any useful
      // information about them.
      if (external_callback_scope_->scope_address() < frame_->fp()) {
        Address* callback_address =
            external_callback_scope_->callback_address();
        if (*callback_address != NULL) {
          frame_->state_.pc_address = callback_address;
        }
        external_callback_scope_ = external_callback_scope_->previous();
349
        DCHECK(external_callback_scope_ == NULL ||
350 351 352 353
               external_callback_scope_->scope_address() > frame_->fp());
        return;
      }
    }
354
  }
355 356 357
}


358 359 360
// -------------------------------------------------------------------------


361
Code* StackFrame::GetSafepointData(Isolate* isolate,
362
                                   Address inner_pointer,
363
                                   SafepointEntry* safepoint_entry,
364
                                   unsigned* stack_slots) {
365 366
  InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry =
      isolate->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer);
367
  if (!entry->safepoint_entry.is_valid()) {
368
    entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer);
369
    DCHECK(entry->safepoint_entry.is_valid());
370
  } else {
371
    DCHECK(entry->safepoint_entry.Equals(
372
        entry->code->GetSafepointEntry(inner_pointer)));
373 374 375 376
  }

  // Fill in the results and return the code.
  Code* code = entry->code;
377
  *safepoint_entry = entry->safepoint_entry;
378 379 380 381 382
  *stack_slots = code->stack_slots();
  return code;
}


383 384 385 386 387
bool StackFrame::HasHandler() const {
  StackHandlerIterator it(this, top_handler());
  return !it.done();
}

388

389 390 391 392 393
#ifdef DEBUG
static bool GcSafeCodeContains(HeapObject* object, Address addr);
#endif


394 395 396 397
void StackFrame::IteratePc(ObjectVisitor* v,
                           Address* pc_address,
                           Code* holder) {
  Address pc = *pc_address;
398
  DCHECK(GcSafeCodeContains(holder, pc));
399
  unsigned pc_offset = static_cast<unsigned>(pc - holder->instruction_start());
400 401 402 403 404 405
  Object* code = holder;
  v->VisitPointer(&code);
  if (code != holder) {
    holder = reinterpret_cast<Code*>(code);
    pc = holder->instruction_start() + pc_offset;
    *pc_address = pc;
406 407 408 409
  }
}


410 411
void StackFrame::SetReturnAddressLocationResolver(
    ReturnAddressLocationResolver resolver) {
412
  DCHECK(return_address_location_resolver_ == NULL);
413
  return_address_location_resolver_ = resolver;
414 415 416
}


417
StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator,
418
                                         State* state) {
419
  DCHECK(state->fp != NULL);
420 421
  if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) {
    return ARGUMENTS_ADAPTOR;
422
  }
423 424 425 426 427
  // The marker and function offsets overlap. If the marker isn't a
  // smi then the frame is a JavaScript frame -- and the marker is
  // really the function.
  const int offset = StandardFrameConstants::kMarkerOffset;
  Object* marker = Memory::Object_at(state->fp + offset);
428 429 430 431 432
  if (!marker->IsSmi()) {
    // If we're using a "safe" stack iterator, we treat optimized
    // frames as normal JavaScript frames to avoid having to look
    // into the heap to determine the state. This is safe as long
    // as nobody tries to GC...
433 434 435
    if (!iterator->can_access_heap_objects_) return JAVA_SCRIPT;
    Code::Kind kind = GetContainingCode(iterator->isolate(),
                                        *(state->pc_address))->kind();
436
    DCHECK(kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION);
437 438
    return (kind == Code::OPTIMIZED_FUNCTION) ? OPTIMIZED : JAVA_SCRIPT;
  }
439
  return static_cast<StackFrame::Type>(Smi::cast(marker)->value());
440 441 442
}


443 444 445 446 447 448
#ifdef DEBUG
bool StackFrame::can_access_heap_objects() const {
  return iterator_->can_access_heap_objects_;
}
#endif

449

450 451
StackFrame::Type StackFrame::GetCallerState(State* state) const {
  ComputeCallerState(state);
452
  return ComputeType(iterator_, state);
453 454 455
}


456
Address StackFrame::UnpaddedFP() const {
danno@chromium.org's avatar
danno@chromium.org committed
457
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
458 459 460 461 462 463 464 465 466 467 468 469
  if (!is_optimized()) return fp();
  int32_t alignment_state = Memory::int32_at(
    fp() + JavaScriptFrameConstants::kDynamicAlignmentStateOffset);

  return (alignment_state == kAlignmentPaddingPushed) ?
    (fp() + kPointerSize) : fp();
#else
  return fp();
#endif
}


470
Code* EntryFrame::unchecked_code() const {
471
  return isolate()->heap()->js_entry_code();
472 473 474
}


475 476 477 478 479
void EntryFrame::ComputeCallerState(State* state) const {
  GetCallerState(state);
}


480 481 482 483 484 485
void EntryFrame::SetCallerFp(Address caller_fp) {
  const int offset = EntryFrameConstants::kCallerFPOffset;
  Memory::Address_at(this->fp() + offset) = caller_fp;
}


486 487 488 489 490 491 492
StackFrame::Type EntryFrame::GetCallerState(State* state) const {
  const int offset = EntryFrameConstants::kCallerFPOffset;
  Address fp = Memory::Address_at(this->fp() + offset);
  return ExitFrame::GetStateForFramePointer(fp, state);
}


493
Code* EntryConstructFrame::unchecked_code() const {
494
  return isolate()->heap()->js_construct_entry_code();
495 496 497
}


498 499 500 501 502 503
Object*& ExitFrame::code_slot() const {
  const int offset = ExitFrameConstants::kCodeOffset;
  return Memory::Object_at(fp() + offset);
}


504 505
Code* ExitFrame::unchecked_code() const {
  return reinterpret_cast<Code*>(code_slot());
506 507 508
}


509
void ExitFrame::ComputeCallerState(State* state) const {
510
  // Set up the caller state.
511
  state->sp = caller_sp();
512
  state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
513 514
  state->pc_address = ResolveReturnAddressLocation(
      reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset));
515 516 517 518
  if (FLAG_enable_ool_constant_pool) {
    state->constant_pool_address = reinterpret_cast<Address*>(
        fp() + ExitFrameConstants::kConstantPoolOffset);
  }
519 520 521
}


522 523 524 525 526
void ExitFrame::SetCallerFp(Address caller_fp) {
  Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp;
}


527 528 529
void ExitFrame::Iterate(ObjectVisitor* v) const {
  // The arguments are traversed as part of the expression stack of
  // the calling frame.
530
  IteratePc(v, pc_address(), LookupCode());
531
  v->VisitPointer(&code_slot());
532 533 534
  if (FLAG_enable_ool_constant_pool) {
    v->VisitPointer(&constant_pool_slot());
  }
535 536 537
}


538
Address ExitFrame::GetCallerStackPointer() const {
539
  return fp() + ExitFrameConstants::kCallerSPDisplacement;
540 541 542
}


543 544 545 546
StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
  if (fp == 0) return NONE;
  Address sp = ComputeStackPointer(fp);
  FillState(fp, sp, state);
547
  DCHECK(*state->pc_address != NULL);
548 549 550 551
  return EXIT;
}


552 553 554 555 556
Address ExitFrame::ComputeStackPointer(Address fp) {
  return Memory::Address_at(fp + ExitFrameConstants::kSPOffset);
}


557 558 559
void ExitFrame::FillState(Address fp, Address sp, State* state) {
  state->sp = sp;
  state->fp = fp;
560
  state->pc_address = ResolveReturnAddressLocation(
561
      reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize));
562 563
  state->constant_pool_address =
      reinterpret_cast<Address*>(fp + ExitFrameConstants::kConstantPoolOffset);
564 565 566
}


567
Address StandardFrame::GetExpressionAddress(int n) const {
568 569
  const int offset = StandardFrameConstants::kExpressionsOffset;
  return fp() + offset - n * kPointerSize;
570 571 572
}


573 574 575 576 577 578 579 580 581 582 583
Object* StandardFrame::GetExpression(Address fp, int index) {
  return Memory::Object_at(GetExpressionAddress(fp, index));
}


Address StandardFrame::GetExpressionAddress(Address fp, int n) {
  const int offset = StandardFrameConstants::kExpressionsOffset;
  return fp + offset - n * kPointerSize;
}


584 585 586 587 588
int StandardFrame::ComputeExpressionsCount() const {
  const int offset =
      StandardFrameConstants::kExpressionsOffset + kPointerSize;
  Address base = fp() + offset;
  Address limit = sp();
589
  DCHECK(base >= limit);  // stack grows downwards
590
  // Include register-allocated locals in number of expressions.
591
  return static_cast<int>((base - limit) / kPointerSize);
592 593 594
}


595
void StandardFrame::ComputeCallerState(State* state) const {
596 597
  state->sp = caller_sp();
  state->fp = caller_fp();
598 599
  state->pc_address = ResolveReturnAddressLocation(
      reinterpret_cast<Address*>(ComputePCAddress(fp())));
600 601
  state->constant_pool_address =
      reinterpret_cast<Address*>(ComputeConstantPoolAddress(fp()));
602 603 604
}


605 606 607 608 609 610
void StandardFrame::SetCallerFp(Address caller_fp) {
  Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) =
      caller_fp;
}


611 612 613 614 615 616 617 618 619
bool StandardFrame::IsExpressionInsideHandler(int n) const {
  Address address = GetExpressionAddress(n);
  for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
    if (it.handler()->includes(address)) return true;
  }
  return false;
}


620
void StandardFrame::IterateCompiledFrame(ObjectVisitor* v) const {
621 622
  // Make sure that we're not doing "safe" stack frame iteration. We cannot
  // possibly find pointers in optimized frames in that state.
623
  DCHECK(can_access_heap_objects());
624 625 626

  // Compute the safepoint information.
  unsigned stack_slots = 0;
627
  SafepointEntry safepoint_entry;
628
  Code* code = StackFrame::GetSafepointData(
629
      isolate(), pc(), &safepoint_entry, &stack_slots);
630 631
  unsigned slot_space = stack_slots * kPointerSize;

632
  // Visit the outgoing parameters.
633 634 635 636
  Object** parameters_base = &Memory::Object_at(sp());
  Object** parameters_limit = &Memory::Object_at(
      fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space);

637 638 639 640 641 642 643
  // Visit the parameters that may be on top of the saved registers.
  if (safepoint_entry.argument_count() > 0) {
    v->VisitPointers(parameters_base,
                     parameters_base + safepoint_entry.argument_count());
    parameters_base += safepoint_entry.argument_count();
  }

644
  // Skip saved double registers.
645
  if (safepoint_entry.has_doubles()) {
646
    // Number of doubles not known at snapshot time.
647
    DCHECK(!isolate()->serializer_enabled());
648
    parameters_base += DoubleRegister::NumAllocatableRegisters() *
649 650 651
        kDoubleSize / kPointerSize;
  }

652
  // Visit the registers that contain pointers if any.
653
  if (safepoint_entry.HasRegisters()) {
654
    for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
655
      if (safepoint_entry.HasRegisterAt(i)) {
656 657 658 659 660 661 662 663 664
        int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
        v->VisitPointer(parameters_base + reg_stack_index);
      }
    }
    // Skip the words containing the register values.
    parameters_base += kNumSafepointRegisters;
  }

  // We're done dealing with the register bits.
665 666
  uint8_t* safepoint_bits = safepoint_entry.bits();
  safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;
667 668 669 670 671 672 673 674

  // Visit the rest of the parameters.
  v->VisitPointers(parameters_base, parameters_limit);

  // Visit pointer spill slots and locals.
  for (unsigned index = 0; index < stack_slots; index++) {
    int byte_index = index >> kBitsPerByteLog2;
    int bit_index = index & (kBitsPerByte - 1);
675
    if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
676 677 678 679
      v->VisitPointer(parameters_limit + index);
    }
  }

680 681
  // Visit the return address in the callee and incoming arguments.
  IteratePc(v, pc_address(), code);
682 683 684 685 686 687 688

  // Visit the context in stub frame and JavaScript frame.
  // Visit the function in JavaScript frame.
  Object** fixed_base = &Memory::Object_at(
      fp() + StandardFrameConstants::kMarkerOffset);
  Object** fixed_limit = &Memory::Object_at(fp());
  v->VisitPointers(fixed_base, fixed_limit);
689 690 691 692 693 694 695 696 697
}


void StubFrame::Iterate(ObjectVisitor* v) const {
  IterateCompiledFrame(v);
}


Code* StubFrame::unchecked_code() const {
698
  return static_cast<Code*>(isolate()->FindCodeObject(pc()));
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
}


Address StubFrame::GetCallerStackPointer() const {
  return fp() + ExitFrameConstants::kCallerSPDisplacement;
}


int StubFrame::GetNumberOfIncomingArguments() const {
  return 0;
}


void OptimizedFrame::Iterate(ObjectVisitor* v) const {
#ifdef DEBUG
  // Make sure that optimized frames do not contain any stack handlers.
  StackHandlerIterator it(this, top_handler());
716
  DCHECK(it.done());
717 718 719
#endif

  IterateCompiledFrame(v);
720 721 722
}


723 724 725 726 727
void JavaScriptFrame::SetParameterValue(int index, Object* value) const {
  Memory::Object_at(GetParameterSlot(index)) = value;
}


728
bool JavaScriptFrame::IsConstructor() const {
729 730 731 732 733 734
  Address fp = caller_fp();
  if (has_adapted_arguments()) {
    // Skip the arguments adaptor frame and look at the real caller.
    fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
  }
  return IsConstructFrame(fp);
735 736 737
}


738 739 740 741 742 743 744 745 746 747
int JavaScriptFrame::GetArgumentsLength() const {
  // If there is an arguments adaptor frame get the arguments length from it.
  if (has_adapted_arguments()) {
    return Smi::cast(GetExpression(caller_fp(), 0))->value();
  } else {
    return GetNumberOfIncomingArguments();
  }
}


748
Code* JavaScriptFrame::unchecked_code() const {
749
  return function()->code();
750 751 752
}


753
int JavaScriptFrame::GetNumberOfIncomingArguments() const {
754
  DCHECK(can_access_heap_objects() &&
755 756
         isolate()->heap()->gc_state() == Heap::NOT_IN_GC);

757
  return function()->shared()->internal_formal_parameter_count();
758 759 760
}


761
Address JavaScriptFrame::GetCallerStackPointer() const {
762
  return fp() + StandardFrameConstants::kCallerSPOffset;
763 764 765
}


766
void JavaScriptFrame::GetFunctions(List<JSFunction*>* functions) {
767
  DCHECK(functions->length() == 0);
768
  functions->Add(function());
769 770 771 772
}


void JavaScriptFrame::Summarize(List<FrameSummary>* functions) {
773
  DCHECK(functions->length() == 0);
774
  Code* code_pointer = LookupCode();
775
  int offset = static_cast<int>(pc() - code_pointer->address());
776
  FrameSummary summary(receiver(),
777
                       function(),
778 779 780 781 782 783 784
                       code_pointer,
                       offset,
                       IsConstructor());
  functions->Add(summary);
}


785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
void JavaScriptFrame::PrintFunctionAndOffset(JSFunction* function, Code* code,
                                             Address pc, FILE* file,
                                             bool print_line_number) {
  PrintF(file, "%s", function->IsOptimized() ? "*" : "~");
  function->PrintName(file);
  int code_offset = static_cast<int>(pc - code->instruction_start());
  PrintF(file, "+%d", code_offset);
  if (print_line_number) {
    SharedFunctionInfo* shared = function->shared();
    int source_pos = code->SourcePosition(pc);
    Object* maybe_script = shared->script();
    if (maybe_script->IsScript()) {
      Script* script = Script::cast(maybe_script);
      int line = script->GetLineNumber(source_pos) + 1;
      Object* script_name_raw = script->name();
      if (script_name_raw->IsString()) {
        String* script_name = String::cast(script->name());
        SmartArrayPointer<char> c_script_name =
            script_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
        PrintF(file, " at %s:%d", c_script_name.get(), line);
      } else {
        PrintF(file, " at <unknown>:%d", line);
      }
    } else {
      PrintF(file, " at <unknown>:<unknown>");
    }
  }
}


void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args,
816 817
                               bool print_line_number) {
  // constructor calls
818
  DisallowHeapAllocation no_allocation;
819
  JavaScriptFrameIterator it(isolate);
820 821 822 823
  while (!it.done()) {
    if (it.frame()->is_java_script()) {
      JavaScriptFrame* frame = it.frame();
      if (frame->IsConstructor()) PrintF(file, "new ");
824 825
      PrintFunctionAndOffset(frame->function(), frame->unchecked_code(),
                             frame->pc(), file, print_line_number);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
      if (print_args) {
        // function arguments
        // (we are intentionally only printing the actually
        // supplied parameters, not all parameters required)
        PrintF(file, "(this=");
        frame->receiver()->ShortPrint(file);
        const int length = frame->ComputeParametersCount();
        for (int i = 0; i < length; i++) {
          PrintF(file, ", ");
          frame->GetParameter(i)->ShortPrint(file);
        }
        PrintF(file, ")");
      }
      break;
    }
    it.Advance();
  }
}


846 847 848
void JavaScriptFrame::SaveOperandStack(FixedArray* store,
                                       int* stack_handler_index) const {
  int operands_count = store->length();
849
  DCHECK_LE(operands_count, ComputeOperandsCount());
850 851 852 853 854 855 856 857 858 859 860 861 862

  // Visit the stack in LIFO order, saving operands and stack handlers into the
  // array.  The saved stack handlers store a link to the next stack handler,
  // which will allow RestoreOperandStack to rewind the handlers.
  StackHandlerIterator it(this, top_handler());
  int i = operands_count - 1;
  *stack_handler_index = -1;
  for (; !it.done(); it.Advance()) {
    StackHandler* handler = it.handler();
    // Save operands pushed after the handler was pushed.
    for (; GetOperandSlot(i) < handler->address(); i--) {
      store->set(i, GetOperand(i));
    }
863 864
    DCHECK_GE(i + 1, StackHandlerConstants::kSlotCount);
    DCHECK_EQ(handler->address(), GetOperandSlot(i));
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    int next_stack_handler_index = i + 1 - StackHandlerConstants::kSlotCount;
    handler->Unwind(isolate(), store, next_stack_handler_index,
                    *stack_handler_index);
    *stack_handler_index = next_stack_handler_index;
    i -= StackHandlerConstants::kSlotCount;
  }

  // Save any remaining operands.
  for (; i >= 0; i--) {
    store->set(i, GetOperand(i));
  }
}


void JavaScriptFrame::RestoreOperandStack(FixedArray* store,
                                          int stack_handler_index) {
  int operands_count = store->length();
882
  DCHECK_LE(operands_count, ComputeOperandsCount());
883 884 885 886
  int i = 0;
  while (i <= stack_handler_index) {
    if (i < stack_handler_index) {
      // An operand.
887
      DCHECK_EQ(GetOperand(i), isolate()->heap()->the_hole_value());
888 889 890 891
      Memory::Object_at(GetOperandSlot(i)) = store->get(i);
      i++;
    } else {
      // A stack handler.
892
      DCHECK_EQ(i, stack_handler_index);
893 894 895 896 897 898 899 900 901 902 903 904 905
      // The FixedArray store grows up.  The stack grows down.  So the operand
      // slot for i actually points to the bottom of the top word in the
      // handler.  The base of the StackHandler* is the address of the bottom
      // word, which will be the last slot that is in the handler.
      int handler_slot_index = i + StackHandlerConstants::kSlotCount - 1;
      StackHandler *handler =
          StackHandler::FromAddress(GetOperandSlot(handler_slot_index));
      stack_handler_index = handler->Rewind(isolate(), store, i, fp());
      i += StackHandlerConstants::kSlotCount;
    }
  }

  for (; i < operands_count; i++) {
906
    DCHECK_EQ(GetOperand(i), isolate()->heap()->the_hole_value());
907 908 909 910 911
    Memory::Object_at(GetOperandSlot(i)) = store->get(i);
  }
}


912 913 914 915 916 917 918 919 920 921 922 923 924
void FrameSummary::Print() {
  PrintF("receiver: ");
  receiver_->ShortPrint();
  PrintF("\nfunction: ");
  function_->shared()->DebugName()->ShortPrint();
  PrintF("\ncode: ");
  code_->ShortPrint();
  if (code_->kind() == Code::FUNCTION) PrintF(" NON-OPT");
  if (code_->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT");
  PrintF("\npc: %d\n", offset_);
}


925 926 927
JSFunction* OptimizedFrame::LiteralAt(FixedArray* literal_array,
                                      int literal_id) {
  if (literal_id == Translation::kSelfLiteralId) {
928
    return function();
929 930 931 932 933 934
  }

  return JSFunction::cast(literal_array->get(literal_id));
}


935
void OptimizedFrame::Summarize(List<FrameSummary>* frames) {
936 937
  DCHECK(frames->length() == 0);
  DCHECK(is_optimized());
938

939 940 941
  // Delegate to JS frame in absence of turbofan deoptimization.
  // TODO(turbofan): Revisit once we support deoptimization across the board.
  if (LookupCode()->is_turbofanned() && !FLAG_turbo_deoptimization) {
942 943 944
    return JavaScriptFrame::Summarize(frames);
  }

945
  int deopt_index = Safepoint::kNoDeoptimizationIndex;
946
  DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
947
  FixedArray* literal_array = data->LiteralArray();
948 949 950 951 952 953

  // BUG(3243555): Since we don't have a lazy-deopt registered at
  // throw-statements, we can't use the translation at the call-site of
  // throw. An entry with no deoptimization index indicates a call-site
  // without a lazy-deopt. As a consequence we are not allowed to inline
  // functions containing throw.
954
  DCHECK(deopt_index != Safepoint::kNoDeoptimizationIndex);
955 956 957 958

  TranslationIterator it(data->TranslationByteArray(),
                         data->TranslationIndex(deopt_index)->value());
  Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
959
  DCHECK(opcode == Translation::BEGIN);
960 961
  it.Next();  // Drop frame count.
  int jsframe_count = it.Next();
962 963 964

  // We create the summary in reverse order because the frames
  // in the deoptimization translation are ordered bottom-to-top.
965
  bool is_constructor = IsConstructor();
966
  int i = jsframe_count;
967 968
  while (i > 0) {
    opcode = static_cast<Translation::Opcode>(it.Next());
969
    if (opcode == Translation::JS_FRAME) {
970
      i--;
971
      BailoutId ast_id = BailoutId(it.Next());
972
      JSFunction* function = LiteralAt(literal_array, it.Next());
973 974 975
      it.Next();  // Skip height.

      // The translation commands are ordered and the receiver is always
976 977 978
      // at the first position.
      // If we are at a call, the receiver is always in a stack slot.
      // Otherwise we are not guaranteed to get the receiver value.
979
      opcode = static_cast<Translation::Opcode>(it.Next());
980
      int index = it.Next();
981 982 983

      // Get the correct receiver in the optimized frame.
      Object* receiver = NULL;
984 985
      if (opcode == Translation::LITERAL) {
        receiver = data->LiteralArray()->get(index);
986
      } else if (opcode == Translation::STACK_SLOT) {
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
        // Positive index means the value is spilled to the locals
        // area. Negative means it is stored in the incoming parameter
        // area.
        if (index >= 0) {
          receiver = GetExpression(index);
        } else {
          // Index -1 overlaps with last parameter, -n with the first parameter,
          // (-n - 1) with the receiver with n being the number of parameters
          // of the outermost, optimized frame.
          int parameter_count = ComputeParametersCount();
          int parameter_index = index + parameter_count;
          receiver = (parameter_index == -1)
              ? this->receiver()
              : this->GetParameter(parameter_index);
        }
1002
      } else {
1003
        // The receiver is not in a stack slot nor in a literal.  We give up.
1004 1005 1006 1007 1008
        // TODO(3029): Materializing a captured object (or duplicated
        // object) is hard, we return undefined for now. This breaks the
        // produced stack trace, as constructor frames aren't marked as
        // such anymore.
        receiver = isolate()->heap()->undefined_value();
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
      }

      Code* code = function->shared()->code();
      DeoptimizationOutputData* output_data =
          DeoptimizationOutputData::cast(code->deoptimization_data());
      unsigned entry = Deoptimizer::GetOutputInfo(output_data,
                                                  ast_id,
                                                  function->shared());
      unsigned pc_offset =
          FullCodeGenerator::PcField::decode(entry) + Code::kHeaderSize;
1019
      DCHECK(pc_offset > 0);
1020 1021 1022

      FrameSummary summary(receiver, function, code, pc_offset, is_constructor);
      frames->Add(summary);
1023 1024 1025 1026
      is_constructor = false;
    } else if (opcode == Translation::CONSTRUCT_STUB_FRAME) {
      // The next encountered JS_FRAME will be marked as a constructor call.
      it.Skip(Translation::NumberOfOperandsFor(opcode));
1027
      DCHECK(!is_constructor);
1028
      is_constructor = true;
1029 1030 1031 1032 1033
    } else {
      // Skip over operands to advance to the next opcode.
      it.Skip(Translation::NumberOfOperandsFor(opcode));
    }
  }
1034
  DCHECK(!is_constructor);
1035 1036 1037 1038 1039
}


DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData(
    int* deopt_index) {
1040
  DCHECK(is_optimized());
1041

1042
  JSFunction* opt_function = function();
1043 1044 1045 1046 1047 1048
  Code* code = opt_function->code();

  // The code object may have been replaced by lazy deoptimization. Fall
  // back to a slow search in this case to find the original optimized
  // code object.
  if (!code->contains(pc())) {
1049 1050
    code = isolate()->inner_pointer_to_code_cache()->
        GcSafeFindCodeForInnerPointer(pc());
1051
  }
1052 1053
  DCHECK(code != NULL);
  DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
1054

1055 1056
  SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
  *deopt_index = safepoint_entry.deoptimization_index();
1057
  DCHECK(*deopt_index != Safepoint::kNoDeoptimizationIndex);
1058 1059 1060 1061 1062

  return DeoptimizationInputData::cast(code->deoptimization_data());
}


1063
int OptimizedFrame::GetInlineCount() {
1064
  DCHECK(is_optimized());
1065

1066 1067 1068
  // Delegate to JS frame in absence of turbofan deoptimization.
  // TODO(turbofan): Revisit once we support deoptimization across the board.
  if (LookupCode()->is_turbofanned() && !FLAG_turbo_deoptimization) {
1069 1070 1071
    return JavaScriptFrame::GetInlineCount();
  }

1072 1073 1074 1075 1076 1077
  int deopt_index = Safepoint::kNoDeoptimizationIndex;
  DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);

  TranslationIterator it(data->TranslationByteArray(),
                         data->TranslationIndex(deopt_index)->value());
  Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
1078
  DCHECK(opcode == Translation::BEGIN);
1079
  USE(opcode);
1080 1081 1082
  it.Next();  // Drop frame count.
  int jsframe_count = it.Next();
  return jsframe_count;
1083 1084 1085
}


1086
void OptimizedFrame::GetFunctions(List<JSFunction*>* functions) {
1087 1088
  DCHECK(functions->length() == 0);
  DCHECK(is_optimized());
1089

1090 1091 1092
  // Delegate to JS frame in absence of turbofan deoptimization.
  // TODO(turbofan): Revisit once we support deoptimization across the board.
  if (LookupCode()->is_turbofanned() && !FLAG_turbo_deoptimization) {
1093 1094 1095
    return JavaScriptFrame::GetFunctions(functions);
  }

1096
  int deopt_index = Safepoint::kNoDeoptimizationIndex;
1097
  DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
1098
  FixedArray* literal_array = data->LiteralArray();
1099 1100 1101 1102

  TranslationIterator it(data->TranslationByteArray(),
                         data->TranslationIndex(deopt_index)->value());
  Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
1103
  DCHECK(opcode == Translation::BEGIN);
1104 1105
  it.Next();  // Drop frame count.
  int jsframe_count = it.Next();
1106 1107 1108

  // We insert the frames in reverse order because the frames
  // in the deoptimization translation are ordered bottom-to-top.
1109
  while (jsframe_count > 0) {
1110
    opcode = static_cast<Translation::Opcode>(it.Next());
1111 1112
    if (opcode == Translation::JS_FRAME) {
      jsframe_count--;
1113
      it.Next();  // Skip ast id.
1114
      JSFunction* function = LiteralAt(literal_array, it.Next());
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
      it.Next();  // Skip height.
      functions->Add(function);
    } else {
      // Skip over operands to advance to the next opcode.
      it.Skip(Translation::NumberOfOperandsFor(opcode));
    }
  }
}


1125 1126 1127 1128 1129
int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const {
  return Smi::cast(GetExpression(0))->value();
}


1130
Address ArgumentsAdaptorFrame::GetCallerStackPointer() const {
1131
  return fp() + StandardFrameConstants::kCallerSPOffset;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
}


Address InternalFrame::GetCallerStackPointer() const {
  // Internal frames have no arguments. The stack pointer of the
  // caller is at a fixed offset from the frame pointer.
  return fp() + StandardFrameConstants::kCallerSPOffset;
}


1142
Code* ArgumentsAdaptorFrame::unchecked_code() const {
1143
  return isolate()->builtins()->builtin(
1144
      Builtins::kArgumentsAdaptorTrampoline);
1145 1146 1147
}


1148
Code* InternalFrame::unchecked_code() const {
1149 1150
  const int offset = InternalFrameConstants::kCodeOffset;
  Object* code = Memory::Object_at(fp() + offset);
1151
  DCHECK(code != NULL);
1152
  return reinterpret_cast<Code*>(code);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
}


void StackFrame::PrintIndex(StringStream* accumulator,
                            PrintMode mode,
                            int index) {
  accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index);
}


void JavaScriptFrame::Print(StringStream* accumulator,
                            PrintMode mode,
                            int index) const {
1166
  DisallowHeapAllocation no_gc;
1167
  Object* receiver = this->receiver();
1168
  JSFunction* function = this->function();
1169 1170 1171 1172 1173 1174

  accumulator->PrintSecurityTokenIfChanged(function);
  PrintIndex(accumulator, mode, index);
  Code* code = NULL;
  if (IsConstructor()) accumulator->Add("new ");
  accumulator->PrintFunction(function, receiver, &code);
1175

1176 1177 1178 1179
  // Get scope information for nicer output, if possible. If code is NULL, or
  // doesn't contain scope info, scope_info will return 0 for the number of
  // parameters, stack local variables, context local variables, stack slots,
  // or context slots.
1180 1181
  SharedFunctionInfo* shared = function->shared();
  ScopeInfo* scope_info = shared->scope_info();
1182 1183
  Object* script_obj = shared->script();
  if (script_obj->IsScript()) {
1184
    Script* script = Script::cast(script_obj);
1185 1186 1187 1188 1189 1190 1191
    accumulator->Add(" [");
    accumulator->PrintName(script->name());

    Address pc = this->pc();
    if (code != NULL && code->kind() == Code::FUNCTION &&
        pc >= code->instruction_start() && pc < code->instruction_end()) {
      int source_pos = code->SourcePosition(pc);
1192
      int line = script->GetLineNumber(source_pos) + 1;
1193 1194 1195
      accumulator->Add(":%d", line);
    } else {
      int function_start_pos = shared->start_position();
1196
      int line = script->GetLineNumber(function_start_pos) + 1;
1197
      accumulator->Add(":~%d", line);
1198
    }
1199 1200

    accumulator->Add("] ");
1201 1202
  }

1203 1204 1205 1206 1207 1208 1209 1210 1211
  accumulator->Add("(this=%o", receiver);

  // Print the parameters.
  int parameters_count = ComputeParametersCount();
  for (int i = 0; i < parameters_count; i++) {
    accumulator->Add(",");
    // If we have a name for the parameter we print it. Nameless
    // parameters are either because we have more actual parameters
    // than formal parameters or because we have no scope information.
1212 1213
    if (i < scope_info->ParameterCount()) {
      accumulator->PrintName(scope_info->ParameterName(i));
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
      accumulator->Add("=");
    }
    accumulator->Add("%o", GetParameter(i));
  }

  accumulator->Add(")");
  if (mode == OVERVIEW) {
    accumulator->Add("\n");
    return;
  }
1224 1225 1226 1227
  if (is_optimized()) {
    accumulator->Add(" {\n// optimized frame\n}\n");
    return;
  }
1228 1229 1230
  accumulator->Add(" {\n");

  // Compute the number of locals and expression stack elements.
1231 1232
  int stack_locals_count = scope_info->StackLocalCount();
  int heap_locals_count = scope_info->ContextLocalCount();
1233 1234 1235 1236 1237 1238 1239 1240
  int expressions_count = ComputeExpressionsCount();

  // Print stack-allocated local variables.
  if (stack_locals_count > 0) {
    accumulator->Add("  // stack-allocated locals\n");
  }
  for (int i = 0; i < stack_locals_count; i++) {
    accumulator->Add("  var ");
1241
    accumulator->PrintName(scope_info->StackLocalName(i));
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
    accumulator->Add(" = ");
    if (i < expressions_count) {
      accumulator->Add("%o", GetExpression(i));
    } else {
      accumulator->Add("// no expression found - inconsistent frame?");
    }
    accumulator->Add("\n");
  }

  // Try to get hold of the context of this frame.
  Context* context = NULL;
  if (this->context() != NULL && this->context()->IsContext()) {
    context = Context::cast(this->context());
  }
1256 1257
  while (context->IsWithContext()) {
    context = context->previous();
1258
    DCHECK(context != NULL);
1259
  }
1260 1261

  // Print heap-allocated local variables.
1262
  if (heap_locals_count > 0) {
1263 1264
    accumulator->Add("  // heap-allocated locals\n");
  }
1265
  for (int i = 0; i < heap_locals_count; i++) {
1266
    accumulator->Add("  var ");
1267
    accumulator->PrintName(scope_info->ContextLocalName(i));
1268 1269
    accumulator->Add(" = ");
    if (context != NULL) {
1270 1271 1272
      int index = Context::MIN_CONTEXT_SLOTS + i;
      if (index < context->length()) {
        accumulator->Add("%o", context->get(index));
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
      } else {
        accumulator->Add(
            "// warning: missing context slot - inconsistent frame?");
      }
    } else {
      accumulator->Add("// warning: no context found - inconsistent frame?");
    }
    accumulator->Add("\n");
  }

  // Print the expression stack.
1284
  int expressions_start = stack_locals_count;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
  if (expressions_start < expressions_count) {
    accumulator->Add("  // expression stack (top to bottom)\n");
  }
  for (int i = expressions_count - 1; i >= expressions_start; i--) {
    if (IsExpressionInsideHandler(i)) continue;
    accumulator->Add("  [%02d] : %o\n", i, GetExpression(i));
  }

  // Print details about the function.
  if (FLAG_max_stack_trace_source_length != 0 && code != NULL) {
1295
    std::ostringstream os;
1296
    SharedFunctionInfo* shared = function->shared();
1297 1298 1299
    os << "--------- s o u r c e   c o d e ---------\n"
       << SourceCodeOf(shared, FLAG_max_stack_trace_source_length)
       << "\n-----------------------------------------\n";
1300
    accumulator->Add(os.str().c_str());
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
  }

  accumulator->Add("}\n\n");
}


void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
                                  PrintMode mode,
                                  int index) const {
  int actual = ComputeParametersCount();
  int expected = -1;
1312
  JSFunction* function = this->function();
1313
  expected = function->shared()->internal_formal_parameter_count();
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

  PrintIndex(accumulator, mode, index);
  accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
  if (mode == OVERVIEW) {
    accumulator->Add("\n");
    return;
  }
  accumulator->Add(" {\n");

  // Print actual arguments.
  if (actual > 0) accumulator->Add("  // actual arguments\n");
  for (int i = 0; i < actual; i++) {
    accumulator->Add("  [%02d] : %o", i, GetParameter(i));
    if (expected != -1 && i >= expected) {
      accumulator->Add("  // not passed to callee");
    }
    accumulator->Add("\n");
  }

  accumulator->Add("}\n\n");
}


void EntryFrame::Iterate(ObjectVisitor* v) const {
  StackHandlerIterator it(this, top_handler());
1339
  DCHECK(!it.done());
1340
  StackHandler* handler = it.handler();
1341
  DCHECK(handler->is_js_entry());
1342
  handler->Iterate(v, LookupCode());
1343
#ifdef DEBUG
1344 1345
  // Make sure that the entry frame does not contain more than one
  // stack handler.
1346
  it.Advance();
1347
  DCHECK(it.done());
1348
#endif
1349
  IteratePc(v, pc_address(), LookupCode());
1350 1351 1352 1353
}


void StandardFrame::IterateExpressions(ObjectVisitor* v) const {
1354
  const int offset = StandardFrameConstants::kLastObjectOffset;
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
  Object** base = &Memory::Object_at(sp());
  Object** limit = &Memory::Object_at(fp() + offset) + 1;
  for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
    StackHandler* handler = it.handler();
    // Traverse pointers down to - but not including - the next
    // handler in the handler chain. Update the base to skip the
    // handler and allow the handler to traverse its own pointers.
    const Address address = handler->address();
    v->VisitPointers(base, reinterpret_cast<Object**>(address));
    base = reinterpret_cast<Object**>(address + StackHandlerConstants::kSize);
    // Traverse the pointers in the handler itself.
1366
    handler->Iterate(v, LookupCode());
1367 1368 1369 1370 1371 1372 1373
  }
  v->VisitPointers(base, limit);
}


void JavaScriptFrame::Iterate(ObjectVisitor* v) const {
  IterateExpressions(v);
1374
  IteratePc(v, pc_address(), LookupCode());
1375 1376 1377 1378 1379 1380 1381
}


void InternalFrame::Iterate(ObjectVisitor* v) const {
  // Internal frames only have object pointers on the expression stack
  // as they never have any arguments.
  IterateExpressions(v);
1382
  IteratePc(v, pc_address(), LookupCode());
1383 1384 1385
}


1386 1387
void StubFailureTrampolineFrame::Iterate(ObjectVisitor* v) const {
  Object** base = &Memory::Object_at(sp());
1388 1389 1390 1391
  Object** limit = &Memory::Object_at(fp() +
                                      kFirstRegisterParameterFrameOffset);
  v->VisitPointers(base, limit);
  base = &Memory::Object_at(fp() + StandardFrameConstants::kMarkerOffset);
1392
  const int offset = StandardFrameConstants::kLastObjectOffset;
1393
  limit = &Memory::Object_at(fp() + offset) + 1;
1394 1395 1396 1397 1398
  v->VisitPointers(base, limit);
  IteratePc(v, pc_address(), LookupCode());
}


1399 1400 1401 1402 1403 1404
Address StubFailureTrampolineFrame::GetCallerStackPointer() const {
  return fp() + StandardFrameConstants::kCallerSPOffset;
}


Code* StubFailureTrampolineFrame::unchecked_code() const {
1405
  Code* trampoline;
1406
  StubFailureTrampolineStub(isolate(), NOT_JS_FUNCTION_STUB_MODE).
1407
      FindCodeInCache(&trampoline);
1408 1409 1410 1411
  if (trampoline->contains(pc())) {
    return trampoline;
  }

1412
  StubFailureTrampolineStub(isolate(), JS_FUNCTION_STUB_MODE).
1413
      FindCodeInCache(&trampoline);
1414 1415
  if (trampoline->contains(pc())) {
    return trampoline;
1416
  }
1417

1418 1419 1420 1421 1422
  UNREACHABLE();
  return NULL;
}


1423 1424 1425 1426
// -------------------------------------------------------------------------


JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) {
1427
  DCHECK(n >= 0);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
  for (int i = 0; i <= n; i++) {
    while (!iterator_.frame()->is_java_script()) iterator_.Advance();
    if (i == n) return JavaScriptFrame::cast(iterator_.frame());
    iterator_.Advance();
  }
  UNREACHABLE();
  return NULL;
}


// -------------------------------------------------------------------------


1441 1442 1443 1444
static Map* GcSafeMapOfCodeSpaceObject(HeapObject* object) {
  MapWord map_word = object->map_word();
  return map_word.IsForwardingAddress() ?
      map_word.ToForwardingAddress()->map() : map_word.ToMap();
1445 1446 1447
}


1448
static int GcSafeSizeOfCodeSpaceObject(HeapObject* object) {
1449 1450 1451 1452 1453 1454 1455
  return object->SizeFromMap(GcSafeMapOfCodeSpaceObject(object));
}


#ifdef DEBUG
static bool GcSafeCodeContains(HeapObject* code, Address addr) {
  Map* map = GcSafeMapOfCodeSpaceObject(code);
1456
  DCHECK(map == code->GetHeap()->code_map());
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
  Address start = code->address();
  Address end = code->address() + code->SizeFromMap(map);
  return start <= addr && addr < end;
}
#endif


Code* InnerPointerToCodeCache::GcSafeCastToCode(HeapObject* object,
                                                Address inner_pointer) {
  Code* code = reinterpret_cast<Code*>(object);
1467
  DCHECK(code != NULL && GcSafeCodeContains(code, inner_pointer));
1468
  return code;
1469 1470 1471
}


1472 1473
Code* InnerPointerToCodeCache::GcSafeFindCodeForInnerPointer(
    Address inner_pointer) {
1474
  Heap* heap = isolate_->heap();
1475
  // Check if the inner pointer points into a large object chunk.
1476
  LargePage* large_page = heap->lo_space()->FindPage(inner_pointer);
1477 1478 1479
  if (large_page != NULL) {
    return GcSafeCastToCode(large_page->GetObject(), inner_pointer);
  }
1480

1481
  // Iterate through the page until we reach the end or find an object starting
1482 1483
  // after the inner pointer.
  Page* page = Page::FromAddress(inner_pointer);
1484

1485
  Address addr = page->skip_list()->StartFor(inner_pointer);
1486 1487 1488 1489

  Address top = heap->code_space()->top();
  Address limit = heap->code_space()->limit();

1490
  while (true) {
1491 1492 1493
    if (addr == top && addr != limit) {
      addr = limit;
      continue;
1494
    }
1495 1496 1497 1498

    HeapObject* obj = HeapObject::FromAddress(addr);
    int obj_size = GcSafeSizeOfCodeSpaceObject(obj);
    Address next_addr = addr + obj_size;
1499
    if (next_addr > inner_pointer) return GcSafeCastToCode(obj, inner_pointer);
1500
    addr = next_addr;
1501 1502 1503
  }
}

1504

1505 1506
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry*
    InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) {
1507
  isolate_->counters()->pc_to_code()->Increment();
1508
  DCHECK(base::bits::IsPowerOfTwo32(kInnerPointerToCodeCacheSize));
1509
  uint32_t hash = ComputeIntegerHash(
1510 1511
      static_cast<uint32_t>(reinterpret_cast<uintptr_t>(inner_pointer)),
      v8::internal::kZeroHashSeed);
1512 1513 1514
  uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1);
  InnerPointerToCodeCacheEntry* entry = cache(index);
  if (entry->inner_pointer == inner_pointer) {
1515
    isolate_->counters()->pc_to_code_cached()->Increment();
1516
    DCHECK(entry->code == GcSafeFindCodeForInnerPointer(inner_pointer));
1517 1518
  } else {
    // Because this code may be interrupted by a profiling signal that
1519 1520
    // also queries the cache, we cannot update inner_pointer before the code
    // has been set. Otherwise, we risk trying to use a cache entry before
1521
    // the code has been computed.
1522
    entry->code = GcSafeFindCodeForInnerPointer(inner_pointer);
1523
    entry->safepoint_entry.Reset();
1524
    entry->inner_pointer = inner_pointer;
1525 1526 1527 1528 1529
  }
  return entry;
}


1530 1531 1532 1533 1534 1535 1536
// -------------------------------------------------------------------------


void StackHandler::Unwind(Isolate* isolate,
                          FixedArray* array,
                          int offset,
                          int previous_handler_offset) const {
1537
  STATIC_ASSERT(StackHandlerConstants::kSlotCount >= 5);
1538 1539
  DCHECK_LE(0, offset);
  DCHECK_GE(array->length(), offset + StackHandlerConstants::kSlotCount);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
  // Unwinding a stack handler into an array chains it in the opposite
  // direction, re-using the "next" slot as a "previous" link, so that stack
  // handlers can be later re-wound in the correct order.  Decode the "state"
  // slot into "index" and "kind" and store them separately, using the fp slot.
  array->set(offset, Smi::FromInt(previous_handler_offset));        // next
  array->set(offset + 1, *code_address());                          // code
  array->set(offset + 2, Smi::FromInt(static_cast<int>(index())));  // state
  array->set(offset + 3, *context_address());                       // context
  array->set(offset + 4, Smi::FromInt(static_cast<int>(kind())));   // fp

  *isolate->handler_address() = next()->address();
}


int StackHandler::Rewind(Isolate* isolate,
                         FixedArray* array,
                         int offset,
                         Address fp) {
1558
  STATIC_ASSERT(StackHandlerConstants::kSlotCount >= 5);
1559 1560
  DCHECK_LE(0, offset);
  DCHECK_GE(array->length(), offset + StackHandlerConstants::kSlotCount);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
  Smi* prev_handler_offset = Smi::cast(array->get(offset));
  Code* code = Code::cast(array->get(offset + 1));
  Smi* smi_index = Smi::cast(array->get(offset + 2));
  Object* context = array->get(offset + 3);
  Smi* smi_kind = Smi::cast(array->get(offset + 4));

  unsigned state = KindField::encode(static_cast<Kind>(smi_kind->value())) |
      IndexField::encode(static_cast<unsigned>(smi_index->value()));

  Memory::Address_at(address() + StackHandlerConstants::kNextOffset) =
      *isolate->handler_address();
  Memory::Object_at(address() + StackHandlerConstants::kCodeOffset) = code;
  Memory::uintptr_at(address() + StackHandlerConstants::kStateOffset) = state;
  Memory::Object_at(address() + StackHandlerConstants::kContextOffset) =
      context;
1576
  SetFp(address() + StackHandlerConstants::kFPOffset, fp);
1577 1578 1579 1580 1581 1582 1583

  *isolate->handler_address() = address();

  return prev_handler_offset->value();
}


1584 1585
// -------------------------------------------------------------------------

1586
int NumRegs(RegList reglist) { return base::bits::CountPopulation32(reglist); }
1587 1588


1589 1590 1591 1592
struct JSCallerSavedCodeData {
  int reg_code[kNumJSCallerSaved];
};

1593
JSCallerSavedCodeData caller_saved_code_data;
1594

1595 1596 1597 1598 1599 1600
void SetUpJSCallerSavedCodeData() {
  int i = 0;
  for (int r = 0; r < kNumRegs; r++)
    if ((kJSCallerSaved & (1 << r)) != 0)
      caller_saved_code_data.reg_code[i++] = r;

1601
  DCHECK(i == kNumJSCallerSaved);
1602
}
1603

1604

1605
int JSCallerSavedCode(int n) {
1606
  DCHECK(0 <= n && n < kNumJSCallerSaved);
1607
  return caller_saved_code_data.reg_code[n];
1608 1609 1610
}


1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
#define DEFINE_WRAPPER(type, field)                              \
class field##_Wrapper : public ZoneObject {                      \
 public:  /* NOLINT */                                           \
  field##_Wrapper(const field& original) : frame_(original) {    \
  }                                                              \
  field frame_;                                                  \
};
STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER)
#undef DEFINE_WRAPPER

1621
static StackFrame* AllocateFrameCopy(StackFrame* frame, Zone* zone) {
1622 1623 1624
#define FRAME_TYPE_CASE(type, field) \
  case StackFrame::type: { \
    field##_Wrapper* wrapper = \
1625
        new(zone) field##_Wrapper(*(reinterpret_cast<field*>(frame))); \
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
    return &wrapper->frame_; \
  }

  switch (frame->type()) {
    STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
    default: UNREACHABLE();
  }
#undef FRAME_TYPE_CASE
  return NULL;
}

1637

1638
Vector<StackFrame*> CreateStackMap(Isolate* isolate, Zone* zone) {
1639
  ZoneList<StackFrame*> list(10, zone);
1640
  for (StackFrameIterator it(isolate); !it.done(); it.Advance()) {
1641 1642
    StackFrame* frame = AllocateFrameCopy(it.frame(), zone);
    list.Add(frame, zone);
1643 1644 1645 1646 1647
  }
  return list.ToVector();
}


1648
} }  // namespace v8::internal