test-macro-assembler-mips.cc 45 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
29
#include <iostream>  // NOLINT(readability/streams)
30

31
#include "src/api-inl.h"
32
#include "src/base/utils/random-number-generator.h"
33
#include "src/macro-assembler.h"
34
#include "src/objects-inl.h"
35
#include "src/objects/heap-number.h"
36
#include "src/objects/js-array-inl.h"
37
#include "src/simulator.h"
38 39
#include "src/v8.h"
#include "test/cctest/cctest.h"
40

41 42
namespace v8 {
namespace internal {
43

44
// TODO(mips): Refine these signatures per test case.
45 46 47
using F1 = void*(int x, int p1, int p2, int p3, int p4);
using F3 = void*(void* p, int p1, int p2, int p3, int p4);
using F4 = void*(void* p0, void* p1, int p2, int p3, int p4);
48 49 50

#define __ masm->

51 52 53
TEST(BYTESWAP) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
54
  HandleScope scope(isolate);
55 56

  struct T {
57 58 59
    uint32_t s4;
    uint32_t s2;
    uint32_t u2;
60
  };
61

62
  T t;
63 64
  uint32_t test_values[] = {0x5612FFCD, 0x9D327ACC, 0x781A15C3, 0xFCDE,    0x9F,
                            0xC81A15C3, 0x80000000, 0xFFFFFFFF, 0x00008000};
65

66
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
67

68 69
  MacroAssembler* masm = &assembler;

70 71 72 73 74 75 76 77 78 79 80 81 82 83
  __ lw(a1, MemOperand(a0, offsetof(T, s4)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 4);
  __ sw(a1, MemOperand(a0, offsetof(T, s4)));

  __ lw(a1, MemOperand(a0, offsetof(T, s2)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, s2)));

  __ lw(a1, MemOperand(a0, offsetof(T, u2)));
  __ nop();
  __ ByteSwapUnsigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, u2)));
84 85 86 87 88

  __ jr(ra);
  __ nop();

  CodeDesc desc;
89
  masm->GetCode(isolate, &desc);
90 91
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
92
  auto f = GeneratedCode<F3>::FromCode(*code);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

  for (size_t i = 0; i < arraysize(test_values); i++) {
    int16_t in_s2 = static_cast<int16_t>(test_values[i]);
    uint16_t in_u2 = static_cast<uint16_t>(test_values[i]);

    t.s4 = test_values[i];
    t.s2 = static_cast<uint64_t>(in_s2);
    t.u2 = static_cast<uint64_t>(in_u2);

    f.Call(&t, 0, 0, 0, 0);

    CHECK_EQ(ByteReverse(test_values[i]), t.s4);
    CHECK_EQ(ByteReverse<int16_t>(in_s2), static_cast<int16_t>(t.s2));
    CHECK_EQ(ByteReverse<uint16_t>(in_u2), static_cast<uint16_t>(t.u2));
  }
108
}
109

110 111 112 113 114
static void TestNaN(const char *code) {
  // NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
  // tests checks the case where a x86 NaN value is serialized into the
  // snapshot on the simulator during cross compilation.
  v8::HandleScope scope(CcTest::isolate());
115
  v8::Local<v8::Context> context = CcTest::NewContext({PRINT_EXTENSION_ID});
116 117
  v8::Context::Scope context_scope(context);

118 119 120 121
  v8::Local<v8::Script> script =
      v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
  v8::Local<v8::Object> result =
      v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
122
  i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
123
  i::Handle<i::JSArray> array1(i::JSArray::cast(*o), o->GetIsolate());
124
  i::FixedDoubleArray a = i::FixedDoubleArray::cast(array1->elements());
125 126
  double value = a->get_scalar(0);
  CHECK(std::isnan(value) &&
127
        bit_cast<uint64_t>(value) ==
128
            bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}


TEST(NaN0) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
          "}"
          "result;");
}


TEST(NaN1) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = [NaN];"
          "}"
          "result;");
}

151

152 153 154 155 156 157 158 159
TEST(jump_tables4) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required before emission of the dd table (where trampolines are
  // blocked), and proper transition to long-branch mode.
  // Regression test for v8:4294.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
160
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
161 162 163 164 165 166
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
167
  Label near_start, end, done;
168

169
  __ Push(ra);
170 171 172 173 174 175 176 177 178 179 180
  __ mov(v0, zero_reg);

  __ Branch(&end);
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < 32768 - 256; ++i) {
    __ addiu(v0, v0, 1);
  }

181 182
  __ GenerateSwitchTable(a0, kNumCases,
                         [&labels](size_t i) { return labels + i; });
183 184 185

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
186
    __ li(v0, values[i]);
187 188 189 190
    __ Branch(&done);
  }

  __ bind(&done);
191
  __ Pop(ra);
192 193 194 195 196 197 198
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
199
  masm->GetCode(isolate, &desc);
200 201
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
202
#ifdef OBJECT_PRINT
203
  code->Print(std::cout);
204
#endif
205
  auto f = GeneratedCode<F1>::FromCode(*code);
206
  for (int i = 0; i < kNumCases; ++i) {
207
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
208 209 210 211 212 213
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


214 215 216 217 218 219 220 221
TEST(jump_tables5) {
  if (!IsMipsArchVariant(kMips32r6)) return;

  // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
  // compact branch instruction before emission of the dd table.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
222
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
223 224 225 226 227 228 229 230
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label done;

231
  __ Push(ra);
232 233

  {
234
    __ BlockTrampolinePoolFor(kNumCases + 6 + 1);
235
    PredictableCodeSizeScope predictable(
236
        masm, kNumCases * kPointerSize + ((6 + 1) * kInstrSize));
237 238

    __ addiupc(at, 6 + 1);
239
    __ Lsa(at, at, a0, 2);
240
    __ lw(at, MemOperand(at));
241 242 243
    __ jalr(at);
    __ nop();  // Branch delay slot nop.
    __ bc(&done);
244 245
    // A nop instruction must be generated by the forbidden slot guard
    // (Assembler::dd(Label*)).
246 247 248 249 250 251 252
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
253
    __ li(v0, values[i]);
254 255 256 257 258
    __ jr(ra);
    __ nop();
  }

  __ bind(&done);
259
  __ Pop(ra);
260 261 262 263
  __ jr(ra);
  __ nop();

  CodeDesc desc;
264
  masm->GetCode(isolate, &desc);
265 266
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
267
#ifdef OBJECT_PRINT
268
  code->Print(std::cout);
269
#endif
270
  auto f = GeneratedCode<F1>::FromCode(*code);
271
  for (int i = 0; i < kNumCases; ++i) {
272
    int32_t res = reinterpret_cast<int32_t>(f.Call(i, 0, 0, 0, 0));
273
    ::printf("f(%d) = %d\n", i, res);
274 275 276 277
    CHECK_EQ(values[i], res);
  }
}

278 279 280 281 282 283 284 285 286 287
TEST(jump_tables6) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required after emission of the dd table (where trampolines are
  // blocked). This test checks if number of really generated instructions is
  // greater than number of counted instructions from code, as we are expecting
  // generation of trampoline in this case (when number of kFillInstr
  // instructions is close to 32K)
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
288
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
289 290
  MacroAssembler* masm = &assembler;

291 292 293 294 295 296
  const int kSwitchTableCases = 40;

  const int kMaxBranchOffset = Assembler::kMaxBranchOffset;
  const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize;
  const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize;

297 298
  const int kMaxOffsetForTrampolineStart =
      kMaxBranchOffset - 16 * kTrampolineSlotsSize;
299 300
  const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) -
                         (kSwitchTablePrologueSize + kSwitchTableCases) - 20;
301

302
  int values[kSwitchTableCases];
303
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
304
  Label labels[kSwitchTableCases];
305 306 307 308 309 310 311 312 313
  Label near_start, end, done;

  __ Push(ra);
  __ mov(v0, zero_reg);

  int offs1 = masm->pc_offset();
  int gen_insn = 0;

  __ Branch(&end);
314
  gen_insn += Assembler::IsCompactBranchSupported() ? 1 : 2;
315 316 317 318 319 320 321 322 323
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < kFillInstr; ++i) {
    __ addiu(v0, v0, 1);
  }
  gen_insn += kFillInstr;

324
  __ GenerateSwitchTable(a0, kSwitchTableCases,
325
                         [&labels](size_t i) { return labels + i; });
326
  gen_insn += (kSwitchTablePrologueSize + kSwitchTableCases);
327

328
  for (int i = 0; i < kSwitchTableCases; ++i) {
329 330 331 332
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ Branch(&done);
  }
333 334
  gen_insn +=
      ((Assembler::IsCompactBranchSupported() ? 3 : 4) * kSwitchTableCases);
335 336 337 338 339 340

  // If offset from here to first branch instr is greater than max allowed
  // offset for trampoline ...
  CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1);
  // ... number of generated instructions must be greater then "gen_insn",
  // as we are expecting trampoline generation
341
  CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize);
342 343 344 345 346 347 348 349 350 351

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
352
  masm->GetCode(isolate, &desc);
353 354
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
355
#ifdef OBJECT_PRINT
356
  code->Print(std::cout);
357
#endif
358
  auto f = GeneratedCode<F1>::FromCode(*code);
359
  for (int i = 0; i < kSwitchTableCases; ++i) {
360
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
361 362 363 364
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}
365

366 367 368
static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
369
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
370 371 372 373 374 375 376
  MacroAssembler* masm = &assembler;

  __ Lsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
377
  assembler.GetCode(isolate, &desc);
378 379
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
380

381
  auto f = GeneratedCode<F1>::FromCode(*code);
382

383
  uint32_t res = reinterpret_cast<uint32_t>(f.Call(rt, rs, 0, 0, 0));
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

  return res;
}


TEST(Lsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int32_t rt;
    int32_t rs;
    uint8_t sa;
    uint32_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
401
                             {0x4, 0x1, 3, 0xC},
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT32_MAX, 1, 0x2},
                             {0x4, INT32_MAX >> 1, 2, 0x0},
418 419 420
                             {0x4, INT32_MAX >> 2, 3, 0xFFFFFFFC},
                             {0x4, INT32_MAX >> 3, 4, 0xFFFFFFF4},
                             {0x4, INT32_MAX >> 4, 5, 0xFFFFFFE4},
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

                             // Signed addition overflow.
                             {INT32_MAX - 1, 0x1, 1, 0x80000000},
                             {INT32_MAX - 3, 0x1, 2, 0x80000000},
                             {INT32_MAX - 7, 0x1, 3, 0x80000000},
                             {INT32_MAX - 15, 0x1, 4, 0x80000000},
                             {INT32_MAX - 31, 0x1, 5, 0x80000000},

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
           tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}

445
static const std::vector<uint32_t> cvt_trunc_uint32_test_values() {
446 447 448
  static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00,
                                     0x7FFFFFFF, 0x80000000, 0x80000001,
                                     0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF};
449 450 451
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

452
static const std::vector<int32_t> cvt_trunc_int32_test_values() {
453 454
  static const int32_t kValues[] = {
      static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
455
      static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF),
456
      static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
457 458
      static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF),
      static_cast<int32_t>(0xFFFFFFFF)};
459 460 461 462
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
463 464
#define FOR_INPUTS(ctype, itype, var, test_vector)           \
  std::vector<ctype> var##_vec = test_vector();              \
465 466 467
  for (std::vector<ctype>::iterator var = var##_vec.begin(); \
       var != var##_vec.end(); ++var)

468 469 470 471 472 473 474
#define FOR_INPUTS2(ctype, itype, var, var2, test_vector)  \
  std::vector<ctype> var##_vec = test_vector();            \
  std::vector<ctype>::iterator var;                        \
  std::vector<ctype>::reverse_iterator var2;               \
  for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
       var != var##_vec.end(); ++var, ++var2)

475 476 477 478 479 480 481 482
#define FOR_ENUM_INPUTS(var, type, test_vector) \
  FOR_INPUTS(enum type, type, var, test_vector)
#define FOR_STRUCT_INPUTS(var, type, test_vector) \
  FOR_INPUTS(struct type, type, var, test_vector)
#define FOR_UINT32_INPUTS(var, test_vector) \
  FOR_INPUTS(uint32_t, uint32, var, test_vector)
#define FOR_INT32_INPUTS(var, test_vector) \
  FOR_INPUTS(int32_t, int32, var, test_vector)
483 484 485 486 487
#define FOR_INT32_INPUTS2(var, var2, test_vector) \
  FOR_INPUTS2(int32_t, int32, var, var2, test_vector)

#define FOR_UINT64_INPUTS(var, test_vector) \
  FOR_INPUTS(uint64_t, uint32, var, test_vector)
488 489 490

template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
491
  typedef RET_TYPE(F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4);
492 493 494

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
495
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
496 497 498 499 500 501 502 503 504
  MacroAssembler* masm = &assm;

  __ mtc1(a0, f4);
  GenerateConvertInstructionFunc(masm);
  __ mfc1(v0, f2);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
505
  assm.GetCode(isolate, &desc);
506 507
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
508

509
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
510

511
  return reinterpret_cast<RET_TYPE>(f.Call(x, 0, 0, 0, 0));
512 513 514 515
}

TEST(cvt_s_w_Trunc_uw_s) {
  CcTest::InitializeVM();
516
  FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) {
517
    uint32_t input = *i;
518 519
    auto fn = [](MacroAssembler* masm) {
      __ cvt_s_w(f0, f4);
520
      __ Trunc_uw_s(f2, f0, f6);
521 522
    };
    CHECK_EQ(static_cast<float>(input), run_Cvt<uint32_t>(input, fn));
523 524 525 526 527
  }
}

TEST(cvt_d_w_Trunc_w_d) {
  CcTest::InitializeVM();
528
  FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) {
529
    int32_t input = *i;
530 531 532 533 534
    auto fn = [](MacroAssembler* masm) {
      __ cvt_d_w(f0, f4);
      __ Trunc_w_d(f2, f0);
    };
    CHECK_EQ(static_cast<double>(input), run_Cvt<int32_t>(input, fn));
535 536 537
  }
}

538 539
static const std::vector<int32_t> overflow_int32_test_values() {
  static const int32_t kValues[] = {
540 541 542 543 544
      static_cast<int32_t>(0xF0000000), static_cast<int32_t>(0x00000001),
      static_cast<int32_t>(0xFF000000), static_cast<int32_t>(0x0000F000),
      static_cast<int32_t>(0x0F000000), static_cast<int32_t>(0x991234AB),
      static_cast<int32_t>(0xB0FFFF01), static_cast<int32_t>(0x00006FFF),
      static_cast<int32_t>(0xFFFFFFFF)};
545 546 547
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

548 549
TEST(OverflowInstructions) {
  CcTest::InitializeVM();
550
  Isolate* isolate = CcTest::i_isolate();
551
  HandleScope handles(isolate);
552

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
  struct T {
    int32_t lhs;
    int32_t rhs;
    int32_t output_add;
    int32_t output_add2;
    int32_t output_sub;
    int32_t output_sub2;
    int32_t output_mul;
    int32_t output_mul2;
    int32_t overflow_add;
    int32_t overflow_add2;
    int32_t overflow_sub;
    int32_t overflow_sub2;
    int32_t overflow_mul;
    int32_t overflow_mul2;
  };
  T t;
570 571 572

  FOR_INT32_INPUTS(i, overflow_int32_test_values) {
    FOR_INT32_INPUTS(j, overflow_int32_test_values) {
573 574 575 576
      int32_t ii = *i;
      int32_t jj = *j;
      int32_t expected_add, expected_sub, expected_mul;
      bool expected_add_ovf, expected_sub_ovf, expected_mul_ovf;
577
      MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
      MacroAssembler* masm = &assembler;

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ AddOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_add)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add)));
      __ mov(t3, zero_reg);
      __ AddOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_add2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ SubOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_sub)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub)));
      __ mov(t3, zero_reg);
      __ SubOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_sub2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ MulOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_mul)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul)));
      __ mov(t3, zero_reg);
      __ MulOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_mul2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul2)));

      __ jr(ra);
      __ nop();

      CodeDesc desc;
      masm->GetCode(isolate, &desc);
      Handle<Code> code =
          isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
      auto f = GeneratedCode<F3>::FromCode(*code);
      t.lhs = ii;
      t.rhs = jj;
      f.Call(&t, 0, 0, 0, 0);

      expected_add_ovf = base::bits::SignedAddOverflow32(ii, jj, &expected_add);
      expected_sub_ovf = base::bits::SignedSubOverflow32(ii, jj, &expected_sub);
      expected_mul_ovf = base::bits::SignedMulOverflow32(ii, jj, &expected_mul);

      CHECK_EQ(expected_add_ovf, t.overflow_add < 0);
      CHECK_EQ(expected_sub_ovf, t.overflow_sub < 0);
      CHECK_EQ(expected_mul_ovf, t.overflow_mul != 0);

      CHECK_EQ(t.overflow_add, t.overflow_add2);
      CHECK_EQ(t.overflow_sub, t.overflow_sub2);
      CHECK_EQ(t.overflow_mul, t.overflow_mul2);

      CHECK_EQ(expected_add, t.output_add);
      CHECK_EQ(expected_add, t.output_add2);
      CHECK_EQ(expected_sub, t.output_sub);
      CHECK_EQ(expected_sub, t.output_sub2);
      if (!expected_mul_ovf) {
        CHECK_EQ(expected_mul, t.output_mul);
        CHECK_EQ(expected_mul, t.output_mul2);
644 645 646 647 648 649
      }
    }
  }
}


650 651 652 653
TEST(min_max_nan) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
654
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
  MacroAssembler* masm = &assembler;

  struct TestFloat {
    double a;
    double b;
    double c;
    double d;
    float e;
    float f;
    float g;
    float h;
  };

  TestFloat test;
  const double dnan = std::numeric_limits<double>::quiet_NaN();
  const double dinf = std::numeric_limits<double>::infinity();
  const double dminf = -std::numeric_limits<double>::infinity();
  const float fnan = std::numeric_limits<float>::quiet_NaN();
  const float finf = std::numeric_limits<float>::infinity();
  const float fminf = std::numeric_limits<float>::infinity();
  const int kTableLength = 13;

  double inputsa[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, dinf, dminf,
                                  dinf, dnan, 3.0,  dinf, dnan, dnan};
  double inputsb[kTableLength] = {3.0,   2.0, 0.0,  -0.0, dinf, 42.0, dinf,
                                  dminf, 3.0, dnan, dnan, dinf, dnan};
  double outputsdmin[kTableLength] = {2.0,  2.0,   -0.0,  -0.0, 42.0,
                                      42.0, dminf, dminf, dnan, dnan,
                                      dnan, dnan,  dnan};
  double outputsdmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  dinf, dinf, dinf,
                                      dinf, dnan, dnan, dnan, dnan, dnan};

  float inputse[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, finf, fminf,
                                 finf, fnan, 3.0,  finf, fnan, fnan};
  float inputsf[kTableLength] = {3.0,   2.0, 0.0,  -0.0, finf, 42.0, finf,
                                 fminf, 3.0, fnan, fnan, finf, fnan};
  float outputsfmin[kTableLength] = {2.0,   2.0,  -0.0, -0.0, 42.0, 42.0, fminf,
                                     fminf, fnan, fnan, fnan, fnan, fnan};
  float outputsfmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  finf, finf, finf,
                                     finf, fnan, fnan, fnan, fnan, fnan};

  auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
698
    __ LoadRoot(t8, RootIndex::kNanValue);
699
    __ Ldc1(dst, FieldMemOperand(t8, HeapNumber::kValueOffset));
700 701 702 703 704 705 706 707 708 709 710 711 712 713
    __ Branch(back);
  };

  auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
    __ Move(dst, fnan);
    __ Branch(back);
  };

  Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
  Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;

  __ push(s6);
  __ InitializeRootRegister();
714 715
  __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
  __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
716 717
  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
  __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
718
  __ Float64Min(f10, f4, f8, &handle_mind_nan);
719
  __ bind(&back_mind_nan);
720
  __ Float64Max(f12, f4, f8, &handle_maxd_nan);
721
  __ bind(&back_maxd_nan);
722
  __ Float32Min(f14, f2, f6, &handle_mins_nan);
723
  __ bind(&back_mins_nan);
724
  __ Float32Max(f16, f2, f6, &handle_maxs_nan);
725
  __ bind(&back_maxs_nan);
726 727
  __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
  __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
728 729 730 731 732 733 734 735 736 737 738 739
  __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
  __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
  __ pop(s6);
  __ jr(ra);
  __ nop();

  handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
  handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
  handle_snan(f14, &handle_mins_nan, &back_mins_nan);
  handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);

  CodeDesc desc;
740
  masm->GetCode(isolate, &desc);
741 742
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
743
  auto f = GeneratedCode<F3>::FromCode(*code);
744 745 746 747 748 749
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputsa[i];
    test.b = inputsb[i];
    test.e = inputse[i];
    test.f = inputsf[i];

750
    f.Call(&test, 0, 0, 0, 0);
751 752 753 754 755 756 757 758

    CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
    CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
    CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
    CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
  }
}

759 760 761
template <typename IN_TYPE, typename Func>
bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
                   IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
762
  typedef int32_t(F_CVT)(char* x0, int x1, int x2, int x3, int x4);
763 764 765

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
766
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
767 768 769 770 771 772 773 774
  MacroAssembler* masm = &assm;
  IN_TYPE res;

  GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
775
  assm.GetCode(isolate, &desc);
776 777
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
778

779
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
780 781

  MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
782
  f.Call(memory_buffer, 0, 0, 0, 0);
783 784 785 786 787 788 789
  MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));

  return res == value;
}

static const std::vector<uint64_t> unsigned_test_values() {
  static const uint64_t kValues[] = {
790 791
      0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0,
      0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF,
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
  };
  return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset() {
  static const int32_t kValues[] = {// value, offset
                                    -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset_increment() {
  static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

TEST(Ulh) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulh(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulh(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_2));

        auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulhu(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_3));

        auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulhu(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_4));
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
      }
    }
  }
}

TEST(Ulh_bitextension) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          Label success, fail, end, different;
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ulhu(t1, MemOperand(a0, in_offset));
          __ Branch(&different, ne, t0, Operand(t1));

          // If signed and unsigned values are same, check
          // the upper bits to see if they are zero
          __ sra(t0, t0, 15);
          __ Branch(&success, eq, t0, Operand(zero_reg));
          __ Branch(&fail);

          // If signed and unsigned values are different,
          // check that the upper bits are complementary
          __ bind(&different);
          __ sra(t1, t1, 15);
          __ Branch(&fail, ne, t1, Operand(1));
          __ sra(t0, t0, 15);
          __ addiu(t0, t0, 1);
          __ Branch(&fail, ne, t0, Operand(zero_reg));
          // Fall through to success

          __ bind(&success);
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ush(t0, MemOperand(a0, out_offset), v0);
          __ Branch(&end);
          __ bind(&fail);
          __ Ush(zero_reg, MemOperand(a0, out_offset), v0);
          __ bind(&end);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn));
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
      }
    }
  }
}

TEST(Ulw) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

925 926 927 928 929 930 931 932 933 934 935 936 937 938
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulw(v0, MemOperand(a0, in_offset));
          __ Usw(v0, MemOperand(a0, out_offset));
        };
        CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulw(a0, MemOperand(a0, in_offset));
          __ Usw(a0, MemOperand(t0, out_offset));
        };
939
        CHECK_EQ(true,
940 941
                 run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
                                         (uint32_t)value, fn_2));
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
      }
    }
  }
}

TEST(Ulwc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        float value = static_cast<float>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

961 962 963 964 965 966 967
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Ulwc1(f0, MemOperand(a0, in_offset), t0);
          __ Uswc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<float>(buffer_middle, in_offset,
                                            out_offset, value, fn));
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
      }
    }
  }
}

TEST(Uldc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        double value = static_cast<double>(*i);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

987 988 989 990 991 992 993
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Uldc1(f0, MemOperand(a0, in_offset), t0);
          __ Usdc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<double>(buffer_middle, in_offset,
                                             out_offset, value, fn));
994 995 996 997 998
      }
    }
  }
}

999 1000
static const std::vector<uint32_t> sltu_test_values() {
  static const uint32_t kValues[] = {
1001 1002 1003
      0,          1,          0x7FFE,     0x7FFF,     0x8000,
      0x8001,     0xFFFE,     0xFFFF,     0xFFFF7FFE, 0xFFFF7FFF,
      0xFFFF8000, 0xFFFF8001, 0xFFFFFFFE, 0xFFFFFFFF,
1004 1005 1006 1007 1008 1009
  };
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

template <typename Func>
bool run_Sltu(uint32_t rs, uint32_t rd, Func GenerateSltuInstructionFunc) {
1010
  typedef int32_t(F_CVT)(uint32_t x0, uint32_t x1, int x2, int x3, int x4);
1011 1012 1013

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
1014
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
1015 1016 1017 1018 1019 1020 1021
  MacroAssembler* masm = &assm;

  GenerateSltuInstructionFunc(masm, rd);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
1022
  assm.GetCode(isolate, &desc);
1023 1024
  Handle<Code> code =
      isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
1025

1026 1027
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
  int32_t res = reinterpret_cast<int32_t>(f.Call(rs, rd, 0, 0, 0));
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
  return res == 1;
}

TEST(Sltu) {
  CcTest::InitializeVM();

  FOR_UINT32_INPUTS(i, sltu_test_values) {
    FOR_UINT32_INPUTS(j, sltu_test_values) {
      uint32_t rs = *i;
      uint32_t rd = *j;

1039 1040 1041 1042 1043 1044 1045 1046 1047
      auto fn_1 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, Operand(imm));
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_1));

      auto fn_2 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, a1);
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_2));
1048 1049 1050 1051
    }
  }
}

1052
template <typename T, typename Inputs, typename Results>
1053
static GeneratedCode<F4> GenerateMacroFloat32MinMax(MacroAssembler* masm) {
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
  __ lwc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ lwc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
  __ swc1(a, MemOperand(a1, offsetof(Results, res_field)))

  // a = min(b, c);
  FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float32MinOutOfLine(a, b, c);
1093
  __ Branch(&done_min_abc);
1094 1095 1096

  __ bind(&ool_min_aab);
  __ Float32MinOutOfLine(a, a, b);
1097
  __ Branch(&done_min_aab);
1098 1099 1100

  __ bind(&ool_min_aba);
  __ Float32MinOutOfLine(a, b, a);
1101
  __ Branch(&done_min_aba);
1102 1103 1104

  __ bind(&ool_max_abc);
  __ Float32MaxOutOfLine(a, b, c);
1105
  __ Branch(&done_max_abc);
1106 1107 1108

  __ bind(&ool_max_aab);
  __ Float32MaxOutOfLine(a, a, b);
1109
  __ Branch(&done_max_aab);
1110 1111 1112

  __ bind(&ool_max_aba);
  __ Float32MaxOutOfLine(a, b, a);
1113
  __ Branch(&done_max_aba);
1114 1115

  CodeDesc desc;
1116
  masm->GetCode(masm->isolate(), &desc);
1117 1118
  Handle<Code> code =
      masm->isolate()->factory()->NewCode(desc, Code::STUB, Handle<Code>());
1119
#ifdef DEBUG
1120
  StdoutStream os;
1121
  code->Print(os);
1122
#endif
1123
  return GeneratedCode<F4>::FromCode(*code);
1124 1125 1126 1127 1128 1129 1130 1131
}

TEST(macro_float_minmax_f32) {
  // Test the Float32Min and Float32Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1132
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
  MacroAssembler* masm = &assembler;

  struct Inputs {
    float src1_;
    float src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    float min_abc_;
    float min_aab_;
    float min_aba_;
    float max_abc_;
    float max_aab_;
    float max_aba_;
  };

1151 1152
  GeneratedCode<F4> f =
      GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>(masm);
1153 1154 1155 1156 1157

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1158
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  float nan_a = std::numeric_limits<float>::quiet_NaN();
  float nan_b = std::numeric_limits<float>::quiet_NaN();

  CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
  CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
  CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
  CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);

  CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
  CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
  CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);

  CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

template <typename T, typename Inputs, typename Results>
1194
static GeneratedCode<F4> GenerateMacroFloat64MinMax(MacroAssembler* masm) {
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
1206 1207
  __ Ldc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ Ldc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
1208 1209
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
1210
  __ Sdc1(a, MemOperand(a1, offsetof(Results, res_field)))
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

  // a = min(b, c);
  FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float64MinOutOfLine(a, b, c);
1234
  __ Branch(&done_min_abc);
1235 1236 1237

  __ bind(&ool_min_aab);
  __ Float64MinOutOfLine(a, a, b);
1238
  __ Branch(&done_min_aab);
1239 1240 1241

  __ bind(&ool_min_aba);
  __ Float64MinOutOfLine(a, b, a);
1242
  __ Branch(&done_min_aba);
1243 1244 1245

  __ bind(&ool_max_abc);
  __ Float64MaxOutOfLine(a, b, c);
1246
  __ Branch(&done_max_abc);
1247 1248 1249

  __ bind(&ool_max_aab);
  __ Float64MaxOutOfLine(a, a, b);
1250
  __ Branch(&done_max_aab);
1251 1252 1253

  __ bind(&ool_max_aba);
  __ Float64MaxOutOfLine(a, b, a);
1254
  __ Branch(&done_max_aba);
1255 1256

  CodeDesc desc;
1257
  masm->GetCode(masm->isolate(), &desc);
1258 1259
  Handle<Code> code =
      masm->isolate()->factory()->NewCode(desc, Code::STUB, Handle<Code>());
1260
#ifdef DEBUG
1261
  StdoutStream os;
1262
  code->Print(os);
1263
#endif
1264
  return GeneratedCode<F4>::FromCode(*code);
1265 1266 1267 1268 1269 1270 1271 1272
}

TEST(macro_float_minmax_f64) {
  // Test the Float64Min and Float64Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1273
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
  MacroAssembler* masm = &assembler;

  struct Inputs {
    double src1_;
    double src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    double min_abc_;
    double min_aab_;
    double min_aba_;
    double max_abc_;
    double max_aab_;
    double max_aba_;
  };

1292 1293
  GeneratedCode<F4> f =
      GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>(masm);
1294 1295 1296 1297 1298

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1299
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  double nan_a = std::numeric_limits<double>::quiet_NaN();
  double nan_b = std::numeric_limits<double>::quiet_NaN();

  CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
  CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
  CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
  CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
  CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
  CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
  CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
  CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);

  CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
  CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
  CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
  CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);

  CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

1334
#undef __
1335 1336 1337

}  // namespace internal
}  // namespace v8