hydrogen-bch.cc 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "hydrogen-bch.h"

namespace v8 {
namespace internal {

/*
 * This class is a table with one element for eack basic block.
 *
 * It is used to check if, inside one loop, all execution paths contain
 * a bounds check for a particular [index, length] combination.
 * The reason is that if there is a path that stays in the loop without
 * executing a check then the check cannot be hoisted out of the loop (it
 * would likely fail and cause a deopt for no good reason).
 * We also check is there are paths that exit the loop early, and if yes we
 * perform the hoisting only if graph()->use_optimistic_licm() is true.
 * The reason is that such paths are realtively common and harmless (like in
 * a "search" method that scans an array until an element is found), but in
 * some cases they could cause a deopt if we hoist the check so this is a
 * situation we need to detect.
 */
class InductionVariableBlocksTable BASE_EMBEDDED {
 public:
  class Element {
   public:
    static const int kNoBlock = -1;

    HBasicBlock* block() { return block_; }
    void set_block(HBasicBlock* block) { block_ = block; }
    bool is_start() { return is_start_; }
    bool is_proper_exit() { return is_proper_exit_; }
    bool is_in_loop() { return is_in_loop_; }
    bool has_check() { return has_check_; }
    void set_has_check() { has_check_ = true; }
    InductionVariableLimitUpdate* additional_limit() {
      return &additional_limit_;
    }

    /*
     * Initializes the table element for a given loop (identified by its
     * induction variable).
     */
    void InitializeLoop(InductionVariableData* data) {
      ASSERT(data->limit() != NULL);
      HLoopInformation* loop = data->phi()->block()->current_loop();
      is_start_ = (block() == loop->loop_header());
      is_proper_exit_ = (block() == data->induction_exit_target());
      is_in_loop_ = loop->IsNestedInThisLoop(block()->current_loop());
      has_check_ = false;
    }

    // Utility methods to iterate over dominated blocks.
    void ResetCurrentDominatedBlock() { current_dominated_block_ = kNoBlock; }
    HBasicBlock* CurrentDominatedBlock() {
      ASSERT(current_dominated_block_ != kNoBlock);
      return current_dominated_block_ < block()->dominated_blocks()->length() ?
          block()->dominated_blocks()->at(current_dominated_block_) : NULL;
    }
    HBasicBlock* NextDominatedBlock() {
      current_dominated_block_++;
      return CurrentDominatedBlock();
    }

    Element()
        : block_(NULL), is_start_(false), is_proper_exit_(false),
          has_check_(false), additional_limit_(),
          current_dominated_block_(kNoBlock) {}

   private:
    HBasicBlock* block_;
    bool is_start_;
    bool is_proper_exit_;
    bool is_in_loop_;
    bool has_check_;
    InductionVariableLimitUpdate additional_limit_;
    int current_dominated_block_;
  };

105 106 107 108 109
  HGraph* graph() const { return graph_; }
  Counters* counters() const { return graph()->isolate()->counters(); }
  HBasicBlock* loop_header() const { return loop_header_; }
  Element* at(int index) const { return &(elements_.at(index)); }
  Element* at(HBasicBlock* block) const { return at(block->block_id()); }
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

  void AddCheckAt(HBasicBlock* block) {
    at(block->block_id())->set_has_check();
  }

  /*
   * Initializes the table for a given loop (identified by its induction
   * variable).
   */
  void InitializeLoop(InductionVariableData* data) {
    for (int i = 0; i < graph()->blocks()->length(); i++) {
      at(i)->InitializeLoop(data);
    }
    loop_header_ = data->phi()->block()->current_loop()->loop_header();
  }


  enum Hoistability {
    HOISTABLE,
    OPTIMISTICALLY_HOISTABLE,
    NOT_HOISTABLE
  };

  /*
   * This method checks if it is appropriate to hoist the bounds checks on an
   * induction variable out of the loop.
   * The problem is that in the loop code graph there could be execution paths
   * where the check is not performed, but hoisting the check has the same
   * semantics as performing it at every loop iteration, which could cause
   * unnecessary check failures (which would mean unnecessary deoptimizations).
   * The method returns OK if there are no paths that perform an iteration
   * (loop back to the header) without meeting a check, or UNSAFE is set if
   * early exit paths are found.
   */
  Hoistability CheckHoistability() {
    for (int i = 0; i < elements_.length(); i++) {
      at(i)->ResetCurrentDominatedBlock();
    }
    bool unsafe = false;

    HBasicBlock* current = loop_header();
    while (current != NULL) {
      HBasicBlock* next;

      if (at(current)->has_check() || !at(current)->is_in_loop()) {
        // We found a check or we reached a dominated block out of the loop,
        // therefore this block is safe and we can backtrack.
        next = NULL;
      } else {
        for (int i = 0; i < current->end()->SuccessorCount(); i ++) {
          Element* successor = at(current->end()->SuccessorAt(i));

          if (!successor->is_in_loop()) {
            if (!successor->is_proper_exit()) {
              // We found a path that exits the loop early, and is not the exit
              // related to the induction limit, therefore hoisting checks is
              // an optimistic assumption.
              unsafe = true;
            }
          }

          if (successor->is_start()) {
            // We found a path that does one loop iteration without meeting any
            // check, therefore hoisting checks would be likely to cause
            // unnecessary deopts.
            return NOT_HOISTABLE;
          }
        }

        next = at(current)->NextDominatedBlock();
      }

      // If we have no next block we need to backtrack the tree traversal.
      while (next == NULL) {
        current = current->dominator();
        if (current != NULL) {
          next = at(current)->NextDominatedBlock();
        } else {
          // We reached the root: next stays NULL.
          next = NULL;
          break;
        }
      }

      current = next;
    }

    return unsafe ? OPTIMISTICALLY_HOISTABLE : HOISTABLE;
  }

  explicit InductionVariableBlocksTable(HGraph* graph)
    : graph_(graph), loop_header_(NULL),
      elements_(graph->blocks()->length(), graph->zone()) {
    for (int i = 0; i < graph->blocks()->length(); i++) {
      Element element;
      element.set_block(graph->blocks()->at(i));
      elements_.Add(element, graph->zone());
      ASSERT(at(i)->block()->block_id() == i);
    }
  }

  // Tries to hoist a check out of its induction loop.
  void ProcessRelatedChecks(
      InductionVariableData::InductionVariableCheck* check,
      InductionVariableData* data) {
    HValue* length = check->check()->length();
    check->set_processed();
    HBasicBlock* header =
        data->phi()->block()->current_loop()->loop_header();
    HBasicBlock* pre_header = header->predecessors()->at(0);
    // Check that the limit is defined in the loop preheader.
    if (!data->limit()->IsInteger32Constant()) {
      HBasicBlock* limit_block = data->limit()->block();
      if (limit_block != pre_header &&
          !limit_block->Dominates(pre_header)) {
        return;
      }
    }
    // Check that the length and limit have compatible representations.
    if (!(data->limit()->representation().Equals(
            length->representation()) ||
        data->limit()->IsInteger32Constant())) {
      return;
    }
    // Check that the length is defined in the loop preheader.
    if (check->check()->length()->block() != pre_header &&
        !check->check()->length()->block()->Dominates(pre_header)) {
      return;
    }

    // Add checks to the table.
    for (InductionVariableData::InductionVariableCheck* current_check = check;
         current_check != NULL;
         current_check = current_check->next()) {
      if (current_check->check()->length() != length) continue;

      AddCheckAt(current_check->check()->block());
      current_check->set_processed();
    }

    // Check that we will not cause unwanted deoptimizations.
    Hoistability hoistability = CheckHoistability();
    if (hoistability == NOT_HOISTABLE ||
        (hoistability == OPTIMISTICALLY_HOISTABLE &&
         !graph()->use_optimistic_licm())) {
      return;
    }

    // We will do the hoisting, but we must see if the limit is "limit" or if
    // all checks are done on constants: if all check are done against the same
    // constant limit we will use that instead of the induction limit.
    bool has_upper_constant_limit = true;
    int32_t upper_constant_limit =
263 264 265 266 267 268 269 270 271
        check != NULL && check->HasUpperLimit() ? check->upper_limit() : 0;
    for (InductionVariableData::InductionVariableCheck* current_check = check;
         current_check != NULL;
         current_check = current_check->next()) {
      has_upper_constant_limit =
          has_upper_constant_limit &&
          check->HasUpperLimit() &&
          check->upper_limit() == upper_constant_limit;
      counters()->bounds_checks_eliminated()->Increment();
272 273 274 275
      current_check->check()->set_skip_check();
    }

    // Choose the appropriate limit.
276 277
    Zone* zone = graph()->zone();
    HValue* context = graph()->GetInvalidContext();
278 279
    HValue* limit = data->limit();
    if (has_upper_constant_limit) {
280 281
      HConstant* new_limit = HConstant::New(zone, context,
                                            upper_constant_limit);
282 283 284 285 286 287 288 289
      new_limit->InsertBefore(pre_header->end());
      limit = new_limit;
    }

    // If necessary, redefine the limit in the preheader.
    if (limit->IsInteger32Constant() &&
        limit->block() != pre_header &&
        !limit->block()->Dominates(pre_header)) {
290 291
      HConstant* new_limit = HConstant::New(zone, context,
                                            limit->GetInteger32Constant());
292 293 294 295 296
      new_limit->InsertBefore(pre_header->end());
      limit = new_limit;
    }

    // Do the hoisting.
297 298
    HBoundsCheck* hoisted_check = HBoundsCheck::New(
        zone, context, limit, check->check()->length());
299 300
    hoisted_check->InsertBefore(pre_header->end());
    hoisted_check->set_allow_equality(true);
301
    counters()->bounds_checks_hoisted()->Increment();
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  }

  void CollectInductionVariableData(HBasicBlock* bb) {
    bool additional_limit = false;

    for (int i = 0; i < bb->phis()->length(); i++) {
      HPhi* phi = bb->phis()->at(i);
      phi->DetectInductionVariable();
    }

    additional_limit = InductionVariableData::ComputeInductionVariableLimit(
        bb, at(bb)->additional_limit());

    if (additional_limit) {
      at(bb)->additional_limit()->updated_variable->
          UpdateAdditionalLimit(at(bb)->additional_limit());
    }

    for (HInstruction* i = bb->first(); i != NULL; i = i->next()) {
      if (!i->IsBoundsCheck()) continue;
      HBoundsCheck* check = HBoundsCheck::cast(i);
      InductionVariableData::BitwiseDecompositionResult decomposition;
      InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
      if (!decomposition.base->IsPhi()) continue;
      HPhi* phi = HPhi::cast(decomposition.base);

      if (!phi->IsInductionVariable()) continue;
      InductionVariableData* data = phi->induction_variable_data();

      // For now ignore loops decrementing the index.
      if (data->increment() <= 0) continue;
      if (!data->LowerLimitIsNonNegativeConstant()) continue;

      // TODO(mmassi): skip OSR values for check->length().
      if (check->length() == data->limit() ||
          check->length() == data->additional_upper_limit()) {
338
        counters()->bounds_checks_eliminated()->Increment();
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        check->set_skip_check();
        continue;
      }

      if (!phi->IsLimitedInductionVariable()) continue;

      int32_t limit = data->ComputeUpperLimit(decomposition.and_mask,
                                              decomposition.or_mask);
      phi->induction_variable_data()->AddCheck(check, limit);
    }

    for (int i = 0; i < bb->dominated_blocks()->length(); i++) {
      CollectInductionVariableData(bb->dominated_blocks()->at(i));
    }

    if (additional_limit) {
      at(bb->block_id())->additional_limit()->updated_variable->
          UpdateAdditionalLimit(at(bb->block_id())->additional_limit());
    }
  }

  void EliminateRedundantBoundsChecks(HBasicBlock* bb) {
    for (int i = 0; i < bb->phis()->length(); i++) {
      HPhi* phi = bb->phis()->at(i);
      if (!phi->IsLimitedInductionVariable()) continue;

      InductionVariableData* induction_data = phi->induction_variable_data();
      InductionVariableData::ChecksRelatedToLength* current_length_group =
          induction_data->checks();
      while (current_length_group != NULL) {
        current_length_group->CloseCurrentBlock();
        InductionVariableData::InductionVariableCheck* current_base_check =
            current_length_group->checks();
        InitializeLoop(induction_data);

        while (current_base_check != NULL) {
          ProcessRelatedChecks(current_base_check, induction_data);
          while (current_base_check != NULL &&
                 current_base_check->processed()) {
            current_base_check = current_base_check->next();
          }
        }

        current_length_group = current_length_group->next();
      }
    }
  }

 private:
  HGraph* graph_;
  HBasicBlock* loop_header_;
  ZoneList<Element> elements_;
};


void HBoundsCheckHoistingPhase::HoistRedundantBoundsChecks() {
  InductionVariableBlocksTable table(graph());
  table.CollectInductionVariableData(graph()->entry_block());
  for (int i = 0; i < graph()->blocks()->length(); i++) {
    table.EliminateRedundantBoundsChecks(graph()->blocks()->at(i));
  }
}

} }  // namespace v8::internal