default-worker-threads-task-runner-unittest.cc 8.01 KB
Newer Older
1 2 3 4 5 6
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/libplatform/default-worker-threads-task-runner.h"

7
#include <algorithm>
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include <vector>

#include "include/v8-platform.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/semaphore.h"
#include "src/base/platform/time.h"
#include "testing/gtest-support.h"

namespace v8 {
namespace platform {

class TestTask : public v8::Task {
 public:
  explicit TestTask(std::function<void()> f) : f_(std::move(f)) {}

  void Run() override { f_(); }

 private:
  std::function<void()> f_;
};

double RealTime() {
  return base::TimeTicks::HighResolutionNow().ToInternalValue() /
         static_cast<double>(base::Time::kMicrosecondsPerSecond);
}

TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostTaskOrder) {
  DefaultWorkerThreadsTaskRunner runner(1, RealTime);

  std::vector<int> order;
  base::Semaphore semaphore(0);

  std::unique_ptr<TestTask> task1 =
41
      std::make_unique<TestTask>([&] { order.push_back(1); });
42
  std::unique_ptr<TestTask> task2 =
43 44
      std::make_unique<TestTask>([&] { order.push_back(2); });
  std::unique_ptr<TestTask> task3 = std::make_unique<TestTask>([&] {
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    order.push_back(3);
    semaphore.Signal();
  });

  runner.PostTask(std::move(task1));
  runner.PostTask(std::move(task2));
  runner.PostTask(std::move(task3));

  semaphore.Wait();

  runner.Terminate();
  ASSERT_EQ(3UL, order.size());
  ASSERT_EQ(1, order[0]);
  ASSERT_EQ(2, order[1]);
  ASSERT_EQ(3, order[2]);
}

TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostTaskOrderMultipleWorkers) {
  DefaultWorkerThreadsTaskRunner runner(4, RealTime);

  base::Mutex vector_lock;
  std::vector<int> order;
  std::atomic_int count{0};

69
  std::unique_ptr<TestTask> task1 = std::make_unique<TestTask>([&] {
70 71 72 73
    base::MutexGuard guard(&vector_lock);
    order.push_back(1);
    count++;
  });
74
  std::unique_ptr<TestTask> task2 = std::make_unique<TestTask>([&] {
75 76 77 78
    base::MutexGuard guard(&vector_lock);
    order.push_back(2);
    count++;
  });
79
  std::unique_ptr<TestTask> task3 = std::make_unique<TestTask>([&] {
80 81 82 83
    base::MutexGuard guard(&vector_lock);
    order.push_back(3);
    count++;
  });
84
  std::unique_ptr<TestTask> task4 = std::make_unique<TestTask>([&] {
85 86 87 88
    base::MutexGuard guard(&vector_lock);
    order.push_back(4);
    count++;
  });
89
  std::unique_ptr<TestTask> task5 = std::make_unique<TestTask>([&] {
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    base::MutexGuard guard(&vector_lock);
    order.push_back(5);
    count++;
  });

  runner.PostTask(std::move(task1));
  runner.PostTask(std::move(task2));
  runner.PostTask(std::move(task3));
  runner.PostTask(std::move(task4));
  runner.PostTask(std::move(task5));

  // We can't observe any ordering when there are multiple worker threads. The
  // tasks are guaranteed to be dispatched to workers in the input order, but
  // the workers are different threads and can be scheduled arbitrarily. Just
  // check that all of the tasks were run once.
  while (count != 5) {
  }

  runner.Terminate();
  ASSERT_EQ(5UL, order.size());
  ASSERT_EQ(1, std::count(order.begin(), order.end(), 1));
  ASSERT_EQ(1, std::count(order.begin(), order.end(), 2));
  ASSERT_EQ(1, std::count(order.begin(), order.end(), 3));
  ASSERT_EQ(1, std::count(order.begin(), order.end(), 4));
  ASSERT_EQ(1, std::count(order.begin(), order.end(), 5));
}

class FakeClock {
 public:
  static double time() { return time_.load(); }
  static void set_time(double time) { time_.store(time); }
  static void set_time_and_wake_up_runner(
      double time, DefaultWorkerThreadsTaskRunner* runner) {
    time_.store(time);
    // PostTask will cause the condition variable WaitFor() call to be notified
    // early, rather than waiting for the real amount of time. WaitFor() listens
    // to the system clock and not our FakeClock.
127
    runner->PostTask(std::make_unique<TestTask>([] {}));
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  }

 private:
  static std::atomic<double> time_;
};

std::atomic<double> FakeClock::time_{0.0};

TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostDelayedTaskOrder) {
  FakeClock::set_time(0.0);
  DefaultWorkerThreadsTaskRunner runner(1, FakeClock::time);

  std::vector<int> order;
  base::Semaphore task1_semaphore(0);
  base::Semaphore task3_semaphore(0);

144
  std::unique_ptr<TestTask> task1 = std::make_unique<TestTask>([&] {
145 146 147 148
    order.push_back(1);
    task1_semaphore.Signal();
  });
  std::unique_ptr<TestTask> task2 =
149 150
      std::make_unique<TestTask>([&] { order.push_back(2); });
  std::unique_ptr<TestTask> task3 = std::make_unique<TestTask>([&] {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    order.push_back(3);
    task3_semaphore.Signal();
  });

  runner.PostDelayedTask(std::move(task1), 100);
  runner.PostTask(std::move(task2));
  runner.PostTask(std::move(task3));

  FakeClock::set_time_and_wake_up_runner(99, &runner);

  task3_semaphore.Wait();
  ASSERT_EQ(2UL, order.size());
  ASSERT_EQ(2, order[0]);
  ASSERT_EQ(3, order[1]);

  FakeClock::set_time_and_wake_up_runner(101, &runner);
  task1_semaphore.Wait();

  runner.Terminate();
  ASSERT_EQ(3UL, order.size());
  ASSERT_EQ(2, order[0]);
  ASSERT_EQ(3, order[1]);
  ASSERT_EQ(1, order[2]);
}

TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostDelayedTaskOrder2) {
  FakeClock::set_time(0.0);
  DefaultWorkerThreadsTaskRunner runner(1, FakeClock::time);

  std::vector<int> order;
  base::Semaphore task1_semaphore(0);
  base::Semaphore task2_semaphore(0);
  base::Semaphore task3_semaphore(0);

185
  std::unique_ptr<TestTask> task1 = std::make_unique<TestTask>([&] {
186 187 188
    order.push_back(1);
    task1_semaphore.Signal();
  });
189
  std::unique_ptr<TestTask> task2 = std::make_unique<TestTask>([&] {
190 191 192
    order.push_back(2);
    task2_semaphore.Signal();
  });
193
  std::unique_ptr<TestTask> task3 = std::make_unique<TestTask>([&] {
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    order.push_back(3);
    task3_semaphore.Signal();
  });

  runner.PostDelayedTask(std::move(task1), 500);
  runner.PostDelayedTask(std::move(task2), 100);
  runner.PostDelayedTask(std::move(task3), 200);

  FakeClock::set_time_and_wake_up_runner(101, &runner);

  task2_semaphore.Wait();
  ASSERT_EQ(1UL, order.size());
  ASSERT_EQ(2, order[0]);

  FakeClock::set_time_and_wake_up_runner(201, &runner);

  task3_semaphore.Wait();
  ASSERT_EQ(2UL, order.size());
  ASSERT_EQ(2, order[0]);
  ASSERT_EQ(3, order[1]);

  FakeClock::set_time_and_wake_up_runner(501, &runner);

  task1_semaphore.Wait();
  runner.Terminate();
  ASSERT_EQ(3UL, order.size());
  ASSERT_EQ(2, order[0]);
  ASSERT_EQ(3, order[1]);
  ASSERT_EQ(1, order[2]);
}

TEST(DefaultWorkerThreadsTaskRunnerUnittest, PostAfterTerminate) {
  FakeClock::set_time(0.0);
  DefaultWorkerThreadsTaskRunner runner(1, FakeClock::time);

  std::vector<int> order;
  base::Semaphore task1_semaphore(0);
  base::Semaphore task2_semaphore(0);
  base::Semaphore task3_semaphore(0);

234
  std::unique_ptr<TestTask> task1 = std::make_unique<TestTask>([&] {
235 236 237
    order.push_back(1);
    task1_semaphore.Signal();
  });
238
  std::unique_ptr<TestTask> task2 = std::make_unique<TestTask>([&] {
239 240 241
    order.push_back(2);
    task2_semaphore.Signal();
  });
242
  std::unique_ptr<TestTask> task3 = std::make_unique<TestTask>([&] {
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    order.push_back(3);
    task3_semaphore.Signal();
  });

  runner.PostTask(std::move(task1));
  runner.PostDelayedTask(std::move(task2), 100);

  task1_semaphore.Wait();
  ASSERT_EQ(1UL, order.size());
  ASSERT_EQ(1, order[0]);

  runner.Terminate();
  FakeClock::set_time_and_wake_up_runner(201, &runner);
  // OK, we can't actually prove that this never executes. But wait a bit at
  // least.
  bool signalled =
      task2_semaphore.WaitFor(base::TimeDelta::FromMilliseconds(100));
  ASSERT_FALSE(signalled);
  ASSERT_EQ(1UL, order.size());
  ASSERT_EQ(1, order[0]);

  runner.PostTask(std::move(task3));
  signalled = task3_semaphore.WaitFor(base::TimeDelta::FromMilliseconds(100));
  ASSERT_FALSE(signalled);
  ASSERT_EQ(1UL, order.size());
  ASSERT_EQ(1, order[0]);
}

TEST(DefaultWorkerThreadsTaskRunnerUnittest, NoIdleTasks) {
  DefaultWorkerThreadsTaskRunner runner(1, FakeClock::time);

  ASSERT_FALSE(runner.IdleTasksEnabled());
  runner.Terminate();
}

}  // namespace platform
}  // namespace v8