conversions.cc 15.3 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdarg.h>
29
#include <limits.h>
30
#include <cmath>
31 32

#include "conversions-inl.h"
33
#include "dtoa.h"
34
#include "list-inl.h"
35
#include "strtod.h"
36
#include "utils.h"
37

38 39 40 41 42
#ifndef _STLP_VENDOR_CSTD
// STLPort doesn't import fpclassify into the std namespace.
using std::fpclassify;
#endif

43 44
namespace v8 {
namespace internal {
45

46

47 48
double StringToDouble(UnicodeCache* unicode_cache,
                      const char* str, int flags, double empty_string_val) {
49 50 51 52 53
  // We cast to const uint8_t* here to avoid instantiating the
  // InternalStringToDouble() template for const char* as well.
  const uint8_t* start = reinterpret_cast<const uint8_t*>(str);
  const uint8_t* end = start + StrLength(str);
  return InternalStringToDouble(unicode_cache, start, end, flags,
54
                                empty_string_val);
55 56 57
}


58 59
double StringToDouble(UnicodeCache* unicode_cache,
                      Vector<const char> str,
60 61
                      int flags,
                      double empty_string_val) {
62 63 64 65 66
  // We cast to const uint8_t* here to avoid instantiating the
  // InternalStringToDouble() template for const char* as well.
  const uint8_t* start = reinterpret_cast<const uint8_t*>(str.start());
  const uint8_t* end = start + str.length();
  return InternalStringToDouble(unicode_cache, start, end, flags,
67
                                empty_string_val);
68 69
}

70

71 72 73 74 75 76 77 78 79
double StringToDouble(UnicodeCache* unicode_cache,
                      Vector<const uc16> str,
                      int flags,
                      double empty_string_val) {
  const uc16* end = str.start() + str.length();
  return InternalStringToDouble(unicode_cache, str.start(), end, flags,
                                empty_string_val);
}

80

81 82
const char* DoubleToCString(double v, Vector<char> buffer) {
  switch (fpclassify(v)) {
83 84 85
    case FP_NAN: return "NaN";
    case FP_INFINITE: return (v < 0.0 ? "-Infinity" : "Infinity");
    case FP_ZERO: return "0";
86
    default: {
87
      SimpleStringBuilder builder(buffer.start(), buffer.length());
88 89
      int decimal_point;
      int sign;
90
      const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1;
91
      char decimal_rep[kV8DtoaBufferCapacity];
92
      int length;
93

94 95 96
      DoubleToAscii(v, DTOA_SHORTEST, 0,
                    Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                    &sign, &length, &decimal_point);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

      if (sign) builder.AddCharacter('-');

      if (length <= decimal_point && decimal_point <= 21) {
        // ECMA-262 section 9.8.1 step 6.
        builder.AddString(decimal_rep);
        builder.AddPadding('0', decimal_point - length);

      } else if (0 < decimal_point && decimal_point <= 21) {
        // ECMA-262 section 9.8.1 step 7.
        builder.AddSubstring(decimal_rep, decimal_point);
        builder.AddCharacter('.');
        builder.AddString(decimal_rep + decimal_point);

      } else if (decimal_point <= 0 && decimal_point > -6) {
        // ECMA-262 section 9.8.1 step 8.
        builder.AddString("0.");
        builder.AddPadding('0', -decimal_point);
        builder.AddString(decimal_rep);

      } else {
        // ECMA-262 section 9.8.1 step 9 and 10 combined.
        builder.AddCharacter(decimal_rep[0]);
        if (length != 1) {
          builder.AddCharacter('.');
          builder.AddString(decimal_rep + 1);
        }
        builder.AddCharacter('e');
        builder.AddCharacter((decimal_point >= 0) ? '+' : '-');
        int exponent = decimal_point - 1;
        if (exponent < 0) exponent = -exponent;
128
        builder.AddDecimalInteger(exponent);
129
      }
130
    return builder.Finalize();
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    }
  }
}


const char* IntToCString(int n, Vector<char> buffer) {
  bool negative = false;
  if (n < 0) {
    // We must not negate the most negative int.
    if (n == kMinInt) return DoubleToCString(n, buffer);
    negative = true;
    n = -n;
  }
  // Build the string backwards from the least significant digit.
  int i = buffer.length();
  buffer[--i] = '\0';
  do {
    buffer[--i] = '0' + (n % 10);
    n /= 10;
  } while (n);
  if (negative) buffer[--i] = '-';
  return buffer.start() + i;
}


char* DoubleToFixedCString(double value, int f) {
157
  const int kMaxDigitsBeforePoint = 21;
158 159
  const double kFirstNonFixed = 1e21;
  const int kMaxDigitsAfterPoint = 20;
160
  ASSERT(f >= 0);
161
  ASSERT(f <= kMaxDigitsAfterPoint);
162 163 164 165 166 167 168 169

  bool negative = false;
  double abs_value = value;
  if (value < 0) {
    abs_value = -value;
    negative = true;
  }

170 171 172
  // If abs_value has more than kMaxDigitsBeforePoint digits before the point
  // use the non-fixed conversion routine.
  if (abs_value >= kFirstNonFixed) {
173 174 175 176 177 178 179 180
    char arr[100];
    Vector<char> buffer(arr, ARRAY_SIZE(arr));
    return StrDup(DoubleToCString(value, buffer));
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
181
  // Add space for the '\0' byte.
182
  const int kDecimalRepCapacity =
183
      kMaxDigitsBeforePoint + kMaxDigitsAfterPoint + 1;
184 185
  char decimal_rep[kDecimalRepCapacity];
  int decimal_rep_length;
186 187 188
  DoubleToAscii(value, DTOA_FIXED, f,
                Vector<char>(decimal_rep, kDecimalRepCapacity),
                &sign, &decimal_rep_length, &decimal_point);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

  // Create a representation that is padded with zeros if needed.
  int zero_prefix_length = 0;
  int zero_postfix_length = 0;

  if (decimal_point <= 0) {
    zero_prefix_length = -decimal_point + 1;
    decimal_point = 1;
  }

  if (zero_prefix_length + decimal_rep_length < decimal_point + f) {
    zero_postfix_length = decimal_point + f - decimal_rep_length -
                          zero_prefix_length;
  }

  unsigned rep_length =
      zero_prefix_length + decimal_rep_length + zero_postfix_length;
206
  SimpleStringBuilder rep_builder(rep_length + 1);
207 208 209 210 211 212 213 214
  rep_builder.AddPadding('0', zero_prefix_length);
  rep_builder.AddString(decimal_rep);
  rep_builder.AddPadding('0', zero_postfix_length);
  char* rep = rep_builder.Finalize();

  // Create the result string by appending a minus and putting in a
  // decimal point if needed.
  unsigned result_size = decimal_point + f + 2;
215
  SimpleStringBuilder builder(result_size + 1);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  if (negative) builder.AddCharacter('-');
  builder.AddSubstring(rep, decimal_point);
  if (f > 0) {
    builder.AddCharacter('.');
    builder.AddSubstring(rep + decimal_point, f);
  }
  DeleteArray(rep);
  return builder.Finalize();
}


static char* CreateExponentialRepresentation(char* decimal_rep,
                                             int exponent,
                                             bool negative,
                                             int significant_digits) {
  bool negative_exponent = false;
  if (exponent < 0) {
    negative_exponent = true;
    exponent = -exponent;
  }

  // Leave room in the result for appending a minus, for a period, the
  // letter 'e', a minus or a plus depending on the exponent, and a
  // three digit exponent.
  unsigned result_size = significant_digits + 7;
241
  SimpleStringBuilder builder(result_size + 1);
242 243 244 245 246 247

  if (negative) builder.AddCharacter('-');
  builder.AddCharacter(decimal_rep[0]);
  if (significant_digits != 1) {
    builder.AddCharacter('.');
    builder.AddString(decimal_rep + 1);
248 249
    int rep_length = StrLength(decimal_rep);
    builder.AddPadding('0', significant_digits - rep_length);
250 251 252 253
  }

  builder.AddCharacter('e');
  builder.AddCharacter(negative_exponent ? '-' : '+');
254
  builder.AddDecimalInteger(exponent);
255 256 257 258 259 260
  return builder.Finalize();
}



char* DoubleToExponentialCString(double value, int f) {
261
  const int kMaxDigitsAfterPoint = 20;
262
  // f might be -1 to signal that f was undefined in JavaScript.
263
  ASSERT(f >= -1 && f <= kMaxDigitsAfterPoint);
264 265 266 267 268 269 270 271 272 273

  bool negative = false;
  if (value < 0) {
    value = -value;
    negative = true;
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
274 275 276 277 278 279 280
  // f corresponds to the digits after the point. There is always one digit
  // before the point. The number of requested_digits equals hence f + 1.
  // And we have to add one character for the null-terminator.
  const int kV8DtoaBufferCapacity = kMaxDigitsAfterPoint + 1 + 1;
  // Make sure that the buffer is big enough, even if we fall back to the
  // shortest representation (which happens when f equals -1).
  ASSERT(kBase10MaximalLength <= kMaxDigitsAfterPoint + 1);
281
  char decimal_rep[kV8DtoaBufferCapacity];
282 283
  int decimal_rep_length;

284
  if (f == -1) {
285 286 287 288
    DoubleToAscii(value, DTOA_SHORTEST, 0,
                  Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                  &sign, &decimal_rep_length, &decimal_point);
    f = decimal_rep_length - 1;
289
  } else {
290 291 292
    DoubleToAscii(value, DTOA_PRECISION, f + 1,
                  Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                  &sign, &decimal_rep_length, &decimal_point);
293 294 295 296 297 298 299 300 301 302 303 304 305
  }
  ASSERT(decimal_rep_length > 0);
  ASSERT(decimal_rep_length <= f + 1);

  int exponent = decimal_point - 1;
  char* result =
      CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1);

  return result;
}


char* DoubleToPrecisionCString(double value, int p) {
306 307 308 309
  const int kMinimalDigits = 1;
  const int kMaximalDigits = 21;
  ASSERT(p >= kMinimalDigits && p <= kMaximalDigits);
  USE(kMinimalDigits);
310 311 312 313 314 315 316 317 318 319

  bool negative = false;
  if (value < 0) {
    value = -value;
    negative = true;
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
320 321
  // Add one for the terminating null character.
  const int kV8DtoaBufferCapacity = kMaximalDigits + 1;
322
  char decimal_rep[kV8DtoaBufferCapacity];
323 324
  int decimal_rep_length;

325 326 327
  DoubleToAscii(value, DTOA_PRECISION, p,
                Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                &sign, &decimal_rep_length, &decimal_point);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
  ASSERT(decimal_rep_length <= p);

  int exponent = decimal_point - 1;

  char* result = NULL;

  if (exponent < -6 || exponent >= p) {
    result =
        CreateExponentialRepresentation(decimal_rep, exponent, negative, p);
  } else {
    // Use fixed notation.
    //
    // Leave room in the result for appending a minus, a period and in
    // the case where decimal_point is not positive for a zero in
    // front of the period.
    unsigned result_size = (decimal_point <= 0)
        ? -decimal_point + p + 3
        : p + 2;
346
    SimpleStringBuilder builder(result_size + 1);
347 348 349 350 351 352 353 354 355 356 357 358 359 360
    if (negative) builder.AddCharacter('-');
    if (decimal_point <= 0) {
      builder.AddString("0.");
      builder.AddPadding('0', -decimal_point);
      builder.AddString(decimal_rep);
      builder.AddPadding('0', p - decimal_rep_length);
    } else {
      const int m = Min(decimal_rep_length, decimal_point);
      builder.AddSubstring(decimal_rep, m);
      builder.AddPadding('0', decimal_point - decimal_rep_length);
      if (decimal_point < p) {
        builder.AddCharacter('.');
        const int extra = negative ? 2 : 1;
        if (decimal_rep_length > decimal_point) {
361
          const int len = StrLength(decimal_rep + decimal_point);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
          const int n = Min(len, p - (builder.position() - extra));
          builder.AddSubstring(decimal_rep + decimal_point, n);
        }
        builder.AddPadding('0', extra + (p - builder.position()));
      }
    }
    result = builder.Finalize();
  }

  return result;
}


char* DoubleToRadixCString(double value, int radix) {
  ASSERT(radix >= 2 && radix <= 36);

  // Character array used for conversion.
  static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";

  // Buffer for the integer part of the result. 1024 chars is enough
  // for max integer value in radix 2.  We need room for a sign too.
  static const int kBufferSize = 1100;
  char integer_buffer[kBufferSize];
  integer_buffer[kBufferSize - 1] = '\0';

  // Buffer for the decimal part of the result.  We only generate up
  // to kBufferSize - 1 chars for the decimal part.
  char decimal_buffer[kBufferSize];
  decimal_buffer[kBufferSize - 1] = '\0';

  // Make sure the value is positive.
  bool is_negative = value < 0.0;
  if (is_negative) value = -value;

  // Get the integer part and the decimal part.
397
  double integer_part = std::floor(value);
398 399 400 401 402 403
  double decimal_part = value - integer_part;

  // Convert the integer part starting from the back.  Always generate
  // at least one digit.
  int integer_pos = kBufferSize - 2;
  do {
404
    double remainder = std::fmod(integer_part, radix);
405 406
    integer_buffer[integer_pos--] = chars[static_cast<int>(remainder)];
    integer_part -= remainder;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    integer_part /= radix;
  } while (integer_part >= 1.0);
  // Sanity check.
  ASSERT(integer_pos > 0);
  // Add sign if needed.
  if (is_negative) integer_buffer[integer_pos--] = '-';

  // Convert the decimal part.  Repeatedly multiply by the radix to
  // generate the next char.  Never generate more than kBufferSize - 1
  // chars.
  //
  // TODO(1093998): We will often generate a full decimal_buffer of
  // chars because hitting zero will often not happen.  The right
  // solution would be to continue until the string representation can
  // be read back and yield the original value.  To implement this
  // efficiently, we probably have to modify dtoa.
  int decimal_pos = 0;
  while ((decimal_part > 0.0) && (decimal_pos < kBufferSize - 1)) {
    decimal_part *= radix;
    decimal_buffer[decimal_pos++] =
427 428
        chars[static_cast<int>(std::floor(decimal_part))];
    decimal_part -= std::floor(decimal_part);
429 430 431 432 433 434 435 436 437 438
  }
  decimal_buffer[decimal_pos] = '\0';

  // Compute the result size.
  int integer_part_size = kBufferSize - 2 - integer_pos;
  // Make room for zero termination.
  unsigned result_size = integer_part_size + decimal_pos;
  // If the number has a decimal part, leave room for the period.
  if (decimal_pos > 0) result_size++;
  // Allocate result and fill in the parts.
439
  SimpleStringBuilder builder(result_size + 1);
440 441 442 443 444 445 446
  builder.AddSubstring(integer_buffer + integer_pos + 1, integer_part_size);
  if (decimal_pos > 0) builder.AddCharacter('.');
  builder.AddSubstring(decimal_buffer, decimal_pos);
  return builder.Finalize();
}

} }  // namespace v8::internal