regexp-macro-assembler-ppc.cc 45.3 KB
Newer Older
1 2 3 4 5 6
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_PPC

7 8
#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"

9
#include "src/assembler-inl.h"
10 11 12 13
#include "src/base/bits.h"
#include "src/code-stubs.h"
#include "src/log.h"
#include "src/macro-assembler.h"
14 15
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp-stack.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "src/unicode.h"

namespace v8 {
namespace internal {

#ifndef V8_INTERPRETED_REGEXP
/*
 * This assembler uses the following register assignment convention
 * - r25: Temporarily stores the index of capture start after a matching pass
 *        for a global regexp.
 * - r26: Pointer to current code object (Code*) including heap object tag.
 * - r27: Current position in input, as negative offset from end of string.
 *        Please notice that this is the byte offset, not the character offset!
 * - r28: Currently loaded character. Must be loaded using
 *        LoadCurrentCharacter before using any of the dispatch methods.
 * - r29: Points to tip of backtrack stack
 * - r30: End of input (points to byte after last character in input).
 * - r31: Frame pointer. Used to access arguments, local variables and
 *         RegExp registers.
 * - r12: IP register, used by assembler. Very volatile.
 * - r1/sp : Points to tip of C stack.
 *
 * The remaining registers are free for computations.
 * Each call to a public method should retain this convention.
 *
 * The stack will have the following structure:
42
 *  - fp[40]  Isolate* isolate   (address of the current isolate)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
 *  - fp[36]  lr save area (currently unused)
 *  - fp[32]  backchain    (currently unused)
 *  --- sp when called ---
 *  - fp[28]  return address     (lr).
 *  - fp[24]  old frame pointer  (r31).
 *  - fp[0..20]  backup of registers r25..r30
 *  --- frame pointer ----
 *  - fp[-4]  direct_call        (if 1, direct call from JavaScript code,
 *                                if 0, call through the runtime system).
 *  - fp[-8]  stack_area_base    (high end of the memory area to use as
 *                                backtracking stack).
 *  - fp[-12] capture array size (may fit multiple sets of matches)
 *  - fp[-16] int* capture_array (int[num_saved_registers_], for output).
 *  - fp[-20] end of input       (address of end of string).
 *  - fp[-24] start of input     (address of first character in string).
 *  - fp[-28] start index        (character index of start).
 *  - fp[-32] void* input_string (location of a handle containing the string).
 *  - fp[-36] success counter    (only for global regexps to count matches).
 *  - fp[-40] Offset of location before start of input (effectively character
62
 *            string start - 1). Used to initialize capture registers to a
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *            non-position.
 *  - fp[-44] At start (if 1, we are starting at the start of the
 *    string, otherwise 0)
 *  - fp[-48] register 0         (Only positions must be stored in the first
 *  -         register 1          num_saved_registers_ registers)
 *  -         ...
 *  -         register num_registers-1
 *  --- sp ---
 *
 * The first num_saved_registers_ registers are initialized to point to
 * "character -1" in the string (i.e., char_size() bytes before the first
 * character of the string). The remaining registers start out as garbage.
 *
 * The data up to the return address must be placed there by the calling
 * code and the remaining arguments are passed in registers, e.g. by calling the
 * code entry as cast to a function with the signature:
 * int (*match)(String* input_string,
 *              int start_index,
 *              Address start,
 *              Address end,
 *              int* capture_output_array,
84
 *              int num_capture_registers,
85
 *              byte* stack_area_base,
86 87
 *              bool direct_call = false,
 *              Isolate* isolate);
88 89 90 91 92 93 94
 * The call is performed by NativeRegExpMacroAssembler::Execute()
 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
 * in ppc/simulator-ppc.h.
 */

#define __ ACCESS_MASM(masm_)

95 96 97 98
RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
                                                 Mode mode,
                                                 int registers_to_save)
    : NativeRegExpMacroAssembler(isolate, zone),
99
      masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
100
                               CodeObjectRequired::kYes)),
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      mode_(mode),
      num_registers_(registers_to_save),
      num_saved_registers_(registers_to_save),
      entry_label_(),
      start_label_(),
      success_label_(),
      backtrack_label_(),
      exit_label_(),
      internal_failure_label_() {
  DCHECK_EQ(0, registers_to_save % 2);

// Called from C
  __ function_descriptor();

  __ b(&entry_label_);  // We'll write the entry code later.
  // If the code gets too big or corrupted, an internal exception will be
  // raised, and we will exit right away.
  __ bind(&internal_failure_label_);
  __ li(r3, Operand(FAILURE));
  __ Ret();
  __ bind(&start_label_);  // And then continue from here.
}


RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
  delete masm_;
  // Unuse labels in case we throw away the assembler without calling GetCode.
  entry_label_.Unuse();
  start_label_.Unuse();
  success_label_.Unuse();
  backtrack_label_.Unuse();
  exit_label_.Unuse();
  check_preempt_label_.Unuse();
  stack_overflow_label_.Unuse();
  internal_failure_label_.Unuse();
}


int RegExpMacroAssemblerPPC::stack_limit_slack() {
  return RegExpStack::kStackLimitSlack;
}


void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
  if (by != 0) {
    __ addi(current_input_offset(), current_input_offset(),
            Operand(by * char_size()));
  }
}


void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
153 154
  DCHECK_LE(0, reg);
  DCHECK_GT(num_registers_, reg);
155 156 157 158 159 160 161 162 163 164 165 166 167 168
  if (by != 0) {
    __ LoadP(r3, register_location(reg), r0);
    __ mov(r0, Operand(by));
    __ add(r3, r3, r0);
    __ StoreP(r3, register_location(reg), r0);
  }
}


void RegExpMacroAssemblerPPC::Backtrack() {
  CheckPreemption();
  // Pop Code* offset from backtrack stack, add Code* and jump to location.
  Pop(r3);
  __ add(r3, r3, code_pointer());
169
  __ Jump(r3);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
}


void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }


void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
  __ Cmpli(current_character(), Operand(c), r0);
  BranchOrBacktrack(eq, on_equal);
}


void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
  __ Cmpli(current_character(), Operand(limit), r0);
  BranchOrBacktrack(gt, on_greater);
}


void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
189 190 191
  __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
  __ addi(r3, current_input_offset(), Operand(-char_size()));
  __ cmp(r3, r4);
192 193 194 195
  BranchOrBacktrack(eq, on_at_start);
}


196 197 198 199 200
void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
                                              Label* on_not_at_start) {
  __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
  __ addi(r3, current_input_offset(),
          Operand(-char_size() + cp_offset * char_size()));
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  __ cmp(r3, r4);
  BranchOrBacktrack(ne, on_not_at_start);
}


void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
  __ Cmpli(current_character(), Operand(limit), r0);
  BranchOrBacktrack(lt, on_less);
}


void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
  Label backtrack_non_equal;
  __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
  __ cmp(current_input_offset(), r3);
  __ bne(&backtrack_non_equal);
  __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
          Operand(kPointerSize));

  __ bind(&backtrack_non_equal);
  BranchOrBacktrack(eq, on_equal);
}

void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
225
    int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
226 227 228 229 230
  Label fallthrough;
  __ LoadP(r3, register_location(start_reg), r0);  // Index of start of capture
  __ LoadP(r4, register_location(start_reg + 1), r0);  // Index of end
  __ sub(r4, r4, r3, LeaveOE, SetRC);                  // Length of capture.

231 232 233
  // At this point, the capture registers are either both set or both cleared.
  // If the capture length is zero, then the capture is either empty or cleared.
  // Fall through in both cases.
234 235 236
  __ beq(&fallthrough, cr0);

  // Check that there are enough characters left in the input.
237 238 239 240 241 242 243 244 245
  if (read_backward) {
    __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
    __ add(r6, r6, r4);
    __ cmp(current_input_offset(), r6);
    BranchOrBacktrack(le, on_no_match);
  } else {
    __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
    BranchOrBacktrack(gt, on_no_match, cr0);
  }
246 247 248 249 250 251 252 253 254 255

  if (mode_ == LATIN1) {
    Label success;
    Label fail;
    Label loop_check;

    // r3 - offset of start of capture
    // r4 - length of capture
    __ add(r3, r3, end_of_input_address());
    __ add(r5, end_of_input_address(), current_input_offset());
256 257 258
    if (read_backward) {
      __ sub(r5, r5, r4);  // Offset by length when matching backwards.
    }
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    __ add(r4, r3, r4);

    // r3 - Address of start of capture.
    // r4 - Address of end of capture
    // r5 - Address of current input position.

    Label loop;
    __ bind(&loop);
    __ lbz(r6, MemOperand(r3));
    __ addi(r3, r3, Operand(char_size()));
    __ lbz(r25, MemOperand(r5));
    __ addi(r5, r5, Operand(char_size()));
    __ cmp(r25, r6);
    __ beq(&loop_check);

    // Mismatch, try case-insensitive match (converting letters to lower-case).
    __ ori(r6, r6, Operand(0x20));  // Convert capture character to lower-case.
    __ ori(r25, r25, Operand(0x20));  // Also convert input character.
    __ cmp(r25, r6);
    __ bne(&fail);
    __ subi(r6, r6, Operand('a'));
    __ cmpli(r6, Operand('z' - 'a'));  // Is r6 a lowercase letter?
    __ ble(&loop_check);               // In range 'a'-'z'.
    // Latin-1: Check for values in range [224,254] but not 247.
    __ subi(r6, r6, Operand(224 - 'a'));
    __ cmpli(r6, Operand(254 - 224));
    __ bgt(&fail);                    // Weren't Latin-1 letters.
    __ cmpi(r6, Operand(247 - 224));  // Check for 247.
    __ beq(&fail);

    __ bind(&loop_check);
    __ cmp(r3, r4);
    __ blt(&loop);
    __ b(&success);

    __ bind(&fail);
    BranchOrBacktrack(al, on_no_match);

    __ bind(&success);
    // Compute new value of character position after the matched part.
    __ sub(current_input_offset(), r5, end_of_input_address());
300 301 302 303 304 305 306
    if (read_backward) {
      __ LoadP(r3, register_location(start_reg));  // Index of start of capture
      __ LoadP(r4,
               register_location(start_reg + 1));  // Index of end of capture
      __ add(current_input_offset(), current_input_offset(), r3);
      __ sub(current_input_offset(), current_input_offset(), r4);
    }
307 308 309 310 311 312 313 314 315 316 317 318 319
  } else {
    DCHECK(mode_ == UC16);
    int argument_count = 4;
    __ PrepareCallCFunction(argument_count, r5);

    // r3 - offset of start of capture
    // r4 - length of capture

    // Put arguments into arguments registers.
    // Parameters are
    //   r3: Address byte_offset1 - Address captured substring's start.
    //   r4: Address byte_offset2 - Address of current character position.
    //   r5: size_t byte_length - length of capture in bytes(!)
320
    //   r6: Isolate* isolate or 0 if unicode flag.
321 322 323 324 325 326 327 328 329

    // Address of start of capture.
    __ add(r3, r3, end_of_input_address());
    // Length of capture.
    __ mr(r5, r4);
    // Save length in callee-save register for use on return.
    __ mr(r25, r4);
    // Address of current input position.
    __ add(r4, current_input_offset(), end_of_input_address());
330 331 332
    if (read_backward) {
      __ sub(r4, r4, r25);
    }
333
    // Isolate.
334
#ifdef V8_INTL_SUPPORT
335 336 337
    if (unicode) {
      __ li(r6, Operand::Zero());
    } else  // NOLINT
338
#endif      // V8_INTL_SUPPORT
339 340 341
    {
      __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
    }
342 343 344 345 346 347 348 349 350 351 352

    {
      AllowExternalCallThatCantCauseGC scope(masm_);
      ExternalReference function =
          ExternalReference::re_case_insensitive_compare_uc16(isolate());
      __ CallCFunction(function, argument_count);
    }

    // Check if function returned non-zero for success or zero for failure.
    __ cmpi(r3, Operand::Zero());
    BranchOrBacktrack(eq, on_no_match);
353 354 355 356 357 358 359

    // On success, advance position by length of capture.
    if (read_backward) {
      __ sub(current_input_offset(), current_input_offset(), r25);
    } else {
      __ add(current_input_offset(), current_input_offset(), r25);
    }
360 361 362 363 364 365 366
  }

  __ bind(&fallthrough);
}


void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
367
                                                    bool read_backward,
368 369 370 371 372 373 374 375
                                                    Label* on_no_match) {
  Label fallthrough;
  Label success;

  // Find length of back-referenced capture.
  __ LoadP(r3, register_location(start_reg), r0);
  __ LoadP(r4, register_location(start_reg + 1), r0);
  __ sub(r4, r4, r3, LeaveOE, SetRC);  // Length to check.
376 377 378 379

  // At this point, the capture registers are either both set or both cleared.
  // If the capture length is zero, then the capture is either empty or cleared.
  // Fall through in both cases.
380 381 382
  __ beq(&fallthrough, cr0);

  // Check that there are enough characters left in the input.
383 384 385 386
  if (read_backward) {
    __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
    __ add(r6, r6, r4);
    __ cmp(current_input_offset(), r6);
387
    BranchOrBacktrack(le, on_no_match);
388 389 390 391
  } else {
    __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
    BranchOrBacktrack(gt, on_no_match, cr0);
  }
392

393 394
  // r3 - offset of start of capture
  // r4 - length of capture
395 396
  __ add(r3, r3, end_of_input_address());
  __ add(r5, end_of_input_address(), current_input_offset());
397 398 399
  if (read_backward) {
    __ sub(r5, r5, r4);  // Offset by length when matching backwards.
  }
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  __ add(r4, r4, r3);

  Label loop;
  __ bind(&loop);
  if (mode_ == LATIN1) {
    __ lbz(r6, MemOperand(r3));
    __ addi(r3, r3, Operand(char_size()));
    __ lbz(r25, MemOperand(r5));
    __ addi(r5, r5, Operand(char_size()));
  } else {
    DCHECK(mode_ == UC16);
    __ lhz(r6, MemOperand(r3));
    __ addi(r3, r3, Operand(char_size()));
    __ lhz(r25, MemOperand(r5));
    __ addi(r5, r5, Operand(char_size()));
  }
  __ cmp(r6, r25);
  BranchOrBacktrack(ne, on_no_match);
  __ cmp(r3, r4);
  __ blt(&loop);

  // Move current character position to position after match.
  __ sub(current_input_offset(), r5, end_of_input_address());
423 424 425 426 427 428 429
  if (read_backward) {
    __ LoadP(r3, register_location(start_reg));  // Index of start of capture
    __ LoadP(r4, register_location(start_reg + 1));  // Index of end of capture
    __ add(current_input_offset(), current_input_offset(), r3);
    __ sub(current_input_offset(), current_input_offset(), r4);
  }

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  __ bind(&fallthrough);
}


void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
                                                Label* on_not_equal) {
  __ Cmpli(current_character(), Operand(c), r0);
  BranchOrBacktrack(ne, on_not_equal);
}


void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
                                                     Label* on_equal) {
  __ mov(r0, Operand(mask));
  if (c == 0) {
    __ and_(r3, current_character(), r0, SetRC);
  } else {
    __ and_(r3, current_character(), r0);
    __ Cmpli(r3, Operand(c), r0, cr0);
  }
  BranchOrBacktrack(eq, on_equal, cr0);
}


void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
                                                        unsigned mask,
                                                        Label* on_not_equal) {
  __ mov(r0, Operand(mask));
  if (c == 0) {
    __ and_(r3, current_character(), r0, SetRC);
  } else {
    __ and_(r3, current_character(), r0);
    __ Cmpli(r3, Operand(c), r0, cr0);
  }
  BranchOrBacktrack(ne, on_not_equal, cr0);
}


void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
    uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
470
  DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
  __ subi(r3, current_character(), Operand(minus));
  __ mov(r0, Operand(mask));
  __ and_(r3, r3, r0);
  __ Cmpli(r3, Operand(c), r0);
  BranchOrBacktrack(ne, on_not_equal);
}


void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
                                                    Label* on_in_range) {
  __ mov(r0, Operand(from));
  __ sub(r3, current_character(), r0);
  __ Cmpli(r3, Operand(to - from), r0);
  BranchOrBacktrack(le, on_in_range);  // Unsigned lower-or-same condition.
}


void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
                                                       Label* on_not_in_range) {
  __ mov(r0, Operand(from));
  __ sub(r3, current_character(), r0);
  __ Cmpli(r3, Operand(to - from), r0);
  BranchOrBacktrack(gt, on_not_in_range);  // Unsigned higher condition.
}


void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
                                              Label* on_bit_set) {
  __ mov(r3, Operand(table));
  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
    __ andi(r4, current_character(), Operand(kTableSize - 1));
    __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
  } else {
    __ addi(r4, current_character(),
            Operand(ByteArray::kHeaderSize - kHeapObjectTag));
  }
  __ lbzx(r3, MemOperand(r3, r4));
  __ cmpi(r3, Operand::Zero());
  BranchOrBacktrack(ne, on_bit_set);
}


bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
                                                         Label* on_no_match) {
  // Range checks (c in min..max) are generally implemented by an unsigned
  // (c - min) <= (max - min) check
  switch (type) {
    case 's':
      // Match space-characters
      if (mode_ == LATIN1) {
        // One byte space characters are '\t'..'\r', ' ' and \u00a0.
        Label success;
        __ cmpi(current_character(), Operand(' '));
        __ beq(&success);
        // Check range 0x09..0x0d
        __ subi(r3, current_character(), Operand('\t'));
        __ cmpli(r3, Operand('\r' - '\t'));
        __ ble(&success);
        // \u00a0 (NBSP).
        __ cmpi(r3, Operand(0x00a0 - '\t'));
        BranchOrBacktrack(ne, on_no_match);
        __ bind(&success);
        return true;
      }
      return false;
    case 'S':
      // The emitted code for generic character classes is good enough.
      return false;
    case 'd':
      // Match ASCII digits ('0'..'9')
      __ subi(r3, current_character(), Operand('0'));
      __ cmpli(r3, Operand('9' - '0'));
      BranchOrBacktrack(gt, on_no_match);
      return true;
    case 'D':
      // Match non ASCII-digits
      __ subi(r3, current_character(), Operand('0'));
      __ cmpli(r3, Operand('9' - '0'));
      BranchOrBacktrack(le, on_no_match);
      return true;
    case '.': {
      // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
      __ xori(r3, current_character(), Operand(0x01));
      // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
      __ subi(r3, r3, Operand(0x0b));
      __ cmpli(r3, Operand(0x0c - 0x0b));
      BranchOrBacktrack(le, on_no_match);
      if (mode_ == UC16) {
        // Compare original value to 0x2028 and 0x2029, using the already
        // computed (current_char ^ 0x01 - 0x0b). I.e., check for
        // 0x201d (0x2028 - 0x0b) or 0x201e.
        __ subi(r3, r3, Operand(0x2028 - 0x0b));
        __ cmpli(r3, Operand(1));
        BranchOrBacktrack(le, on_no_match);
      }
      return true;
    }
    case 'n': {
      // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
      __ xori(r3, current_character(), Operand(0x01));
      // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
      __ subi(r3, r3, Operand(0x0b));
      __ cmpli(r3, Operand(0x0c - 0x0b));
      if (mode_ == LATIN1) {
        BranchOrBacktrack(gt, on_no_match);
      } else {
        Label done;
        __ ble(&done);
        // Compare original value to 0x2028 and 0x2029, using the already
        // computed (current_char ^ 0x01 - 0x0b). I.e., check for
        // 0x201d (0x2028 - 0x0b) or 0x201e.
        __ subi(r3, r3, Operand(0x2028 - 0x0b));
        __ cmpli(r3, Operand(1));
        BranchOrBacktrack(gt, on_no_match);
        __ bind(&done);
      }
      return true;
    }
    case 'w': {
      if (mode_ != LATIN1) {
        // Table is 256 entries, so all Latin1 characters can be tested.
        __ cmpi(current_character(), Operand('z'));
        BranchOrBacktrack(gt, on_no_match);
      }
      ExternalReference map = ExternalReference::re_word_character_map();
      __ mov(r3, Operand(map));
      __ lbzx(r3, MemOperand(r3, current_character()));
      __ cmpli(r3, Operand::Zero());
      BranchOrBacktrack(eq, on_no_match);
      return true;
    }
    case 'W': {
      Label done;
      if (mode_ != LATIN1) {
        // Table is 256 entries, so all Latin1 characters can be tested.
        __ cmpli(current_character(), Operand('z'));
        __ bgt(&done);
      }
      ExternalReference map = ExternalReference::re_word_character_map();
      __ mov(r3, Operand(map));
      __ lbzx(r3, MemOperand(r3, current_character()));
      __ cmpli(r3, Operand::Zero());
      BranchOrBacktrack(ne, on_no_match);
      if (mode_ != LATIN1) {
        __ bind(&done);
      }
      return true;
    }
    case '*':
      // Match any character.
      return true;
    // No custom implementation (yet): s(UC16), S(UC16).
    default:
      return false;
  }
}


void RegExpMacroAssemblerPPC::Fail() {
  __ li(r3, Operand(FAILURE));
  __ b(&exit_label_);
}


Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
  Label return_r3;

  if (masm_->has_exception()) {
    // If the code gets corrupted due to long regular expressions and lack of
    // space on trampolines, an internal exception flag is set. If this case
    // is detected, we will jump into exit sequence right away.
    __ bind_to(&entry_label_, internal_failure_label_.pos());
  } else {
    // Finalize code - write the entry point code now we know how many
    // registers we need.

    // Entry code:
    __ bind(&entry_label_);

    // Tell the system that we have a stack frame.  Because the type
    // is MANUAL, no is generated.
    FrameScope scope(masm_, StackFrame::MANUAL);

    // Ensure register assigments are consistent with callee save mask
    DCHECK(r25.bit() & kRegExpCalleeSaved);
    DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
    DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
    DCHECK(current_character().bit() & kRegExpCalleeSaved);
    DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
    DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
    DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);

    // Actually emit code to start a new stack frame.
    // Push arguments
    // Save callee-save registers.
    // Start new stack frame.
    // Store link register in existing stack-cell.
    // Order here should correspond to order of offset constants in header file.
    RegList registers_to_retain = kRegExpCalleeSaved;
    RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
                                 r7.bit() | r8.bit() | r9.bit() | r10.bit();
    __ mflr(r0);
    __ push(r0);
    __ MultiPush(argument_registers | registers_to_retain);
    // Set frame pointer in space for it if this is not a direct call
    // from generated code.
    __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
    __ li(r3, Operand::Zero());
    __ push(r3);  // Make room for success counter and initialize it to 0.
680
    __ push(r3);  // Make room for "string start - 1" constant.
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    // Check if we have space on the stack for registers.
    Label stack_limit_hit;
    Label stack_ok;

    ExternalReference stack_limit =
        ExternalReference::address_of_stack_limit(isolate());
    __ mov(r3, Operand(stack_limit));
    __ LoadP(r3, MemOperand(r3));
    __ sub(r3, sp, r3, LeaveOE, SetRC);
    // Handle it if the stack pointer is already below the stack limit.
    __ ble(&stack_limit_hit, cr0);
    // Check if there is room for the variable number of registers above
    // the stack limit.
    __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
    __ bge(&stack_ok);
    // Exit with OutOfMemory exception. There is not enough space on the stack
    // for our working registers.
    __ li(r3, Operand(EXCEPTION));
    __ b(&return_r3);

    __ bind(&stack_limit_hit);
    CallCheckStackGuardState(r3);
    __ cmpi(r3, Operand::Zero());
    // If returned value is non-zero, we exit with the returned value as result.
    __ bne(&return_r3);

    __ bind(&stack_ok);

    // Allocate space on stack for registers.
    __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
    // Load string end.
    __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    // Load input start.
    __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
    // Find negative length (offset of start relative to end).
    __ sub(current_input_offset(), r3, end_of_input_address());
    // Set r3 to address of char before start of the input string
    // (effectively string position -1).
    __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
    __ subi(r3, current_input_offset(), Operand(char_size()));
    if (mode_ == UC16) {
      __ ShiftLeftImm(r0, r4, Operand(1));
      __ sub(r3, r3, r0);
    } else {
      __ sub(r3, r3, r4);
    }
    // Store this value in a local variable, for use when clearing
    // position registers.
729
    __ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

    // Initialize code pointer register
    __ mov(code_pointer(), Operand(masm_->CodeObject()));

    Label load_char_start_regexp, start_regexp;
    // Load newline if index is at start, previous character otherwise.
    __ cmpi(r4, Operand::Zero());
    __ bne(&load_char_start_regexp);
    __ li(current_character(), Operand('\n'));
    __ b(&start_regexp);

    // Global regexp restarts matching here.
    __ bind(&load_char_start_regexp);
    // Load previous char as initial value of current character register.
    LoadCurrentCharacterUnchecked(-1, 1);
    __ bind(&start_regexp);

    // Initialize on-stack registers.
    if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
      // Fill saved registers with initial value = start offset - 1
      if (num_saved_registers_ > 8) {
        // One slot beyond address of register 0.
        __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
        __ li(r5, Operand(num_saved_registers_));
        __ mtctr(r5);
        Label init_loop;
        __ bind(&init_loop);
        __ StorePU(r3, MemOperand(r4, -kPointerSize));
        __ bdnz(&init_loop);
      } else {
        for (int i = 0; i < num_saved_registers_; i++) {
          __ StoreP(r3, register_location(i), r0);
        }
      }
    }

    // Initialize backtrack stack pointer.
    __ LoadP(backtrack_stackpointer(),
             MemOperand(frame_pointer(), kStackHighEnd));

    __ b(&start_label_);

    // Exit code:
    if (success_label_.is_linked()) {
      // Save captures when successful.
      __ bind(&success_label_);
      if (num_saved_registers_ > 0) {
        // copy captures to output
        __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
        __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
        __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
        __ sub(r4, end_of_input_address(), r4);
        // r4 is length of input in bytes.
        if (mode_ == UC16) {
          __ ShiftRightImm(r4, r4, Operand(1));
        }
        // r4 is length of input in characters.
        __ add(r4, r4, r5);
        // r4 is length of string in characters.

        DCHECK_EQ(0, num_saved_registers_ % 2);
        // Always an even number of capture registers. This allows us to
        // unroll the loop once to add an operation between a load of a register
        // and the following use of that register.
        for (int i = 0; i < num_saved_registers_; i += 2) {
          __ LoadP(r5, register_location(i), r0);
          __ LoadP(r6, register_location(i + 1), r0);
          if (i == 0 && global_with_zero_length_check()) {
            // Keep capture start in r25 for the zero-length check later.
            __ mr(r25, r5);
          }
          if (mode_ == UC16) {
            __ ShiftRightArithImm(r5, r5, 1);
            __ add(r5, r4, r5);
            __ ShiftRightArithImm(r6, r6, 1);
            __ add(r6, r4, r6);
          } else {
            __ add(r5, r4, r5);
            __ add(r6, r4, r6);
          }
          __ stw(r5, MemOperand(r3));
          __ addi(r3, r3, Operand(kIntSize));
          __ stw(r6, MemOperand(r3));
          __ addi(r3, r3, Operand(kIntSize));
        }
      }

      if (global()) {
        // Restart matching if the regular expression is flagged as global.
        __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
        __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
        __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
        // Increment success counter.
        __ addi(r3, r3, Operand(1));
        __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
        // Capture results have been stored, so the number of remaining global
        // output registers is reduced by the number of stored captures.
        __ subi(r4, r4, Operand(num_saved_registers_));
        // Check whether we have enough room for another set of capture results.
        __ cmpi(r4, Operand(num_saved_registers_));
        __ blt(&return_r3);

        __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
        // Advance the location for output.
        __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
        __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));

        // Prepare r3 to initialize registers with its value in the next run.
838
        __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
839 840 841 842 843 844 845 846 847 848 849

        if (global_with_zero_length_check()) {
          // Special case for zero-length matches.
          // r25: capture start index
          __ cmp(current_input_offset(), r25);
          // Not a zero-length match, restart.
          __ bne(&load_char_start_regexp);
          // Offset from the end is zero if we already reached the end.
          __ cmpi(current_input_offset(), Operand::Zero());
          __ beq(&exit_label_);
          // Advance current position after a zero-length match.
850 851
          Label advance;
          __ bind(&advance);
852 853
          __ addi(current_input_offset(), current_input_offset(),
                  Operand((mode_ == UC16) ? 2 : 1));
854
          if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
        }

        __ b(&load_char_start_regexp);
      } else {
        __ li(r3, Operand(SUCCESS));
      }
    }

    // Exit and return r3
    __ bind(&exit_label_);
    if (global()) {
      __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
    }

    __ bind(&return_r3);
    // Skip sp past regexp registers and local variables..
    __ mr(sp, frame_pointer());
    // Restore registers r25..r31 and return (restoring lr to pc).
    __ MultiPop(registers_to_retain);
    __ pop(r0);
875 876
    __ mtlr(r0);
    __ blr();
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

    // Backtrack code (branch target for conditional backtracks).
    if (backtrack_label_.is_linked()) {
      __ bind(&backtrack_label_);
      Backtrack();
    }

    Label exit_with_exception;

    // Preempt-code
    if (check_preempt_label_.is_linked()) {
      SafeCallTarget(&check_preempt_label_);

      CallCheckStackGuardState(r3);
      __ cmpi(r3, Operand::Zero());
      // If returning non-zero, we should end execution with the given
      // result as return value.
      __ bne(&return_r3);

      // String might have moved: Reload end of string from frame.
      __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
      SafeReturn();
    }

    // Backtrack stack overflow code.
    if (stack_overflow_label_.is_linked()) {
      SafeCallTarget(&stack_overflow_label_);
      // Reached if the backtrack-stack limit has been hit.
      Label grow_failed;

      // Call GrowStack(backtrack_stackpointer(), &stack_base)
      static const int num_arguments = 3;
      __ PrepareCallCFunction(num_arguments, r3);
      __ mr(r3, backtrack_stackpointer());
      __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
      __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
      ExternalReference grow_stack =
          ExternalReference::re_grow_stack(isolate());
      __ CallCFunction(grow_stack, num_arguments);
916
      // If return nullptr, we have failed to grow the stack, and
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
      // must exit with a stack-overflow exception.
      __ cmpi(r3, Operand::Zero());
      __ beq(&exit_with_exception);
      // Otherwise use return value as new stack pointer.
      __ mr(backtrack_stackpointer(), r3);
      // Restore saved registers and continue.
      SafeReturn();
    }

    if (exit_with_exception.is_linked()) {
      // If any of the code above needed to exit with an exception.
      __ bind(&exit_with_exception);
      // Exit with Result EXCEPTION(-1) to signal thrown exception.
      __ li(r3, Operand(EXCEPTION));
      __ b(&return_r3);
    }
  }

  CodeDesc code_desc;
936
  masm_->GetCode(isolate(), &code_desc);
937 938
  Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
                                                    masm_->CodeObject());
939 940
  PROFILE(masm_->isolate(),
          RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
  return Handle<HeapObject>::cast(code);
}


void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }


void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
                                           Label* if_ge) {
  __ LoadP(r3, register_location(reg), r0);
  __ Cmpi(r3, Operand(comparand), r0);
  BranchOrBacktrack(ge, if_ge);
}


void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
                                           Label* if_lt) {
  __ LoadP(r3, register_location(reg), r0);
  __ Cmpi(r3, Operand(comparand), r0);
  BranchOrBacktrack(lt, if_lt);
}


void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
  __ LoadP(r3, register_location(reg), r0);
  __ cmp(r3, current_input_offset());
  BranchOrBacktrack(eq, if_eq);
}


RegExpMacroAssembler::IrregexpImplementation
RegExpMacroAssemblerPPC::Implementation() {
  return kPPCImplementation;
}


void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
                                                   Label* on_end_of_input,
                                                   bool check_bounds,
                                                   int characters) {
  DCHECK(cp_offset < (1 << 30));  // Be sane! (And ensure negation works)
  if (check_bounds) {
983 984 985 986 987
    if (cp_offset >= 0) {
      CheckPosition(cp_offset + characters - 1, on_end_of_input);
    } else {
      CheckPosition(cp_offset, on_end_of_input);
    }
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
  }
  LoadCurrentCharacterUnchecked(cp_offset, characters);
}


void RegExpMacroAssemblerPPC::PopCurrentPosition() {
  Pop(current_input_offset());
}


void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
  Pop(r3);
  __ StoreP(r3, register_location(register_index), r0);
}


void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
  __ mov_label_offset(r3, label);
  Push(r3);
  CheckStackLimit();
}


void RegExpMacroAssemblerPPC::PushCurrentPosition() {
  Push(current_input_offset());
}


void RegExpMacroAssemblerPPC::PushRegister(int register_index,
                                           StackCheckFlag check_stack_limit) {
  __ LoadP(r3, register_location(register_index), r0);
  Push(r3);
  if (check_stack_limit) CheckStackLimit();
}


void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
  __ LoadP(current_input_offset(), register_location(reg), r0);
}


void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
  __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
  __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
  __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
}


void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
  Label after_position;
  __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
  __ bge(&after_position);
  __ mov(current_input_offset(), Operand(-by * char_size()));
  // On RegExp code entry (where this operation is used), the character before
  // the current position is expected to be already loaded.
  // We have advanced the position, so it's safe to read backwards.
  LoadCurrentCharacterUnchecked(-1, 1);
  __ bind(&after_position);
}


void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
  __ mov(r3, Operand(to));
  __ StoreP(r3, register_location(register_index), r0);
}


bool RegExpMacroAssemblerPPC::Succeed() {
  __ b(&success_label_);
  return global();
}


void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
                                                             int cp_offset) {
  if (cp_offset == 0) {
    __ StoreP(current_input_offset(), register_location(reg), r0);
  } else {
    __ mov(r0, Operand(cp_offset * char_size()));
    __ add(r3, current_input_offset(), r0);
    __ StoreP(r3, register_location(reg), r0);
  }
}


void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
  DCHECK(reg_from <= reg_to);
1076
  __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
  for (int reg = reg_from; reg <= reg_to; reg++) {
    __ StoreP(r3, register_location(reg), r0);
  }
}


void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
  __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
  __ sub(r3, backtrack_stackpointer(), r4);
  __ StoreP(r3, register_location(reg), r0);
}


// Private methods:

void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
  int frame_alignment = masm_->ActivationFrameAlignment();
  int stack_space = kNumRequiredStackFrameSlots;
  int stack_passed_arguments = 1;  // space for return address pointer

  // The following stack manipulation logic is similar to
  // PrepareCallCFunction.  However, we need an extra slot on the
  // stack to house the return address parameter.
  if (frame_alignment > kPointerSize) {
    // Make stack end at alignment and make room for stack arguments
    // -- preserving original value of sp.
    __ mr(scratch, sp);
    __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
1105
    DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
    __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
  } else {
    // Make room for stack arguments
    stack_space += stack_passed_arguments;
  }

  // Allocate frame with required slots to make ABI work.
  __ li(r0, Operand::Zero());
  __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));

  // RegExp code frame pointer.
  __ mr(r5, frame_pointer());
  // Code* of self.
  __ mov(r4, Operand(masm_->CodeObject()));
  // r3 will point to the return address, placed by DirectCEntry.
  __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));

  ExternalReference stack_guard_check =
      ExternalReference::re_check_stack_guard_state(isolate());
  __ mov(ip, Operand(stack_guard_check));
  DirectCEntryStub stub(isolate());
  stub.GenerateCall(masm_, ip);

  // Restore the stack pointer
  stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
  if (frame_alignment > kPointerSize) {
    __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
  } else {
    __ addi(sp, sp, Operand(stack_space * kPointerSize));
  }

  __ mov(code_pointer(), Operand(masm_->CodeObject()));
}


// Helper function for reading a value out of a stack frame.
template <typename T>
static T& frame_entry(Address re_frame, int frame_offset) {
  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
}


1149 1150 1151 1152 1153 1154
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
  return reinterpret_cast<T*>(re_frame + frame_offset);
}


1155 1156 1157
int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
                                                  Code* re_code,
                                                  Address re_frame) {
1158 1159
  return NativeRegExpMacroAssembler::CheckStackGuardState(
      frame_entry<Isolate*>(re_frame, kIsolate),
1160 1161 1162
      frame_entry<intptr_t>(re_frame, kStartIndex),
      frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
      re_code, frame_entry_address<String*>(re_frame, kInputString),
1163 1164
      frame_entry_address<const byte*>(re_frame, kInputStart),
      frame_entry_address<const byte*>(re_frame, kInputEnd));
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
}


MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
  DCHECK(register_index < (1 << 30));
  if (num_registers_ <= register_index) {
    num_registers_ = register_index + 1;
  }
  return MemOperand(frame_pointer(),
                    kRegisterZero - register_index * kPointerSize);
}


void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
                                            Label* on_outside_input) {
1180 1181 1182 1183 1184 1185 1186 1187 1188
  if (cp_offset >= 0) {
    __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
    BranchOrBacktrack(ge, on_outside_input);
  } else {
    __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
    __ addi(r3, current_input_offset(), Operand(cp_offset * char_size()));
    __ cmp(r3, r4);
    BranchOrBacktrack(le, on_outside_input);
  }
1189 1190 1191 1192 1193 1194
}


void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
                                                CRegister cr) {
  if (condition == al) {  // Unconditional.
1195
    if (to == nullptr) {
1196 1197 1198 1199 1200 1201
      Backtrack();
      return;
    }
    __ b(to);
    return;
  }
1202
  if (to == nullptr) {
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    __ b(condition, &backtrack_label_, cr);
    return;
  }
  __ b(condition, to, cr);
}


void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
                                       CRegister cr) {
  __ b(cond, to, cr, SetLK);
}


void RegExpMacroAssemblerPPC::SafeReturn() {
  __ pop(r0);
  __ mov(ip, Operand(masm_->CodeObject()));
  __ add(r0, r0, ip);
  __ mtlr(r0);
  __ blr();
}


void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
  __ bind(name);
  __ mflr(r0);
  __ mov(ip, Operand(masm_->CodeObject()));
  __ sub(r0, r0, ip);
  __ push(r0);
}


void RegExpMacroAssemblerPPC::Push(Register source) {
1235
  DCHECK(source != backtrack_stackpointer());
1236 1237 1238 1239 1240
  __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
}


void RegExpMacroAssemblerPPC::Pop(Register target) {
1241
  DCHECK(target != backtrack_stackpointer());
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
  __ LoadP(target, MemOperand(backtrack_stackpointer()));
  __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
          Operand(kPointerSize));
}


void RegExpMacroAssemblerPPC::CheckPreemption() {
  // Check for preemption.
  ExternalReference stack_limit =
      ExternalReference::address_of_stack_limit(isolate());
  __ mov(r3, Operand(stack_limit));
  __ LoadP(r3, MemOperand(r3));
  __ cmpl(sp, r3);
  SafeCall(&check_preempt_label_, le);
}


void RegExpMacroAssemblerPPC::CheckStackLimit() {
  ExternalReference stack_limit =
      ExternalReference::address_of_regexp_stack_limit(isolate());
  __ mov(r3, Operand(stack_limit));
  __ LoadP(r3, MemOperand(r3));
  __ cmpl(backtrack_stackpointer(), r3);
  SafeCall(&stack_overflow_label_, le);
}


void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
                                                            int characters) {
  Register offset = current_input_offset();
  if (cp_offset != 0) {
    // r25 is not being used to store the capture start index at this point.
    __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
    offset = r25;
  }
  // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
  // and the operating system running on the target allow it.
  // We assume we don't want to do unaligned loads on PPC, so this function
  // must only be used to load a single character at a time.

  __ add(current_character(), end_of_input_address(), offset);
1283
#if V8_TARGET_LITTLE_ENDIAN
1284
  if (mode_ == LATIN1) {
1285 1286 1287 1288 1289
    if (characters == 4) {
      __ lwz(current_character(), MemOperand(current_character()));
    } else if (characters == 2) {
      __ lhz(current_character(), MemOperand(current_character()));
    } else {
1290
      DCHECK_EQ(1, characters);
1291 1292
      __ lbz(current_character(), MemOperand(current_character()));
    }
1293 1294
  } else {
    DCHECK(mode_ == UC16);
1295 1296 1297
    if (characters == 2) {
      __ lwz(current_character(), MemOperand(current_character()));
    } else {
1298
      DCHECK_EQ(1, characters);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
      __ lhz(current_character(), MemOperand(current_character()));
    }
  }
#else
  if (mode_ == LATIN1) {
    if (characters == 4) {
      __ lwbrx(current_character(), MemOperand(r0, current_character()));
    } else if (characters == 2) {
      __ lhbrx(current_character(), MemOperand(r0, current_character()));
    } else {
1309
      DCHECK_EQ(1, characters);
1310 1311 1312 1313 1314 1315 1316 1317
      __ lbz(current_character(), MemOperand(current_character()));
    }
  } else {
    DCHECK(mode_ == UC16);
    if (characters == 2) {
      __ lwz(current_character(), MemOperand(current_character()));
      __ rlwinm(current_character(), current_character(), 16, 0, 31);
    } else {
1318
      DCHECK_EQ(1, characters);
1319 1320
      __ lhz(current_character(), MemOperand(current_character()));
    }
1321
  }
1322
#endif
1323 1324 1325 1326 1327 1328
}


#undef __

#endif  // V8_INTERPRETED_REGEXP
1329 1330
}  // namespace internal
}  // namespace v8
1331 1332

#endif  // V8_TARGET_ARCH_PPC