builtins-x64.cc 49.4 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

28
#include "v8.h"
29

30
#if V8_TARGET_ARCH_X64
31

32
#include "codegen.h"
33 34
#include "deoptimizer.h"
#include "full-codegen.h"
35
#include "stub-cache.h"
36

37 38
namespace v8 {
namespace internal {
39

40

41 42
#define __ ACCESS_MASM(masm)

43 44 45 46 47

void Builtins::Generate_Adaptor(MacroAssembler* masm,
                                CFunctionId id,
                                BuiltinExtraArguments extra_args) {
  // ----------- S t a t e -------------
48 49 50 51 52 53
  //  -- rax                 : number of arguments excluding receiver
  //  -- rdi                 : called function (only guaranteed when
  //                           extra_args requires it)
  //  -- rsi                 : context
  //  -- rsp[0]              : return address
  //  -- rsp[8]              : last argument
54
  //  -- ...
55 56
  //  -- rsp[8 * argc]       : first argument (argc == rax)
  //  -- rsp[8 * (argc + 1)] : receiver
57 58 59 60 61 62
  // -----------------------------------

  // Insert extra arguments.
  int num_extra_args = 0;
  if (extra_args == NEEDS_CALLED_FUNCTION) {
    num_extra_args = 1;
63
    __ PopReturnAddressTo(kScratchRegister);
64
    __ push(rdi);
65
    __ PushReturnAddressFrom(kScratchRegister);
66 67 68 69
  } else {
    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
  }

serya@chromium.org's avatar
serya@chromium.org committed
70
  // JumpToExternalReference expects rax to contain the number of arguments
71 72
  // including the receiver and the extra arguments.
  __ addq(rax, Immediate(num_extra_args + 1));
73
  __ JumpToExternalReference(ExternalReference(id, masm->isolate()), 1);
74 75
}

76

77 78
static void CallRuntimePassFunction(
    MacroAssembler* masm, Runtime::FunctionId function_id) {
79 80 81 82 83 84 85 86 87 88 89 90
  FrameScope scope(masm, StackFrame::INTERNAL);
  // Push a copy of the function onto the stack.
  __ push(rdi);
  // Function is also the parameter to the runtime call.
  __ push(rdi);

  __ CallRuntime(function_id, 1);
  // Restore receiver.
  __ pop(rdi);
}


91
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
92
  __ movp(kScratchRegister,
93
          FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
94
  __ movp(kScratchRegister,
95 96 97 98 99 100
          FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset));
  __ lea(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize));
  __ jmp(kScratchRegister);
}


101 102 103 104 105 106 107
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
  __ lea(rax, FieldOperand(rax, Code::kHeaderSize));
  __ jmp(rax);
}


void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
108 109 110 111 112 113 114 115 116
  // Checking whether the queued function is ready for install is optional,
  // since we come across interrupts and stack checks elsewhere.  However,
  // not checking may delay installing ready functions, and always checking
  // would be quite expensive.  A good compromise is to first check against
  // stack limit as a cue for an interrupt signal.
  Label ok;
  __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
  __ j(above_equal, &ok);

117 118
  CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
  GenerateTailCallToReturnedCode(masm);
119 120 121

  __ bind(&ok);
  GenerateTailCallToSharedCode(masm);
122 123 124
}


125 126 127
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
                                           bool is_api_function,
                                           bool count_constructions) {
128 129 130 131
  // ----------- S t a t e -------------
  //  -- rax: number of arguments
  //  -- rdi: constructor function
  // -----------------------------------
132

133 134
  // Should never count constructions for api objects.
  ASSERT(!is_api_function || !count_constructions);
135

136 137 138
  // Enter a construct frame.
  {
    FrameScope scope(masm, StackFrame::CONSTRUCT);
139

140 141 142
    // Store a smi-tagged arguments count on the stack.
    __ Integer32ToSmi(rax, rax);
    __ push(rax);
143

144 145
    // Push the function to invoke on the stack.
    __ push(rdi);
146

147 148 149 150 151
    // Try to allocate the object without transitioning into C code. If any of
    // the preconditions is not met, the code bails out to the runtime call.
    Label rt_call, allocated;
    if (FLAG_inline_new) {
      Label undo_allocation;
152

153
#ifdef ENABLE_DEBUGGER_SUPPORT
154 155
      ExternalReference debug_step_in_fp =
          ExternalReference::debug_step_in_fp_address(masm->isolate());
156
      __ Move(kScratchRegister, debug_step_in_fp);
157 158
      __ cmpq(Operand(kScratchRegister, 0), Immediate(0));
      __ j(not_equal, &rt_call);
159
#endif
160

161 162 163
      // Verified that the constructor is a JSFunction.
      // Load the initial map and verify that it is in fact a map.
      // rdi: constructor
164
      __ movp(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
      // Will both indicate a NULL and a Smi
      ASSERT(kSmiTag == 0);
      __ JumpIfSmi(rax, &rt_call);
      // rdi: constructor
      // rax: initial map (if proven valid below)
      __ CmpObjectType(rax, MAP_TYPE, rbx);
      __ j(not_equal, &rt_call);

      // Check that the constructor is not constructing a JSFunction (see
      // comments in Runtime_NewObject in runtime.cc). In which case the
      // initial map's instance type would be JS_FUNCTION_TYPE.
      // rdi: constructor
      // rax: initial map
      __ CmpInstanceType(rax, JS_FUNCTION_TYPE);
      __ j(equal, &rt_call);
180

181 182 183
      if (count_constructions) {
        Label allocate;
        // Decrease generous allocation count.
184
        __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
185 186 187
        __ decb(FieldOperand(rcx,
                             SharedFunctionInfo::kConstructionCountOffset));
        __ j(not_zero, &allocate);
188

189 190
        __ push(rax);
        __ push(rdi);
191

192 193 194
        __ push(rdi);  // constructor
        // The call will replace the stub, so the countdown is only done once.
        __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
195

196 197
        __ pop(rdi);
        __ pop(rax);
198

199
        __ bind(&allocate);
200
      }
201

202 203 204 205
      // Now allocate the JSObject on the heap.
      __ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset));
      __ shl(rdi, Immediate(kPointerSizeLog2));
      // rdi: size of new object
206 207 208 209 210 211
      __ Allocate(rdi,
                  rbx,
                  rdi,
                  no_reg,
                  &rt_call,
                  NO_ALLOCATION_FLAGS);
212 213 214 215
      // Allocated the JSObject, now initialize the fields.
      // rax: initial map
      // rbx: JSObject (not HeapObject tagged - the actual address).
      // rdi: start of next object
216
      __ movp(Operand(rbx, JSObject::kMapOffset), rax);
217
      __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
218 219
      __ movp(Operand(rbx, JSObject::kPropertiesOffset), rcx);
      __ movp(Operand(rbx, JSObject::kElementsOffset), rcx);
220 221 222 223
      // Set extra fields in the newly allocated object.
      // rax: initial map
      // rbx: JSObject
      // rdi: start of next object
224 225 226 227 228 229 230 231 232 233 234
      __ lea(rcx, Operand(rbx, JSObject::kHeaderSize));
      __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
      if (count_constructions) {
        __ movzxbq(rsi,
                   FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
        __ lea(rsi,
               Operand(rbx, rsi, times_pointer_size, JSObject::kHeaderSize));
        // rsi: offset of first field after pre-allocated fields
        if (FLAG_debug_code) {
          __ cmpq(rsi, rdi);
          __ Assert(less_equal,
235
                    kUnexpectedNumberOfPreAllocatedPropertyFields);
236
        }
237 238
        __ InitializeFieldsWithFiller(rcx, rsi, rdx);
        __ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
239
      }
240
      __ InitializeFieldsWithFiller(rcx, rdi, rdx);
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      // Add the object tag to make the JSObject real, so that we can continue
      // and jump into the continuation code at any time from now on. Any
      // failures need to undo the allocation, so that the heap is in a
      // consistent state and verifiable.
      // rax: initial map
      // rbx: JSObject
      // rdi: start of next object
      __ or_(rbx, Immediate(kHeapObjectTag));

      // Check if a non-empty properties array is needed.
      // Allocate and initialize a FixedArray if it is.
      // rax: initial map
      // rbx: JSObject
      // rdi: start of next object
      // Calculate total properties described map.
      __ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
      __ movzxbq(rcx,
                 FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
      __ addq(rdx, rcx);
      // Calculate unused properties past the end of the in-object properties.
      __ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset));
      __ subq(rdx, rcx);
      // Done if no extra properties are to be allocated.
      __ j(zero, &allocated);
266
      __ Assert(positive, kPropertyAllocationCountFailed);
267 268 269 270 271 272

      // Scale the number of elements by pointer size and add the header for
      // FixedArrays to the start of the next object calculation from above.
      // rbx: JSObject
      // rdi: start of next object (will be start of FixedArray)
      // rdx: number of elements in properties array
273 274 275 276 277 278 279 280
      __ Allocate(FixedArray::kHeaderSize,
                  times_pointer_size,
                  rdx,
                  rdi,
                  rax,
                  no_reg,
                  &undo_allocation,
                  RESULT_CONTAINS_TOP);
281 282 283 284 285 286 287

      // Initialize the FixedArray.
      // rbx: JSObject
      // rdi: FixedArray
      // rdx: number of elements
      // rax: start of next object
      __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
288
      __ movp(Operand(rdi, HeapObject::kMapOffset), rcx);  // setup the map
289
      __ Integer32ToSmi(rdx, rdx);
290
      __ movp(Operand(rdi, FixedArray::kLengthOffset), rdx);  // and length
291 292 293 294 295 296 297 298 299 300 301

      // Initialize the fields to undefined.
      // rbx: JSObject
      // rdi: FixedArray
      // rax: start of next object
      // rdx: number of elements
      { Label loop, entry;
        __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
        __ lea(rcx, Operand(rdi, FixedArray::kHeaderSize));
        __ jmp(&entry);
        __ bind(&loop);
302
        __ movp(Operand(rcx, 0), rdx);
303 304 305 306 307
        __ addq(rcx, Immediate(kPointerSize));
        __ bind(&entry);
        __ cmpq(rcx, rax);
        __ j(below, &loop);
      }
308

309 310 311 312 313
      // Store the initialized FixedArray into the properties field of
      // the JSObject
      // rbx: JSObject
      // rdi: FixedArray
      __ or_(rdi, Immediate(kHeapObjectTag));  // add the heap tag
314
      __ movp(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi);
315 316


317 318 319
      // Continue with JSObject being successfully allocated
      // rbx: JSObject
      __ jmp(&allocated);
320

321 322 323 324 325 326 327
      // Undo the setting of the new top so that the heap is verifiable. For
      // example, the map's unused properties potentially do not match the
      // allocated objects unused properties.
      // rbx: JSObject (previous new top)
      __ bind(&undo_allocation);
      __ UndoAllocationInNewSpace(rbx);
    }
328

329 330 331 332
    // Allocate the new receiver object using the runtime call.
    // rdi: function (constructor)
    __ bind(&rt_call);
    // Must restore rdi (constructor) before calling runtime.
333
    __ movp(rdi, Operand(rsp, 0));
334 335
    __ push(rdi);
    __ CallRuntime(Runtime::kNewObject, 1);
336
    __ movp(rbx, rax);  // store result in rbx
337

338 339 340 341 342
    // New object allocated.
    // rbx: newly allocated object
    __ bind(&allocated);
    // Retrieve the function from the stack.
    __ pop(rdi);
343

344
    // Retrieve smi-tagged arguments count from the stack.
345
    __ movp(rax, Operand(rsp, 0));
346
    __ SmiToInteger32(rax, rax);
347

348 349 350 351 352
    // Push the allocated receiver to the stack. We need two copies
    // because we may have to return the original one and the calling
    // conventions dictate that the called function pops the receiver.
    __ push(rbx);
    __ push(rbx);
353

354
    // Set up pointer to last argument.
355
    __ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
356

357 358
    // Copy arguments and receiver to the expression stack.
    Label loop, entry;
359
    __ movp(rcx, rax);
360 361 362 363 364 365 366 367 368
    __ jmp(&entry);
    __ bind(&loop);
    __ push(Operand(rbx, rcx, times_pointer_size, 0));
    __ bind(&entry);
    __ decq(rcx);
    __ j(greater_equal, &loop);

    // Call the function.
    if (is_api_function) {
369
      __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
370 371
      Handle<Code> code =
          masm->isolate()->builtins()->HandleApiCallConstruct();
372
      __ Call(code, RelocInfo::CODE_TARGET);
373 374
    } else {
      ParameterCount actual(rax);
375
      __ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper());
376
    }
377

378
    // Store offset of return address for deoptimizer.
379
    if (!is_api_function && !count_constructions) {
380 381 382
      masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
    }

383
    // Restore context from the frame.
384
    __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
385

386 387 388 389 390 391
    // If the result is an object (in the ECMA sense), we should get rid
    // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    // on page 74.
    Label use_receiver, exit;
    // If the result is a smi, it is *not* an object in the ECMA sense.
    __ JumpIfSmi(rax, &use_receiver);
392

393 394 395 396 397
    // If the type of the result (stored in its map) is less than
    // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
    __ j(above_equal, &exit);
398

399 400 401
    // Throw away the result of the constructor invocation and use the
    // on-stack receiver as the result.
    __ bind(&use_receiver);
402
    __ movp(rax, Operand(rsp, 0));
403

404 405
    // Restore the arguments count and leave the construct frame.
    __ bind(&exit);
406
    __ movp(rbx, Operand(rsp, kPointerSize));  // Get arguments count.
407 408 409

    // Leave construct frame.
  }
410

411
  // Remove caller arguments from the stack and return.
412
  __ PopReturnAddressTo(rcx);
413 414
  SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
  __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
415
  __ PushReturnAddressFrom(rcx);
416 417
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->constructed_objects(), 1);
418
  __ ret(0);
419 420
}

421

422 423 424
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, false, true);
}
425

426

427 428 429
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, false, false);
}
430 431


432 433 434
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, true, false);
}
435 436


437 438
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
439 440
  ProfileEntryHookStub::MaybeCallEntryHook(masm);

441 442 443 444 445 446 447
  // Expects five C++ function parameters.
  // - Address entry (ignored)
  // - JSFunction* function (
  // - Object* receiver
  // - int argc
  // - Object*** argv
  // (see Handle::Invoke in execution.cc).
448

449 450 451 452 453 454
  // Open a C++ scope for the FrameScope.
  {
    // Platform specific argument handling. After this, the stack contains
    // an internal frame and the pushed function and receiver, and
    // register rax and rbx holds the argument count and argument array,
    // while rdi holds the function pointer and rsi the context.
455

456 457
#ifdef _WIN64
    // MSVC parameters in:
458 459 460 461
    // rcx        : entry (ignored)
    // rdx        : function
    // r8         : receiver
    // r9         : argc
462 463 464 465 466 467 468 469
    // [rsp+0x20] : argv

    // Clear the context before we push it when entering the internal frame.
    __ Set(rsi, 0);
    // Enter an internal frame.
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Load the function context into rsi.
470
    __ movp(rsi, FieldOperand(rdx, JSFunction::kContextOffset));
471 472 473 474 475 476

    // Push the function and the receiver onto the stack.
    __ push(rdx);
    __ push(r8);

    // Load the number of arguments and setup pointer to the arguments.
477
    __ movp(rax, r9);
478
    // Load the previous frame pointer to access C argument on stack
479 480
    __ movp(kScratchRegister, Operand(rbp, 0));
    __ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
481
    // Load the function pointer into rdi.
482
    __ movp(rdi, rdx);
483
#else  // _WIN64
484 485 486 487 488 489 490
    // GCC parameters in:
    // rdi : entry (ignored)
    // rsi : function
    // rdx : receiver
    // rcx : argc
    // r8  : argv

491
    __ movp(rdi, rsi);
492 493 494 495 496 497 498 499 500 501
    // rdi : function

    // Clear the context before we push it when entering the internal frame.
    __ Set(rsi, 0);
    // Enter an internal frame.
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Push the function and receiver and setup the context.
    __ push(rdi);
    __ push(rdx);
502
    __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
503

504
    // Load the number of arguments and setup pointer to the arguments.
505 506
    __ movp(rax, rcx);
    __ movp(rbx, r8);
507 508
#endif  // _WIN64

509
    // Current stack contents:
510 511 512
    // [rsp + 2 * kPointerSize ... ] : Internal frame
    // [rsp + kPointerSize]          : function
    // [rsp]                         : receiver
513 514 515 516 517 518 519 520 521 522 523 524 525
    // Current register contents:
    // rax : argc
    // rbx : argv
    // rsi : context
    // rdi : function

    // Copy arguments to the stack in a loop.
    // Register rbx points to array of pointers to handle locations.
    // Push the values of these handles.
    Label loop, entry;
    __ Set(rcx, 0);  // Set loop variable to 0.
    __ jmp(&entry);
    __ bind(&loop);
526
    __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
527 528 529 530 531 532 533 534
    __ push(Operand(kScratchRegister, 0));  // dereference handle
    __ addq(rcx, Immediate(1));
    __ bind(&entry);
    __ cmpq(rcx, rax);
    __ j(not_equal, &loop);

    // Invoke the code.
    if (is_construct) {
535
      // No type feedback cell is available
536 537 538
      Handle<Object> megamorphic_sentinel =
          TypeFeedbackInfo::MegamorphicSentinel(masm->isolate());
      __ Move(rbx, megamorphic_sentinel);
539
      // Expects rdi to hold function pointer.
540 541
      CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
      __ CallStub(&stub);
542 543 544
    } else {
      ParameterCount actual(rax);
      // Function must be in rdi.
545
      __ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper());
546 547 548 549
    }
    // Exit the internal frame. Notice that this also removes the empty
    // context and the function left on the stack by the code
    // invocation.
550
  }
551

552
  // TODO(X64): Is argument correct? Is there a receiver to remove?
553
  __ ret(1 * kPointerSize);  // Remove receiver.
554 555
}

556

557 558
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
559 560 561
}


562 563 564
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}
565 566


567 568 569
void Builtins::Generate_CompileUnoptimized(MacroAssembler* masm) {
  CallRuntimePassFunction(masm, Runtime::kCompileUnoptimized);
  GenerateTailCallToReturnedCode(masm);
570
}
571 572


573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static void CallCompileOptimized(MacroAssembler* masm,
                                            bool concurrent) {
  FrameScope scope(masm, StackFrame::INTERNAL);
  // Push a copy of the function onto the stack.
  __ push(rdi);
  // Function is also the parameter to the runtime call.
  __ push(rdi);
  // Whether to compile in a background thread.
  __ Push(masm->isolate()->factory()->ToBoolean(concurrent));

  __ CallRuntime(Runtime::kCompileOptimized, 2);
  // Restore receiver.
  __ pop(rdi);
}


void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
  CallCompileOptimized(masm, false);
  GenerateTailCallToReturnedCode(masm);
}


void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
  CallCompileOptimized(masm, true);
  GenerateTailCallToReturnedCode(masm);
598
}
599 600


601 602 603 604 605 606 607 608 609 610 611
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
  // For now, we are relying on the fact that make_code_young doesn't do any
  // garbage collection which allows us to save/restore the registers without
  // worrying about which of them contain pointers. We also don't build an
  // internal frame to make the code faster, since we shouldn't have to do stack
  // crawls in MakeCodeYoung. This seems a bit fragile.

  // Re-execute the code that was patched back to the young age when
  // the stub returns.
  __ subq(Operand(rsp, 0), Immediate(5));
  __ Pushad();
612
  __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
613
  __ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
614 615
  {  // NOLINT
    FrameScope scope(masm, StackFrame::MANUAL);
616
    __ PrepareCallCFunction(2);
617
    __ CallCFunction(
618
        ExternalReference::get_make_code_young_function(masm->isolate()), 2);
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
  }
  __ Popad();
  __ ret(0);
}


#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
    MacroAssembler* masm) {                                  \
  GenerateMakeCodeYoungAgainCommon(masm);                    \
}                                                            \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
    MacroAssembler* masm) {                                  \
  GenerateMakeCodeYoungAgainCommon(masm);                    \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR


638 639 640 641 642 643
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
  // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
  // that make_code_young doesn't do any garbage collection which allows us to
  // save/restore the registers without worrying about which of them contain
  // pointers.
  __ Pushad();
644
  __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
645
  __ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
646 647 648
  __ subq(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
  {  // NOLINT
    FrameScope scope(masm, StackFrame::MANUAL);
649
    __ PrepareCallCFunction(2);
650 651
    __ CallCFunction(
        ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
652
        2);
653 654 655 656
  }
  __ Popad();

  // Perform prologue operations usually performed by the young code stub.
657
  __ PopReturnAddressTo(kScratchRegister);
658
  __ push(rbp);  // Caller's frame pointer.
659
  __ movp(rbp, rsp);
660 661
  __ push(rsi);  // Callee's context.
  __ push(rdi);  // Callee's JS Function.
662
  __ PushReturnAddressFrom(kScratchRegister);
663 664 665 666 667 668 669 670 671 672 673

  // Jump to point after the code-age stub.
  __ ret(0);
}


void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
  GenerateMakeCodeYoungAgainCommon(masm);
}


674 675
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
                                             SaveFPRegsMode save_doubles) {
676 677 678 679 680 681 682 683
  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Preserve registers across notification, this is important for compiled
    // stubs that tail call the runtime on deopts passing their parameters in
    // registers.
    __ Pushad();
684
    __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
685 686 687 688 689 690 691 692 693
    __ Popad();
    // Tear down internal frame.
  }

  __ pop(MemOperand(rsp, 0));  // Ignore state offset
  __ ret(0);  // Return to IC Miss stub, continuation still on stack.
}


694 695 696 697 698 699 700 701 702 703
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
  Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}


void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
  Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}


704 705
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
                                             Deoptimizer::BailoutType type) {
706
  // Enter an internal frame.
707 708
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
709

710 711
    // Pass the deoptimization type to the runtime system.
    __ Push(Smi::FromInt(static_cast<int>(type)));
712

713 714 715
    __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
    // Tear down internal frame.
  }
716 717

  // Get the full codegen state from the stack and untag it.
718
  __ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize));
719 720

  // Switch on the state.
721
  Label not_no_registers, not_tos_rax;
722
  __ cmpq(kScratchRegister, Immediate(FullCodeGenerator::NO_REGISTERS));
723
  __ j(not_equal, &not_no_registers, Label::kNear);
724 725 726
  __ ret(1 * kPointerSize);  // Remove state.

  __ bind(&not_no_registers);
727
  __ movp(rax, Operand(rsp, kPCOnStackSize + kPointerSize));
728
  __ cmpq(kScratchRegister, Immediate(FullCodeGenerator::TOS_REG));
729
  __ j(not_equal, &not_tos_rax, Label::kNear);
730 731 732
  __ ret(2 * kPointerSize);  // Remove state, rax.

  __ bind(&not_tos_rax);
733
  __ Abort(kNoCasesLeft);
734
}
735

736

737 738 739
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
740 741


742 743 744 745 746
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}


747
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
748
  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
749
}
750 751


752 753
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
  // Stack Layout:
754 755 756
  // rsp[0]           : Return address
  // rsp[8]           : Argument n
  // rsp[16]          : Argument n-1
757
  //  ...
758 759
  // rsp[8 * n]       : Argument 1
  // rsp[8 * (n + 1)] : Receiver (function to call)
760 761 762 763 764 765 766
  //
  // rax contains the number of arguments, n, not counting the receiver.
  //
  // 1. Make sure we have at least one argument.
  { Label done;
    __ testq(rax, rax);
    __ j(not_zero, &done);
767
    __ PopReturnAddressTo(rbx);
768
    __ Push(masm->isolate()->factory()->undefined_value());
769
    __ PushReturnAddressFrom(rbx);
770 771 772
    __ incq(rax);
    __ bind(&done);
  }
773

774 775
  // 2. Get the function to call (passed as receiver) from the stack, check
  //    if it is a function.
776
  Label slow, non_function;
777
  StackArgumentsAccessor args(rsp, rax);
778
  __ movp(rdi, args.GetReceiverOperand());
779 780
  __ JumpIfSmi(rdi, &non_function);
  __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
781
  __ j(not_equal, &slow);
782

783 784
  // 3a. Patch the first argument if necessary when calling a function.
  Label shift_arguments;
785
  __ Set(rdx, 0);  // indicate regular JS_FUNCTION
786 787
  { Label convert_to_object, use_global_receiver, patch_receiver;
    // Change context eagerly in case we need the global receiver.
788
    __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
789

790
    // Do not transform the receiver for strict mode functions.
791
    __ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
792 793 794 795
    __ testb(FieldOperand(rbx, SharedFunctionInfo::kStrictModeByteOffset),
             Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
    __ j(not_equal, &shift_arguments);

796 797
    // Do not transform the receiver for natives.
    // SharedFunctionInfo is already loaded into rbx.
798 799
    __ testb(FieldOperand(rbx, SharedFunctionInfo::kNativeByteOffset),
             Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
800
    __ j(not_zero, &shift_arguments);
801

802
    // Compute the receiver in sloppy mode.
803
    __ movp(rbx, args.GetArgumentOperand(1));
804
    __ JumpIfSmi(rbx, &convert_to_object, Label::kNear);
805

806 807 808 809
    __ CompareRoot(rbx, Heap::kNullValueRootIndex);
    __ j(equal, &use_global_receiver);
    __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
    __ j(equal, &use_global_receiver);
810

811 812
    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
813
    __ j(above_equal, &shift_arguments);
814

815
    __ bind(&convert_to_object);
816 817 818 819 820
    {
      // Enter an internal frame in order to preserve argument count.
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ Integer32ToSmi(rax, rax);
      __ push(rax);
821

822 823
      __ push(rbx);
      __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
824
      __ movp(rbx, rax);
825
      __ Set(rdx, 0);  // indicate regular JS_FUNCTION
826

827 828 829 830
      __ pop(rax);
      __ SmiToInteger32(rax, rax);
    }

831
    // Restore the function to rdi.
832
    __ movp(rdi, args.GetReceiverOperand());
833
    __ jmp(&patch_receiver, Label::kNear);
834

835
    __ bind(&use_global_receiver);
836
    __ movp(rbx,
837
            Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
838
    __ movp(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
839

840
    __ bind(&patch_receiver);
841
    __ movp(args.GetArgumentOperand(1), rbx);
842

843 844
    __ jmp(&shift_arguments);
  }
845

846 847 848 849 850 851 852
  // 3b. Check for function proxy.
  __ bind(&slow);
  __ Set(rdx, 1);  // indicate function proxy
  __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
  __ j(equal, &shift_arguments);
  __ bind(&non_function);
  __ Set(rdx, 2);  // indicate non-function
853

854
  // 3c. Patch the first argument when calling a non-function.  The
855 856 857
  //     CALL_NON_FUNCTION builtin expects the non-function callee as
  //     receiver, so overwrite the first argument which will ultimately
  //     become the receiver.
858
  __ movp(args.GetArgumentOperand(1), rdi);
859

860 861 862 863 864
  // 4. Shift arguments and return address one slot down on the stack
  //    (overwriting the original receiver).  Adjust argument count to make
  //    the original first argument the new receiver.
  __ bind(&shift_arguments);
  { Label loop;
865
    __ movp(rcx, rax);
866
    __ bind(&loop);
867 868
    __ movp(rbx, Operand(rsp, rcx, times_pointer_size, 0));
    __ movp(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx);
869 870 871 872 873
    __ decq(rcx);
    __ j(not_sign, &loop);  // While non-negative (to copy return address).
    __ pop(rbx);  // Discard copy of return address.
    __ decq(rax);  // One fewer argument (first argument is new receiver).
  }
874

875 876 877 878 879
  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
  //     or a function proxy via CALL_FUNCTION_PROXY.
  { Label function, non_proxy;
    __ testq(rdx, rdx);
    __ j(zero, &function);
880
    __ Set(rbx, 0);
881 882 883
    __ cmpq(rdx, Immediate(1));
    __ j(not_equal, &non_proxy);

884
    __ PopReturnAddressTo(rdx);
885
    __ push(rdi);  // re-add proxy object as additional argument
886
    __ PushReturnAddressFrom(rdx);
887 888 889 890 891 892 893
    __ incq(rax);
    __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
    __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
           RelocInfo::CODE_TARGET);

    __ bind(&non_proxy);
    __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
894 895
    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
            RelocInfo::CODE_TARGET);
896
    __ bind(&function);
897 898
  }

899 900 901
  // 5b. Get the code to call from the function and check that the number of
  //     expected arguments matches what we're providing.  If so, jump
  //     (tail-call) to the code in register edx without checking arguments.
902
  __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
903 904 905
  __ movsxlq(rbx,
             FieldOperand(rdx,
                          SharedFunctionInfo::kFormalParameterCountOffset));
906
  __ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
907 908
  __ cmpq(rax, rbx);
  __ j(not_equal,
909 910
       masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
       RelocInfo::CODE_TARGET);
911

912
  ParameterCount expected(0);
913
  __ InvokeCode(rdx, expected, expected, JUMP_FUNCTION, NullCallWrapper());
914 915 916
}


917 918
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
  // Stack at entry:
919 920 921 922
  // rsp     : return address
  // rsp[8]  : arguments
  // rsp[16] : receiver ("this")
  // rsp[24] : function
923 924 925
  {
    FrameScope frame_scope(masm, StackFrame::INTERNAL);
    // Stack frame:
926 927 928 929 930
    // rbp     : Old base pointer
    // rbp[8]  : return address
    // rbp[16] : function arguments
    // rbp[24] : receiver
    // rbp[32] : function
931 932 933
    static const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
    static const int kReceiverOffset = kArgumentsOffset + kPointerSize;
    static const int kFunctionOffset = kReceiverOffset + kPointerSize;
934 935 936 937 938 939 940 941 942 943

    __ push(Operand(rbp, kFunctionOffset));
    __ push(Operand(rbp, kArgumentsOffset));
    __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);

    // Check the stack for overflow. We are not trying to catch
    // interruptions (e.g. debug break and preemption) here, so the "real stack
    // limit" is checked.
    Label okay;
    __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
944
    __ movp(rcx, rsp);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
    // Make rcx the space we have left. The stack might already be overflowed
    // here which will cause rcx to become negative.
    __ subq(rcx, kScratchRegister);
    // Make rdx the space we need for the array when it is unrolled onto the
    // stack.
    __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2);
    // Check if the arguments will overflow the stack.
    __ cmpq(rcx, rdx);
    __ j(greater, &okay);  // Signed comparison.

    // Out of stack space.
    __ push(Operand(rbp, kFunctionOffset));
    __ push(rax);
    __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
    __ bind(&okay);
    // End of stack check.

    // Push current index and limit.
    const int kLimitOffset =
        StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
    const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
    __ push(rax);  // limit
    __ push(Immediate(0));  // index

    // Get the receiver.
970
    __ movp(rbx, Operand(rbp, kReceiverOffset));
971 972 973

    // Check that the function is a JS function (otherwise it must be a proxy).
    Label push_receiver;
974
    __ movp(rdi, Operand(rbp, kFunctionOffset));
975 976 977 978
    __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
    __ j(not_equal, &push_receiver);

    // Change context eagerly to get the right global object if necessary.
979
    __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
980

981 982
    // Do not transform the receiver for strict mode functions.
    Label call_to_object, use_global_receiver;
983
    __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
984 985 986
    __ testb(FieldOperand(rdx, SharedFunctionInfo::kStrictModeByteOffset),
             Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
    __ j(not_equal, &push_receiver);
987

988 989 990 991
    // Do not transform the receiver for natives.
    __ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset),
             Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
    __ j(not_equal, &push_receiver);
992

993
    // Compute the receiver in sloppy mode.
994 995 996 997 998
    __ JumpIfSmi(rbx, &call_to_object, Label::kNear);
    __ CompareRoot(rbx, Heap::kNullValueRootIndex);
    __ j(equal, &use_global_receiver);
    __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
    __ j(equal, &use_global_receiver);
999

1000 1001 1002 1003 1004
    // If given receiver is already a JavaScript object then there's no
    // reason for converting it.
    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
    __ j(above_equal, &push_receiver);
1005

1006 1007 1008 1009
    // Convert the receiver to an object.
    __ bind(&call_to_object);
    __ push(rbx);
    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1010
    __ movp(rbx, rax);
1011
    __ jmp(&push_receiver, Label::kNear);
1012

1013
    __ bind(&use_global_receiver);
1014
    __ movp(rbx,
1015
            Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1016
    __ movp(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
1017

1018 1019 1020 1021 1022 1023
    // Push the receiver.
    __ bind(&push_receiver);
    __ push(rbx);

    // Copy all arguments from the array to the stack.
    Label entry, loop;
1024
    __ movp(rax, Operand(rbp, kIndexOffset));
1025 1026
    __ jmp(&entry);
    __ bind(&loop);
1027
    __ movp(rdx, Operand(rbp, kArgumentsOffset));  // load arguments
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

    // Use inline caching to speed up access to arguments.
    Handle<Code> ic =
        masm->isolate()->builtins()->KeyedLoadIC_Initialize();
    __ Call(ic, RelocInfo::CODE_TARGET);
    // It is important that we do not have a test instruction after the
    // call.  A test instruction after the call is used to indicate that
    // we have generated an inline version of the keyed load.  In this
    // case, we know that we are not generating a test instruction next.

    // Push the nth argument.
    __ push(rax);

    // Update the index on the stack and in register rax.
1042
    __ movp(rax, Operand(rbp, kIndexOffset));
1043
    __ SmiAddConstant(rax, rax, Smi::FromInt(1));
1044
    __ movp(Operand(rbp, kIndexOffset), rax);
1045 1046 1047 1048 1049

    __ bind(&entry);
    __ cmpq(rax, Operand(rbp, kLimitOffset));
    __ j(not_equal, &loop);

1050
    // Call the function.
1051 1052 1053
    Label call_proxy;
    ParameterCount actual(rax);
    __ SmiToInteger32(rax, rax);
1054
    __ movp(rdi, Operand(rbp, kFunctionOffset));
1055 1056
    __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
    __ j(not_equal, &call_proxy);
1057
    __ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper());
1058 1059 1060

    frame_scope.GenerateLeaveFrame();
    __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
1061

1062
    // Call the function proxy.
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    __ bind(&call_proxy);
    __ push(rdi);  // add function proxy as last argument
    __ incq(rax);
    __ Set(rbx, 0);
    __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
    __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
            RelocInfo::CODE_TARGET);

    // Leave internal frame.
  }
1073
  __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
1074
}
1075 1076


1077 1078
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
1079
  //  -- rax    : argc
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
  //  -- rsp[0] : return address
  //  -- rsp[8] : last argument
  // -----------------------------------
  Label generic_array_code;

  // Get the InternalArray function.
  __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi);

  if (FLAG_debug_code) {
    // Initial map for the builtin InternalArray functions should be maps.
1090
    __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
1091 1092 1093
    // Will both indicate a NULL and a Smi.
    STATIC_ASSERT(kSmiTag == 0);
    Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
1094
    __ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction);
1095
    __ CmpObjectType(rbx, MAP_TYPE, rcx);
1096
    __ Check(equal, kUnexpectedInitialMapForInternalArrayFunction);
1097 1098 1099 1100
  }

  // Run the native code for the InternalArray function called as a normal
  // function.
1101 1102 1103
  // tail call a stub
  InternalArrayConstructorStub stub(masm->isolate());
  __ TailCallStub(&stub);
1104 1105 1106
}


1107 1108
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
1109
  //  -- rax    : argc
1110 1111 1112 1113 1114 1115 1116 1117 1118
  //  -- rsp[0] : return address
  //  -- rsp[8] : last argument
  // -----------------------------------
  Label generic_array_code;

  // Get the Array function.
  __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi);

  if (FLAG_debug_code) {
1119
    // Initial map for the builtin Array functions should be maps.
1120
    __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
1121
    // Will both indicate a NULL and a Smi.
1122
    STATIC_ASSERT(kSmiTag == 0);
1123
    Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
1124
    __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
1125
    __ CmpObjectType(rbx, MAP_TYPE, rcx);
1126
    __ Check(equal, kUnexpectedInitialMapForArrayFunction);
1127 1128
  }

1129
  // Run the native code for the Array function called as a normal function.
1130
  // tail call a stub
1131 1132 1133
  Handle<Object> megamorphic_sentinel =
      TypeFeedbackInfo::MegamorphicSentinel(masm->isolate());
  __ Move(rbx, megamorphic_sentinel);
1134 1135
  ArrayConstructorStub stub(masm->isolate());
  __ TailCallStub(&stub);
1136 1137 1138
}


1139
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
  // ----------- S t a t e -------------
  //  -- rax                 : number of arguments
  //  -- rdi                 : constructor function
  //  -- rsp[0]              : return address
  //  -- rsp[(argc - n) * 8] : arg[n] (zero-based)
  //  -- rsp[(argc + 1) * 8] : receiver
  // -----------------------------------
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->string_ctor_calls(), 1);

  if (FLAG_debug_code) {
    __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, rcx);
    __ cmpq(rdi, rcx);
1153
    __ Assert(equal, kUnexpectedStringFunction);
1154 1155 1156 1157
  }

  // Load the first argument into rax and get rid of the rest
  // (including the receiver).
1158
  StackArgumentsAccessor args(rsp, rax);
1159 1160 1161
  Label no_arguments;
  __ testq(rax, rax);
  __ j(zero, &no_arguments);
1162
  __ movp(rbx, args.GetArgumentOperand(1));
1163
  __ PopReturnAddressTo(rcx);
1164
  __ lea(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
1165
  __ PushReturnAddressFrom(rcx);
1166
  __ movp(rax, rbx);
1167 1168 1169

  // Lookup the argument in the number to string cache.
  Label not_cached, argument_is_string;
1170 1171 1172 1173 1174
  __ LookupNumberStringCache(rax,  // Input.
                             rbx,  // Result.
                             rcx,  // Scratch 1.
                             rdx,  // Scratch 2.
                             &not_cached);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  __ IncrementCounter(counters->string_ctor_cached_number(), 1);
  __ bind(&argument_is_string);

  // ----------- S t a t e -------------
  //  -- rbx    : argument converted to string
  //  -- rdi    : constructor function
  //  -- rsp[0] : return address
  // -----------------------------------

  // Allocate a JSValue and put the tagged pointer into rax.
  Label gc_required;
1186 1187 1188 1189 1190 1191
  __ Allocate(JSValue::kSize,
              rax,  // Result.
              rcx,  // New allocation top (we ignore it).
              no_reg,
              &gc_required,
              TAG_OBJECT);
1192 1193 1194 1195 1196 1197

  // Set the map.
  __ LoadGlobalFunctionInitialMap(rdi, rcx);
  if (FLAG_debug_code) {
    __ cmpb(FieldOperand(rcx, Map::kInstanceSizeOffset),
            Immediate(JSValue::kSize >> kPointerSizeLog2));
1198
    __ Assert(equal, kUnexpectedStringWrapperInstanceSize);
1199
    __ cmpb(FieldOperand(rcx, Map::kUnusedPropertyFieldsOffset), Immediate(0));
1200
    __ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper);
1201
  }
1202
  __ movp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
1203 1204 1205

  // Set properties and elements.
  __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
1206 1207
  __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rcx);
  __ movp(FieldOperand(rax, JSObject::kElementsOffset), rcx);
1208 1209

  // Set the value.
1210
  __ movp(FieldOperand(rax, JSValue::kValueOffset), rbx);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

  // Ensure the object is fully initialized.
  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);

  // We're done. Return.
  __ ret(0);

  // The argument was not found in the number to string cache. Check
  // if it's a string already before calling the conversion builtin.
  Label convert_argument;
  __ bind(&not_cached);
  STATIC_ASSERT(kSmiTag == 0);
  __ JumpIfSmi(rax, &convert_argument);
  Condition is_string = masm->IsObjectStringType(rax, rbx, rcx);
  __ j(NegateCondition(is_string), &convert_argument);
1226
  __ movp(rbx, rax);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
  __ IncrementCounter(counters->string_ctor_string_value(), 1);
  __ jmp(&argument_is_string);

  // Invoke the conversion builtin and put the result into rbx.
  __ bind(&convert_argument);
  __ IncrementCounter(counters->string_ctor_conversions(), 1);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(rdi);  // Preserve the function.
    __ push(rax);
    __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
    __ pop(rdi);
  }
1240
  __ movp(rbx, rax);
1241 1242 1243 1244 1245
  __ jmp(&argument_is_string);

  // Load the empty string into rbx, remove the receiver from the
  // stack, and jump back to the case where the argument is a string.
  __ bind(&no_arguments);
1246
  __ LoadRoot(rbx, Heap::kempty_stringRootIndex);
1247
  __ PopReturnAddressTo(rcx);
1248
  __ lea(rsp, Operand(rsp, kPointerSize));
1249
  __ PushReturnAddressFrom(rcx);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
  __ jmp(&argument_is_string);

  // At this point the argument is already a string. Call runtime to
  // create a string wrapper.
  __ bind(&gc_required);
  __ IncrementCounter(counters->string_ctor_gc_required(), 1);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(rbx);
    __ CallRuntime(Runtime::kNewStringWrapper, 1);
  }
  __ ret(0);
1262 1263
}

1264

1265 1266
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
  __ push(rbp);
1267
  __ movp(rbp, rsp);
1268

1269 1270 1271 1272
  // Store the arguments adaptor context sentinel.
  __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));

  // Push the function on the stack.
1273 1274
  __ push(rdi);

1275 1276
  // Preserve the number of arguments on the stack. Must preserve rax,
  // rbx and rcx because these registers are used when copying the
1277
  // arguments and the receiver.
1278 1279
  __ Integer32ToSmi(r8, rax);
  __ push(r8);
1280
}
1281 1282


1283 1284
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
  // Retrieve the number of arguments from the stack. Number is a Smi.
1285
  __ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1286 1287

  // Leave the frame.
1288
  __ movp(rsp, rbp);
1289 1290 1291
  __ pop(rbp);

  // Remove caller arguments from the stack.
1292
  __ PopReturnAddressTo(rcx);
1293 1294
  SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
  __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
1295
  __ PushReturnAddressFrom(rcx);
1296 1297
}

1298

1299 1300 1301 1302
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- rax : actual number of arguments
  //  -- rbx : expected number of arguments
1303
  //  -- rdi: function (passed through to callee)
1304
  // -----------------------------------
1305

1306
  Label invoke, dont_adapt_arguments;
1307 1308
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->arguments_adaptors(), 1);
1309

1310
  Label enough, too_few;
1311
  __ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
1312 1313 1314 1315
  __ cmpq(rax, rbx);
  __ j(less, &too_few);
  __ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
  __ j(equal, &dont_adapt_arguments);
1316

1317 1318 1319
  {  // Enough parameters: Actual >= expected.
    __ bind(&enough);
    EnterArgumentsAdaptorFrame(masm);
1320

1321 1322 1323
    // Copy receiver and all expected arguments.
    const int offset = StandardFrameConstants::kCallerSPOffset;
    __ lea(rax, Operand(rbp, rax, times_pointer_size, offset));
1324
    __ Set(r8, -1);  // account for receiver
1325

1326 1327
    Label copy;
    __ bind(&copy);
1328
    __ incq(r8);
1329 1330
    __ push(Operand(rax, 0));
    __ subq(rax, Immediate(kPointerSize));
1331
    __ cmpq(r8, rbx);
1332 1333 1334
    __ j(less, &copy);
    __ jmp(&invoke);
  }
1335

1336 1337 1338
  {  // Too few parameters: Actual < expected.
    __ bind(&too_few);
    EnterArgumentsAdaptorFrame(masm);
1339

1340 1341 1342
    // Copy receiver and all actual arguments.
    const int offset = StandardFrameConstants::kCallerSPOffset;
    __ lea(rdi, Operand(rbp, rax, times_pointer_size, offset));
1343
    __ Set(r8, -1);  // account for receiver
1344

1345 1346
    Label copy;
    __ bind(&copy);
1347
    __ incq(r8);
1348 1349
    __ push(Operand(rdi, 0));
    __ subq(rdi, Immediate(kPointerSize));
1350
    __ cmpq(r8, rax);
1351
    __ j(less, &copy);
1352

1353 1354 1355 1356
    // Fill remaining expected arguments with undefined values.
    Label fill;
    __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
    __ bind(&fill);
1357
    __ incq(r8);
1358
    __ push(kScratchRegister);
1359
    __ cmpq(r8, rbx);
1360
    __ j(less, &fill);
1361

1362
    // Restore function pointer.
1363
    __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1364 1365 1366 1367 1368 1369
  }

  // Call the entry point.
  __ bind(&invoke);
  __ call(rdx);

1370
  // Store offset of return address for deoptimizer.
1371
  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381
  // Leave frame and return.
  LeaveArgumentsAdaptorFrame(masm);
  __ ret(0);

  // -------------------------------------------
  // Dont adapt arguments.
  // -------------------------------------------
  __ bind(&dont_adapt_arguments);
  __ jmp(rdx);
1382 1383 1384 1385
}


void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1386
  // Lookup the function in the JavaScript frame.
1387
  __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1388 1389
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
1390
    // Pass function as argument.
1391
    __ push(rax);
1392
    __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1393
  }
1394

1395
  Label skip;
1396 1397
  // If the code object is null, just return to the unoptimized code.
  __ cmpq(rax, Immediate(0));
1398
  __ j(not_equal, &skip, Label::kNear);
1399 1400 1401
  __ ret(0);

  __ bind(&skip);
1402 1403

  // Load deoptimization data from the code object.
1404
  __ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1405 1406 1407 1408 1409 1410 1411 1412 1413

  // Load the OSR entrypoint offset from the deoptimization data.
  __ SmiToInteger32(rbx, Operand(rbx, FixedArray::OffsetOfElementAt(
      DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));

  // Compute the target address = code_obj + header_size + osr_offset
  __ lea(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag));

  // Overwrite the return address on the stack.
1414
  __ movq(StackOperandForReturnAddress(0), rax);
1415 1416 1417

  // And "return" to the OSR entry point of the function.
  __ ret(0);
1418 1419 1420
}


1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
  // We check the stack limit as indicator that recompilation might be done.
  Label ok;
  __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
  __ j(above_equal, &ok);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kStackGuard, 0);
  }
  __ jmp(masm->isolate()->builtins()->OnStackReplacement(),
         RelocInfo::CODE_TARGET);

  __ bind(&ok);
  __ ret(0);
}


1438 1439
#undef __

1440
} }  // namespace v8::internal
1441 1442

#endif  // V8_TARGET_ARCH_X64