test-object.cc 15.6 KB
Newer Older
1 2 3 4
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5
#include "src/api/api-inl.h"
6
#include "src/common/globals.h"
7
#include "src/execution/isolate.h"
8
#include "src/handles/handles-inl.h"
9
#include "src/heap/factory.h"
10
#include "src/init/v8.h"
11 12
#include "src/objects/function-kind.h"
#include "src/objects/objects-inl.h"
13 14
#include "test/cctest/cctest.h"

15 16
namespace v8 {
namespace internal {
17 18 19

static void CheckObject(Isolate* isolate, Handle<Object> obj,
                        const char* string) {
20 21 22 23
  Handle<String> print_string = String::Flatten(
      isolate,
      Handle<String>::cast(Object::NoSideEffectsToString(isolate, obj)));
  CHECK(print_string->IsOneByteEqualTo(CStrVector(string)));
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
}

static void CheckSmi(Isolate* isolate, int value, const char* string) {
  Handle<Object> handle(Smi::FromInt(value), isolate);
  CheckObject(isolate, handle, string);
}

static void CheckString(Isolate* isolate, const char* value,
                        const char* string) {
  Handle<String> handle(isolate->factory()->NewStringFromAsciiChecked(value));
  CheckObject(isolate, handle, string);
}

static void CheckNumber(Isolate* isolate, double value, const char* string) {
  Handle<Object> number = isolate->factory()->NewNumber(value);
  CHECK(number->IsNumber());
  CheckObject(isolate, number, string);
}

static void CheckBoolean(Isolate* isolate, bool value, const char* string) {
  CheckObject(isolate, value ? isolate->factory()->true_value()
                             : isolate->factory()->false_value(),
              string);
}

TEST(NoSideEffectsToString) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  Factory* factory = isolate->factory();

  HandleScope scope(isolate);

  CheckString(isolate, "fisk hest", "fisk hest");
  CheckNumber(isolate, 42.3, "42.3");
  CheckSmi(isolate, 42, "42");
  CheckBoolean(isolate, true, "true");
  CheckBoolean(isolate, false, "false");
  CheckBoolean(isolate, false, "false");
62 63 64
  Handle<Object> smi_42 = handle(Smi::FromInt(42), isolate);
  CheckObject(isolate, BigInt::FromNumber(isolate, smi_42).ToHandleChecked(),
              "42");
65 66 67 68
  CheckObject(isolate, factory->undefined_value(), "undefined");
  CheckObject(isolate, factory->null_value(), "null");

  CheckObject(isolate, factory->error_to_string(), "[object Error]");
69 70
  CheckObject(isolate, factory->unscopables_symbol(),
              "Symbol(Symbol.unscopables)");
71 72 73 74 75 76 77 78 79 80
  CheckObject(isolate, factory->NewError(isolate->error_function(),
                                         factory->empty_string()),
              "Error");
  CheckObject(isolate, factory->NewError(
                           isolate->error_function(),
                           factory->NewStringFromAsciiChecked("fisk hest")),
              "Error: fisk hest");
  CheckObject(isolate, factory->NewJSObject(isolate->object_function()),
              "#<Object>");
}
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
TEST(EnumCache) {
  LocalContext env;
  v8::Isolate* isolate = env->GetIsolate();
  i::Factory* factory = CcTest::i_isolate()->factory();
  v8::HandleScope scope(isolate);

  // Create a nice transition tree:
  // (a) --> (b) --> (c)   shared DescriptorArray 1
  //          |
  //          +---> (cc)   shared DescriptorArray 2
  CompileRun(
      "function O(a) { this.a = 1 };"

      "a = new O();"

      "b = new O();"
      "b.b = 2;"

      "c = new O();"
      "c.b = 2;"
      "c.c = 3;"

      "cc = new O();"
      "cc.b = 2;"
      "cc.cc = 4;");

  Handle<JSObject> a = Handle<JSObject>::cast(v8::Utils::OpenHandle(
      *env->Global()->Get(env.local(), v8_str("a")).ToLocalChecked()));
  Handle<JSObject> b = Handle<JSObject>::cast(v8::Utils::OpenHandle(
      *env->Global()->Get(env.local(), v8_str("b")).ToLocalChecked()));
  Handle<JSObject> c = Handle<JSObject>::cast(v8::Utils::OpenHandle(
      *env->Global()->Get(env.local(), v8_str("c")).ToLocalChecked()));
  Handle<JSObject> cc = Handle<JSObject>::cast(v8::Utils::OpenHandle(
      *env->Global()->Get(env.local(), v8_str("cc")).ToLocalChecked()));

  // Check the transition tree.
118 119 120 121
  CHECK_EQ(a->map().instance_descriptors(), b->map().instance_descriptors());
  CHECK_EQ(b->map().instance_descriptors(), c->map().instance_descriptors());
  CHECK_NE(c->map().instance_descriptors(), cc->map().instance_descriptors());
  CHECK_NE(b->map().instance_descriptors(), cc->map().instance_descriptors());
122 123

  // Check that the EnumLength is unset.
124 125 126 127
  CHECK_EQ(a->map().EnumLength(), kInvalidEnumCacheSentinel);
  CHECK_EQ(b->map().EnumLength(), kInvalidEnumCacheSentinel);
  CHECK_EQ(c->map().EnumLength(), kInvalidEnumCacheSentinel);
  CHECK_EQ(cc->map().EnumLength(), kInvalidEnumCacheSentinel);
128 129

  // Check that the EnumCache is empty.
130
  CHECK_EQ(a->map().instance_descriptors().enum_cache(),
131
           *factory->empty_enum_cache());
132
  CHECK_EQ(b->map().instance_descriptors().enum_cache(),
133
           *factory->empty_enum_cache());
134
  CHECK_EQ(c->map().instance_descriptors().enum_cache(),
135
           *factory->empty_enum_cache());
136
  CHECK_EQ(cc->map().instance_descriptors().enum_cache(),
137 138 139 140 141 142
           *factory->empty_enum_cache());

  // The EnumCache is shared on the DescriptorArray, creating it on {cc} has no
  // effect on the other maps.
  CompileRun("var s = 0; for (let key in cc) { s += cc[key] };");
  {
143 144 145 146
    CHECK_EQ(a->map().EnumLength(), kInvalidEnumCacheSentinel);
    CHECK_EQ(b->map().EnumLength(), kInvalidEnumCacheSentinel);
    CHECK_EQ(c->map().EnumLength(), kInvalidEnumCacheSentinel);
    CHECK_EQ(cc->map().EnumLength(), 3);
147

148
    CHECK_EQ(a->map().instance_descriptors().enum_cache(),
149
             *factory->empty_enum_cache());
150
    CHECK_EQ(b->map().instance_descriptors().enum_cache(),
151
             *factory->empty_enum_cache());
152
    CHECK_EQ(c->map().instance_descriptors().enum_cache(),
153 154
             *factory->empty_enum_cache());

155
    EnumCache enum_cache = cc->map().instance_descriptors().enum_cache();
156
    CHECK_NE(enum_cache, *factory->empty_enum_cache());
157 158
    CHECK_EQ(enum_cache.keys().length(), 3);
    CHECK_EQ(enum_cache.indices().length(), 3);
159 160 161 162 163 164
  }

  // Initializing the EnumCache for the the topmost map {a} will not create the
  // cache for the other maps.
  CompileRun("var s = 0; for (let key in a) { s += a[key] };");
  {
165 166 167 168
    CHECK_EQ(a->map().EnumLength(), 1);
    CHECK_EQ(b->map().EnumLength(), kInvalidEnumCacheSentinel);
    CHECK_EQ(c->map().EnumLength(), kInvalidEnumCacheSentinel);
    CHECK_EQ(cc->map().EnumLength(), 3);
169 170 171

    // The enum cache is shared on the descriptor array of maps {a}, {b} and
    // {c} only.
172
    EnumCache enum_cache = a->map().instance_descriptors().enum_cache();
173
    CHECK_NE(enum_cache, *factory->empty_enum_cache());
174
    CHECK_NE(cc->map().instance_descriptors().enum_cache(),
175
             *factory->empty_enum_cache());
176 177 178 179
    CHECK_NE(cc->map().instance_descriptors().enum_cache(), enum_cache);
    CHECK_EQ(a->map().instance_descriptors().enum_cache(), enum_cache);
    CHECK_EQ(b->map().instance_descriptors().enum_cache(), enum_cache);
    CHECK_EQ(c->map().instance_descriptors().enum_cache(), enum_cache);
180

181 182
    CHECK_EQ(enum_cache.keys().length(), 1);
    CHECK_EQ(enum_cache.indices().length(), 1);
183 184 185 186 187
  }

  // Creating the EnumCache for {c} will create a new EnumCache on the shared
  // DescriptorArray.
  Handle<EnumCache> previous_enum_cache(
188
      a->map().instance_descriptors().enum_cache(), a->GetIsolate());
189 190 191 192
  Handle<FixedArray> previous_keys(previous_enum_cache->keys(),
                                   a->GetIsolate());
  Handle<FixedArray> previous_indices(previous_enum_cache->indices(),
                                      a->GetIsolate());
193 194
  CompileRun("var s = 0; for (let key in c) { s += c[key] };");
  {
195 196 197 198
    CHECK_EQ(a->map().EnumLength(), 1);
    CHECK_EQ(b->map().EnumLength(), kInvalidEnumCacheSentinel);
    CHECK_EQ(c->map().EnumLength(), 3);
    CHECK_EQ(cc->map().EnumLength(), 3);
199

200
    EnumCache enum_cache = c->map().instance_descriptors().enum_cache();
201 202 203
    CHECK_NE(enum_cache, *factory->empty_enum_cache());
    // The keys and indices caches are updated.
    CHECK_EQ(enum_cache, *previous_enum_cache);
204 205
    CHECK_NE(enum_cache.keys(), *previous_keys);
    CHECK_NE(enum_cache.indices(), *previous_indices);
206 207
    CHECK_EQ(previous_keys->length(), 1);
    CHECK_EQ(previous_indices->length(), 1);
208 209
    CHECK_EQ(enum_cache.keys().length(), 3);
    CHECK_EQ(enum_cache.indices().length(), 3);
210 211 212

    // The enum cache is shared on the descriptor array of maps {a}, {b} and
    // {c} only.
213
    CHECK_NE(cc->map().instance_descriptors().enum_cache(),
214
             *factory->empty_enum_cache());
215 216
    CHECK_NE(cc->map().instance_descriptors().enum_cache(), enum_cache);
    CHECK_NE(cc->map().instance_descriptors().enum_cache(),
217
             *previous_enum_cache);
218 219 220
    CHECK_EQ(a->map().instance_descriptors().enum_cache(), enum_cache);
    CHECK_EQ(b->map().instance_descriptors().enum_cache(), enum_cache);
    CHECK_EQ(c->map().instance_descriptors().enum_cache(), enum_cache);
221 222 223 224 225
  }

  // {b} can reuse the existing EnumCache, hence we only need to set the correct
  // EnumLength on the map without modifying the cache itself.
  previous_enum_cache =
226
      handle(a->map().instance_descriptors().enum_cache(), a->GetIsolate());
227 228
  previous_keys = handle(previous_enum_cache->keys(), a->GetIsolate());
  previous_indices = handle(previous_enum_cache->indices(), a->GetIsolate());
229 230
  CompileRun("var s = 0; for (let key in b) { s += b[key] };");
  {
231 232 233 234
    CHECK_EQ(a->map().EnumLength(), 1);
    CHECK_EQ(b->map().EnumLength(), 2);
    CHECK_EQ(c->map().EnumLength(), 3);
    CHECK_EQ(cc->map().EnumLength(), 3);
235

236
    EnumCache enum_cache = c->map().instance_descriptors().enum_cache();
237 238 239
    CHECK_NE(enum_cache, *factory->empty_enum_cache());
    // The keys and indices caches are not updated.
    CHECK_EQ(enum_cache, *previous_enum_cache);
240 241 242 243
    CHECK_EQ(enum_cache.keys(), *previous_keys);
    CHECK_EQ(enum_cache.indices(), *previous_indices);
    CHECK_EQ(enum_cache.keys().length(), 3);
    CHECK_EQ(enum_cache.indices().length(), 3);
244 245 246

    // The enum cache is shared on the descriptor array of maps {a}, {b} and
    // {c} only.
247
    CHECK_NE(cc->map().instance_descriptors().enum_cache(),
248
             *factory->empty_enum_cache());
249 250
    CHECK_NE(cc->map().instance_descriptors().enum_cache(), enum_cache);
    CHECK_NE(cc->map().instance_descriptors().enum_cache(),
251
             *previous_enum_cache);
252 253 254
    CHECK_EQ(a->map().instance_descriptors().enum_cache(), enum_cache);
    CHECK_EQ(b->map().instance_descriptors().enum_cache(), enum_cache);
    CHECK_EQ(c->map().instance_descriptors().enum_cache(), enum_cache);
255 256 257
  }
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
TEST(ObjectMethodsThatTruncateMinusZero) {
  LocalContext env;
  Isolate* isolate = CcTest::i_isolate();
  Factory* factory = isolate->factory();
  v8::HandleScope scope(env->GetIsolate());

  Handle<Object> minus_zero = factory->NewNumber(-1.0 * 0.0);
  CHECK(minus_zero->IsMinusZero());

  Handle<Object> result =
      Object::ToInteger(isolate, minus_zero).ToHandleChecked();
  CHECK(result->IsZero());

  result = Object::ToLength(isolate, minus_zero).ToHandleChecked();
  CHECK(result->IsZero());

  // Choose an error message template, doesn't matter which.
  result = Object::ToIndex(isolate, minus_zero,
                           MessageTemplate::kInvalidAtomicAccessIndex)
               .ToHandleChecked();
  CHECK(result->IsZero());
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
#define TEST_FUNCTION_KIND(Name)                                \
  TEST(Name) {                                                  \
    for (int i = 0; i < FunctionKind::kLastFunctionKind; i++) { \
      FunctionKind kind = static_cast<FunctionKind>(i);         \
      CHECK_EQ(FunctionKind##Name(kind), Name(kind));           \
    }                                                           \
  }

bool FunctionKindIsArrowFunction(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kArrowFunction:
    case FunctionKind::kAsyncArrowFunction:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsArrowFunction)

bool FunctionKindIsAsyncGeneratorFunction(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kAsyncConciseGeneratorMethod:
    case FunctionKind::kAsyncGeneratorFunction:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsAsyncGeneratorFunction)

bool FunctionKindIsGeneratorFunction(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kConciseGeneratorMethod:
    case FunctionKind::kAsyncConciseGeneratorMethod:
    case FunctionKind::kGeneratorFunction:
    case FunctionKind::kAsyncGeneratorFunction:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsGeneratorFunction)

bool FunctionKindIsAsyncFunction(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kAsyncFunction:
    case FunctionKind::kAsyncArrowFunction:
    case FunctionKind::kAsyncConciseMethod:
    case FunctionKind::kAsyncConciseGeneratorMethod:
    case FunctionKind::kAsyncGeneratorFunction:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsAsyncFunction)

bool FunctionKindIsConciseMethod(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kConciseMethod:
    case FunctionKind::kConciseGeneratorMethod:
    case FunctionKind::kAsyncConciseMethod:
    case FunctionKind::kAsyncConciseGeneratorMethod:
    case FunctionKind::kClassMembersInitializerFunction:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsConciseMethod)

bool FunctionKindIsAccessorFunction(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kGetterFunction:
    case FunctionKind::kSetterFunction:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsAccessorFunction)

bool FunctionKindIsDefaultConstructor(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kDefaultBaseConstructor:
    case FunctionKind::kDefaultDerivedConstructor:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsDefaultConstructor)

bool FunctionKindIsBaseConstructor(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kBaseConstructor:
    case FunctionKind::kDefaultBaseConstructor:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsBaseConstructor)

bool FunctionKindIsDerivedConstructor(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kDefaultDerivedConstructor:
    case FunctionKind::kDerivedConstructor:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsDerivedConstructor)

bool FunctionKindIsClassConstructor(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kBaseConstructor:
    case FunctionKind::kDefaultBaseConstructor:
    case FunctionKind::kDefaultDerivedConstructor:
    case FunctionKind::kDerivedConstructor:
      return true;
    default:
      return false;
  }
}
TEST_FUNCTION_KIND(IsClassConstructor)

bool FunctionKindIsConstructable(FunctionKind kind) {
  switch (kind) {
    case FunctionKind::kGetterFunction:
    case FunctionKind::kSetterFunction:
    case FunctionKind::kArrowFunction:
    case FunctionKind::kAsyncArrowFunction:
    case FunctionKind::kAsyncFunction:
    case FunctionKind::kAsyncConciseMethod:
    case FunctionKind::kAsyncConciseGeneratorMethod:
    case FunctionKind::kAsyncGeneratorFunction:
    case FunctionKind::kGeneratorFunction:
    case FunctionKind::kConciseGeneratorMethod:
    case FunctionKind::kConciseMethod:
    case FunctionKind::kClassMembersInitializerFunction:
      return false;
    default:
      return true;
  }
}
TEST_FUNCTION_KIND(IsConstructable)

bool FunctionKindIsStrictFunctionWithoutPrototype(FunctionKind kind) {
  return IsArrowFunction(kind) || IsConciseMethod(kind) ||
         IsAccessorFunction(kind);
}
TEST_FUNCTION_KIND(IsStrictFunctionWithoutPrototype)

#undef TEST_FUNCTION_KIND

438 439
}  // namespace internal
}  // namespace v8