date.cc 20.3 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

Yang Guo's avatar
Yang Guo committed
5
#include "src/date/date.h"
6

7
#include "src/base/overflowing-math.h"
8
#include "src/numbers/conversions.h"
9
#include "src/objects/objects-inl.h"
10
#ifdef V8_INTL_SUPPORT
Frank Tang's avatar
Frank Tang committed
11
#include "src/objects/intl-objects.h"
12
#endif
13
#include "src/strings/string-stream.h"
14

15 16 17 18 19 20 21
namespace v8 {
namespace internal {

static const int kDaysIn4Years = 4 * 365 + 1;
static const int kDaysIn100Years = 25 * kDaysIn4Years - 1;
static const int kDaysIn400Years = 4 * kDaysIn100Years + 1;
static const int kDays1970to2000 = 30 * 365 + 7;
Yang Guo's avatar
Yang Guo committed
22 23
static const int kDaysOffset =
    1000 * kDaysIn400Years + 5 * kDaysIn400Years - kDays1970to2000;
24
static const int kYearsOffset = 400000;
Yang Guo's avatar
Yang Guo committed
25 26
static const char kDaysInMonths[] = {31, 28, 31, 30, 31, 30,
                                     31, 31, 30, 31, 30, 31};
27

28
DateCache::DateCache()
29
    : stamp_(kNullAddress),
30
      tz_cache_(
31
#ifdef V8_INTL_SUPPORT
Frank Tang's avatar
Frank Tang committed
32
          Intl::CreateTimeZoneCache()
33 34 35
#else
          base::OS::CreateTimezoneCache()
#endif
Yang Guo's avatar
Yang Guo committed
36
      ) {
37
  ResetDateCache(base::TimezoneCache::TimeZoneDetection::kSkip);
38
}
39

40 41
void DateCache::ResetDateCache(
    base::TimezoneCache::TimeZoneDetection time_zone_detection) {
42
  if (stamp_.value() >= Smi::kMaxValue) {
43
    stamp_ = Smi::zero();
44
  } else {
45
    stamp_ = Smi::FromInt(stamp_.value() + 1);
46
  }
47
  DCHECK(stamp_ != Smi::FromInt(kInvalidStamp));
48 49 50 51 52 53 54
  for (int i = 0; i < kDSTSize; ++i) {
    ClearSegment(&dst_[i]);
  }
  dst_usage_counter_ = 0;
  before_ = &dst_[0];
  after_ = &dst_[1];
  ymd_valid_ = false;
55 56 57 58 59 60 61
#ifdef V8_INTL_SUPPORT
  if (!FLAG_icu_timezone_data) {
#endif
    local_offset_ms_ = kInvalidLocalOffsetInMs;
#ifdef V8_INTL_SUPPORT
  }
#endif
62
  tz_cache_->Clear(time_zone_detection);
63 64
  tz_name_ = nullptr;
  dst_tz_name_ = nullptr;
65 66
}

67 68 69
// ECMA 262 - ES#sec-timeclip TimeClip (time)
double DateCache::TimeClip(double time) {
  if (-kMaxTimeInMs <= time && time <= kMaxTimeInMs) {
70
    return DoubleToInteger(time);
71 72 73
  }
  return std::numeric_limits<double>::quiet_NaN();
}
74 75 76 77 78 79 80 81

void DateCache::ClearSegment(DST* segment) {
  segment->start_sec = kMaxEpochTimeInSec;
  segment->end_sec = -kMaxEpochTimeInSec;
  segment->offset_ms = 0;
  segment->last_used = 0;
}

Yang Guo's avatar
Yang Guo committed
82 83
void DateCache::YearMonthDayFromDays(int days, int* year, int* month,
                                     int* day) {
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  if (ymd_valid_) {
    // Check conservatively if the given 'days' has
    // the same year and month as the cached 'days'.
    int new_day = ymd_day_ + (days - ymd_days_);
    if (new_day >= 1 && new_day <= 28) {
      ymd_day_ = new_day;
      ymd_days_ = days;
      *year = ymd_year_;
      *month = ymd_month_;
      *day = new_day;
      return;
    }
  }
  int save_days = days;

  days += kDaysOffset;
  *year = 400 * (days / kDaysIn400Years) - kYearsOffset;
  days %= kDaysIn400Years;

103
  DCHECK_EQ(save_days, DaysFromYearMonth(*year, 0) + days);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

  days--;
  int yd1 = days / kDaysIn100Years;
  days %= kDaysIn100Years;
  *year += 100 * yd1;

  days++;
  int yd2 = days / kDaysIn4Years;
  days %= kDaysIn4Years;
  *year += 4 * yd2;

  days--;
  int yd3 = days / 365;
  days %= 365;
  *year += yd3;

  bool is_leap = (!yd1 || yd2) && !yd3;

122
  DCHECK_GE(days, -1);
123 124 125 126 127
  DCHECK(is_leap || (days >= 0));
  DCHECK((days < 365) || (is_leap && (days < 366)));
  DCHECK(is_leap == ((*year % 4 == 0) && (*year % 100 || (*year % 400 == 0))));
  DCHECK(is_leap || ((DaysFromYearMonth(*year, 0) + days) == save_days));
  DCHECK(!is_leap || ((DaysFromYearMonth(*year, 0) + days + 1) == save_days));
128 129 130 131

  days += is_leap;

  // Check if the date is after February.
132 133
  if (days >= 31 + 28 + (is_leap ? 1 : 0)) {
    days -= 31 + 28 + (is_leap ? 1 : 0);
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    // Find the date starting from March.
    for (int i = 2; i < 12; i++) {
      if (days < kDaysInMonths[i]) {
        *month = i;
        *day = days + 1;
        break;
      }
      days -= kDaysInMonths[i];
    }
  } else {
    // Check January and February.
    if (days < 31) {
      *month = 0;
      *day = days + 1;
    } else {
      *month = 1;
      *day = days - 31 + 1;
    }
  }
153
  DCHECK(DaysFromYearMonth(*year, *month) + *day - 1 == save_days);
154 155 156 157 158 159 160 161
  ymd_valid_ = true;
  ymd_year_ = *year;
  ymd_month_ = *month;
  ymd_day_ = *day;
  ymd_days_ = save_days;
}

int DateCache::DaysFromYearMonth(int year, int month) {
Yang Guo's avatar
Yang Guo committed
162
  static const int day_from_month[] = {0,   31,  59,  90,  120, 151,
163
                                       181, 212, 243, 273, 304, 334};
Yang Guo's avatar
Yang Guo committed
164
  static const int day_from_month_leap[] = {0,   31,  60,  91,  121, 152,
165 166 167 168 169 170 171 172 173
                                            182, 213, 244, 274, 305, 335};

  year += month / 12;
  month %= 12;
  if (month < 0) {
    year--;
    month += 12;
  }

174 175
  DCHECK_GE(month, 0);
  DCHECK_LT(month, 12);
176 177 178 179 180 181 182 183 184 185

  // year_delta is an arbitrary number such that:
  // a) year_delta = -1 (mod 400)
  // b) year + year_delta > 0 for years in the range defined by
  //    ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
  //    Jan 1 1970. This is required so that we don't run into integer
  //    division of negative numbers.
  // c) there shouldn't be an overflow for 32-bit integers in the following
  //    operations.
  static const int year_delta = 399999;
Yang Guo's avatar
Yang Guo committed
186 187 188
  static const int base_day =
      365 * (1970 + year_delta) + (1970 + year_delta) / 4 -
      (1970 + year_delta) / 100 + (1970 + year_delta) / 400;
189 190

  int year1 = year + year_delta;
Yang Guo's avatar
Yang Guo committed
191 192
  int day_from_year =
      365 * year1 + year1 / 4 - year1 / 100 + year1 / 400 - base_day;
193 194 195 196 197 198 199

  if ((year % 4 != 0) || (year % 100 == 0 && year % 400 != 0)) {
    return day_from_year + day_from_month[month];
  }
  return day_from_year + day_from_month_leap[month];
}

200 201 202 203 204 205 206 207 208 209 210 211 212
void DateCache::BreakDownTime(int64_t time_ms, int* year, int* month, int* day,
                              int* weekday, int* hour, int* min, int* sec,
                              int* ms) {
  int const days = DaysFromTime(time_ms);
  int const time_in_day_ms = TimeInDay(time_ms, days);
  YearMonthDayFromDays(days, year, month, day);
  *weekday = Weekday(days);
  *hour = time_in_day_ms / (60 * 60 * 1000);
  *min = (time_in_day_ms / (60 * 1000)) % 60;
  *sec = (time_in_day_ms / 1000) % 60;
  *ms = time_in_day_ms % 1000;
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
// Implements LocalTimeZonedjustment(t, isUTC)
// ECMA 262 - ES#sec-local-time-zone-adjustment
int DateCache::GetLocalOffsetFromOS(int64_t time_ms, bool is_utc) {
  double offset;
#ifdef V8_INTL_SUPPORT
  if (FLAG_icu_timezone_data) {
    offset = tz_cache_->LocalTimeOffset(static_cast<double>(time_ms), is_utc);
  } else {
#endif
    // When ICU timezone data is not used, we need to compute the timezone
    // offset for a given local time.
    //
    // The following shows that using DST for (t - LocalTZA - hour) produces
    // correct conversion where LocalTZA is the timezone offset in winter (no
    // DST) and the timezone offset is assumed to have no historical change.
    // Note that it does not work for the past and the future if LocalTZA (no
    // DST) is different from the current LocalTZA (no DST). For instance,
    // this will break for Europe/Moscow in 2012 ~ 2013 because LocalTZA was
    // 4h instead of the current 3h (as of 2018).
    //
    // Consider transition to DST at local time L1.
    // Let L0 = L1 - hour, L2 = L1 + hour,
    //     U1 = UTC time that corresponds to L1,
    //     U0 = U1 - hour.
    // Transitioning to DST moves local clock one hour forward L1 => L2, so
    // U0 = UTC time that corresponds to L0 = L0 - LocalTZA,
    // U1 = UTC time that corresponds to L1 = L1 - LocalTZA,
    // U1 = UTC time that corresponds to L2 = L2 - LocalTZA - hour.
    // Note that DST(U0 - hour) = 0, DST(U0) = 0, DST(U1) = 1.
    // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour),
    // U1 = L1 - LocalTZA - DST(L1 - LocalTZA - hour),
    // U1 = L2 - LocalTZA - DST(L2 - LocalTZA - hour).
    //
    // Consider transition from DST at local time L1.
    // Let L0 = L1 - hour,
    //     U1 = UTC time that corresponds to L1,
    //     U0 = U1 - hour, U2 = U1 + hour.
    // Transitioning from DST moves local clock one hour back L1 => L0, so
    // U0 = UTC time that corresponds to L0 (before transition)
    //    = L0 - LocalTZA - hour.
    // U1 = UTC time that corresponds to L0 (after transition)
    //    = L0 - LocalTZA = L1 - LocalTZA - hour
    // U2 = UTC time that corresponds to L1 = L1 - LocalTZA.
    // Note that DST(U0) = 1, DST(U1) = 0, DST(U2) = 0.
    // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour) = L0 - LocalTZA - DST(U0).
    // U2 = L1 - LocalTZA - DST(L1 - LocalTZA - hour) = L1 - LocalTZA - DST(U1).
    // It is impossible to get U1 from local time.
    if (local_offset_ms_ == kInvalidLocalOffsetInMs) {
      // This gets the constant LocalTZA (arguments are ignored).
      local_offset_ms_ =
          tz_cache_->LocalTimeOffset(static_cast<double>(time_ms), is_utc);
    }
    offset = local_offset_ms_;
    if (!is_utc) {
      const int kMsPerHour = 3600 * 1000;
      time_ms -= (offset + kMsPerHour);
    }
    offset += DaylightSavingsOffsetInMs(time_ms);
#ifdef V8_INTL_SUPPORT
  }
#endif
  DCHECK_LT(offset, kInvalidLocalOffsetInMs);
  return static_cast<int>(offset);
}
277

278 279
void DateCache::ExtendTheAfterSegment(int time_sec, int offset_ms) {
  if (after_->offset_ms == offset_ms &&
280
      after_->start_sec - kDefaultDSTDeltaInSec <= time_sec &&
281 282 283 284 285
      time_sec <= after_->end_sec) {
    // Extend the after_ segment.
    after_->start_sec = time_sec;
  } else {
    // The after_ segment is either invalid or starts too late.
286
    if (!InvalidSegment(after_)) {
287 288 289 290 291 292 293 294 295 296 297 298
      // If the after_ segment is valid, replace it with a new segment.
      after_ = LeastRecentlyUsedDST(before_);
    }
    after_->start_sec = time_sec;
    after_->end_sec = time_sec;
    after_->offset_ms = offset_ms;
    after_->last_used = ++dst_usage_counter_;
  }
}

int DateCache::DaylightSavingsOffsetInMs(int64_t time_ms) {
  int time_sec = (time_ms >= 0 && time_ms <= kMaxEpochTimeInMs)
Yang Guo's avatar
Yang Guo committed
299 300
                     ? static_cast<int>(time_ms / 1000)
                     : static_cast<int>(EquivalentTime(time_ms) / 1000);
301 302 303 304 305 306 307 308 309 310 311 312

  // Invalidate cache if the usage counter is close to overflow.
  // Note that dst_usage_counter is incremented less than ten times
  // in this function.
  if (dst_usage_counter_ >= kMaxInt - 10) {
    dst_usage_counter_ = 0;
    for (int i = 0; i < kDSTSize; ++i) {
      ClearSegment(&dst_[i]);
    }
  }

  // Optimistic fast check.
Yang Guo's avatar
Yang Guo committed
313
  if (before_->start_sec <= time_sec && time_sec <= before_->end_sec) {
314 315 316 317 318 319 320
    // Cache hit.
    before_->last_used = ++dst_usage_counter_;
    return before_->offset_ms;
  }

  ProbeDST(time_sec);

321 322
  DCHECK(InvalidSegment(before_) || before_->start_sec <= time_sec);
  DCHECK(InvalidSegment(after_) || time_sec < after_->start_sec);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

  if (InvalidSegment(before_)) {
    // Cache miss.
    before_->start_sec = time_sec;
    before_->end_sec = time_sec;
    before_->offset_ms = GetDaylightSavingsOffsetFromOS(time_sec);
    before_->last_used = ++dst_usage_counter_;
    return before_->offset_ms;
  }

  if (time_sec <= before_->end_sec) {
    // Cache hit.
    before_->last_used = ++dst_usage_counter_;
    return before_->offset_ms;
  }

339
  if (time_sec - kDefaultDSTDeltaInSec > before_->end_sec) {
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    // If the before_ segment ends too early, then just
    // query for the offset of the time_sec
    int offset_ms = GetDaylightSavingsOffsetFromOS(time_sec);
    ExtendTheAfterSegment(time_sec, offset_ms);
    // This swap helps the optimistic fast check in subsequent invocations.
    DST* temp = before_;
    before_ = after_;
    after_ = temp;
    return offset_ms;
  }

  // Now the time_sec is between
  // before_->end_sec and before_->end_sec + default DST delta.
  // Update the usage counter of before_ since it is going to be used.
  before_->last_used = ++dst_usage_counter_;

  // Check if after_ segment is invalid or starts too late.
  // Note that start_sec of invalid segments is kMaxEpochTimeInSec.
358 359 360 361 362
  int new_after_start_sec =
      before_->end_sec < kMaxEpochTimeInSec - kDefaultDSTDeltaInSec
          ? before_->end_sec + kDefaultDSTDeltaInSec
          : kMaxEpochTimeInSec;
  if (new_after_start_sec <= after_->start_sec) {
363 364 365
    int new_offset_ms = GetDaylightSavingsOffsetFromOS(new_after_start_sec);
    ExtendTheAfterSegment(new_after_start_sec, new_offset_ms);
  } else {
366
    DCHECK(!InvalidSegment(after_));
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    // Update the usage counter of after_ since it is going to be used.
    after_->last_used = ++dst_usage_counter_;
  }

  // Now the time_sec is between before_->end_sec and after_->start_sec.
  // Only one daylight savings offset change can occur in this interval.

  if (before_->offset_ms == after_->offset_ms) {
    // Merge two segments if they have the same offset.
    before_->end_sec = after_->end_sec;
    ClearSegment(after_);
    return before_->offset_ms;
  }

  // Binary search for daylight savings offset change point,
382
  // but give up if we don't find it in five iterations.
383 384 385 386 387 388 389 390 391 392
  for (int i = 4; i >= 0; --i) {
    int delta = after_->start_sec - before_->end_sec;
    int middle_sec = (i == 0) ? time_sec : before_->end_sec + delta / 2;
    int offset_ms = GetDaylightSavingsOffsetFromOS(middle_sec);
    if (before_->offset_ms == offset_ms) {
      before_->end_sec = middle_sec;
      if (time_sec <= before_->end_sec) {
        return offset_ms;
      }
    } else {
393
      DCHECK(after_->offset_ms == offset_ms);
394 395 396 397 398 399 400 401 402 403
      after_->start_sec = middle_sec;
      if (time_sec >= after_->start_sec) {
        // This swap helps the optimistic fast check in subsequent invocations.
        DST* temp = before_;
        before_ = after_;
        after_ = temp;
        return offset_ms;
      }
    }
  }
404
  return 0;
405 406 407
}

void DateCache::ProbeDST(int time_sec) {
408 409
  DST* before = nullptr;
  DST* after = nullptr;
410
  DCHECK(before_ != after_);
411 412 413

  for (int i = 0; i < kDSTSize; ++i) {
    if (dst_[i].start_sec <= time_sec) {
414
      if (before == nullptr || before->start_sec < dst_[i].start_sec) {
415 416 417
        before = &dst_[i];
      }
    } else if (time_sec < dst_[i].end_sec) {
418
      if (after == nullptr || after->end_sec > dst_[i].end_sec) {
419 420 421 422 423 424 425
        after = &dst_[i];
      }
    }
  }

  // If before or after segments were not found,
  // then set them to any invalid segment.
426
  if (before == nullptr) {
427 428
    before = InvalidSegment(before_) ? before_ : LeastRecentlyUsedDST(after);
  }
429
  if (after == nullptr) {
430
    after = InvalidSegment(after_) && before != after_
Yang Guo's avatar
Yang Guo committed
431 432
                ? after_
                : LeastRecentlyUsedDST(before);
433 434
  }

435 436
  DCHECK_NOT_NULL(before);
  DCHECK_NOT_NULL(after);
437 438 439 440
  DCHECK(before != after);
  DCHECK(InvalidSegment(before) || before->start_sec <= time_sec);
  DCHECK(InvalidSegment(after) || time_sec < after->start_sec);
  DCHECK(InvalidSegment(before) || InvalidSegment(after) ||
441 442 443 444 445 446 447
         before->end_sec < after->start_sec);

  before_ = before;
  after_ = after;
}

DateCache::DST* DateCache::LeastRecentlyUsedDST(DST* skip) {
448
  DST* result = nullptr;
449 450
  for (int i = 0; i < kDSTSize; ++i) {
    if (&dst_[i] == skip) continue;
451
    if (result == nullptr || result->last_used > dst_[i].last_used) {
452 453 454 455 456 457 458
      result = &dst_[i];
    }
  }
  ClearSegment(result);
  return result;
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
namespace {

// ES6 section 20.3.1.1 Time Values and Time Range
const double kMinYear = -1000000.0;
const double kMaxYear = -kMinYear;
const double kMinMonth = -10000000.0;
const double kMaxMonth = -kMinMonth;

const double kMsPerDay = 86400000.0;

const double kMsPerSecond = 1000.0;
const double kMsPerMinute = 60000.0;
const double kMsPerHour = 3600000.0;

}  // namespace

double MakeDate(double day, double time) {
  if (std::isfinite(day) && std::isfinite(time)) {
    return time + day * kMsPerDay;
  }
  return std::numeric_limits<double>::quiet_NaN();
}

double MakeDay(double year, double month, double date) {
  if ((kMinYear <= year && year <= kMaxYear) &&
      (kMinMonth <= month && month <= kMaxMonth) && std::isfinite(date)) {
    int y = FastD2I(year);
    int m = FastD2I(month);
    y += m / 12;
    m %= 12;
    if (m < 0) {
      m += 12;
      y -= 1;
    }
    DCHECK_LE(0, m);
    DCHECK_LT(m, 12);

    // kYearDelta is an arbitrary number such that:
    // a) kYearDelta = -1 (mod 400)
    // b) year + kYearDelta > 0 for years in the range defined by
    //    ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
    //    Jan 1 1970. This is required so that we don't run into integer
    //    division of negative numbers.
    // c) there shouldn't be an overflow for 32-bit integers in the following
    //    operations.
    static const int kYearDelta = 399999;
    static const int kBaseDay =
        365 * (1970 + kYearDelta) + (1970 + kYearDelta) / 4 -
        (1970 + kYearDelta) / 100 + (1970 + kYearDelta) / 400;
    int day_from_year = 365 * (y + kYearDelta) + (y + kYearDelta) / 4 -
                        (y + kYearDelta) / 100 + (y + kYearDelta) / 400 -
                        kBaseDay;
    if ((y % 4 != 0) || (y % 100 == 0 && y % 400 != 0)) {
      static const int kDayFromMonth[] = {0,   31,  59,  90,  120, 151,
                                          181, 212, 243, 273, 304, 334};
      day_from_year += kDayFromMonth[m];
    } else {
      static const int kDayFromMonth[] = {0,   31,  60,  91,  121, 152,
                                          182, 213, 244, 274, 305, 335};
      day_from_year += kDayFromMonth[m];
    }
    return static_cast<double>(day_from_year - 1) + DoubleToInteger(date);
  }
  return std::numeric_limits<double>::quiet_NaN();
}

double MakeTime(double hour, double min, double sec, double ms) {
  if (std::isfinite(hour) && std::isfinite(min) && std::isfinite(sec) &&
      std::isfinite(ms)) {
    double const h = DoubleToInteger(hour);
    double const m = DoubleToInteger(min);
    double const s = DoubleToInteger(sec);
    double const milli = DoubleToInteger(ms);
    return h * kMsPerHour + m * kMsPerMinute + s * kMsPerSecond + milli;
  }
  return std::numeric_limits<double>::quiet_NaN();
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
namespace {

const char* kShortWeekDays[] = {"Sun", "Mon", "Tue", "Wed",
                                "Thu", "Fri", "Sat"};
const char* kShortMonths[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
                              "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

template <class... Args>
DateBuffer FormatDate(const char* format, Args... args) {
  DateBuffer buffer;
  SmallStringOptimizedAllocator<DateBuffer::kInlineSize> allocator(&buffer);
  StringStream sstream(&allocator);
  sstream.Add(format, args...);
  buffer.resize_no_init(sstream.length());
  return buffer;
}

}  // namespace

DateBuffer ToDateString(double time_val, DateCache* date_cache,
                        ToDateStringMode mode) {
  if (std::isnan(time_val)) {
    return FormatDate("Invalid Date");
  }
  int64_t time_ms = static_cast<int64_t>(time_val);
  int64_t local_time_ms = mode != ToDateStringMode::kUTCDateAndTime
                              ? date_cache->ToLocal(time_ms)
                              : time_ms;
  int year, month, day, weekday, hour, min, sec, ms;
  date_cache->BreakDownTime(local_time_ms, &year, &month, &day, &weekday, &hour,
                            &min, &sec, &ms);
  int timezone_offset = -date_cache->TimezoneOffset(time_ms);
  int timezone_hour = std::abs(timezone_offset) / 60;
  int timezone_min = std::abs(timezone_offset) % 60;
  const char* local_timezone = date_cache->LocalTimezone(time_ms);
  switch (mode) {
    case ToDateStringMode::kLocalDate:
      return FormatDate((year < 0) ? "%s %s %02d %05d" : "%s %s %02d %04d",
                        kShortWeekDays[weekday], kShortMonths[month], day,
                        year);
    case ToDateStringMode::kLocalTime:
      return FormatDate("%02d:%02d:%02d GMT%c%02d%02d (%s)", hour, min, sec,
                        (timezone_offset < 0) ? '-' : '+', timezone_hour,
                        timezone_min, local_timezone);
    case ToDateStringMode::kLocalDateAndTime:
      return FormatDate(
          (year < 0) ? "%s %s %02d %05d %02d:%02d:%02d GMT%c%02d%02d (%s)"
                     : "%s %s %02d %04d %02d:%02d:%02d GMT%c%02d%02d (%s)",
          kShortWeekDays[weekday], kShortMonths[month], day, year, hour, min,
          sec, (timezone_offset < 0) ? '-' : '+', timezone_hour, timezone_min,
          local_timezone);
    case ToDateStringMode::kUTCDateAndTime:
      return FormatDate((year < 0) ? "%s, %02d %s %05d %02d:%02d:%02d GMT"
                                   : "%s, %02d %s %04d %02d:%02d:%02d GMT",
                        kShortWeekDays[weekday], day, kShortMonths[month], year,
                        hour, min, sec);
  }
  UNREACHABLE();
}

597 598
}  // namespace internal
}  // namespace v8