codegen-s390.cc 8.29 KB
Newer Older
1 2 3 4 5 6 7 8
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/s390/codegen-s390.h"

#if V8_TARGET_ARCH_S390

9 10
#include <memory>

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "src/codegen.h"
#include "src/macro-assembler.h"
#include "src/s390/simulator-s390.h"

namespace v8 {
namespace internal {

#define __ masm.

UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
#if defined(USE_SIMULATOR)
  return nullptr;
#else
  size_t actual_size;
  byte* buffer =
      static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
  if (buffer == nullptr) return nullptr;

  MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
                      CodeObjectRequired::kNo);

  __ MovFromFloatParameter(d0);
  __ sqdbr(d0, d0);
  __ MovToFloatResult(d0);
  __ Ret();

  CodeDesc desc;
  masm.GetCode(&desc);
jyan's avatar
jyan committed
39 40
  DCHECK(ABI_USES_FUNCTION_DESCRIPTORS ||
         !RelocInfo::RequiresRelocation(isolate, desc));
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

  Assembler::FlushICache(isolate, buffer, actual_size);
  base::OS::ProtectCode(buffer, actual_size);
  return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
#endif
}

#undef __

// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.

void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
  masm->EnterFrame(StackFrame::INTERNAL);
  DCHECK(!masm->has_frame());
  masm->set_has_frame(true);
}

void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
  masm->LeaveFrame(StackFrame::INTERNAL);
  DCHECK(masm->has_frame());
  masm->set_has_frame(false);
}

// -------------------------------------------------------------------------
// Code generators

#define __ ACCESS_MASM(masm)

// assume ip can be used as a scratch register below
void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string,
                                       Register index, Register result,
                                       Label* call_runtime) {
74 75 76
  Label indirect_string_loaded;
  __ bind(&indirect_string_loaded);

77 78 79 80 81 82 83 84 85 86 87
  // Fetch the instance type of the receiver into result register.
  __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset));
  __ LoadlB(result, FieldMemOperand(result, Map::kInstanceTypeOffset));

  // We need special handling for indirect strings.
  Label check_sequential;
  __ mov(r0, Operand(kIsIndirectStringMask));
  __ AndP(r0, result);
  __ beq(&check_sequential, Label::kNear /*, cr0*/);

  // Dispatch on the indirect string shape: slice or cons.
88 89 90 91 92 93 94
  Label cons_string, thin_string;
  __ LoadRR(ip, result);
  __ nilf(ip, Operand(kStringRepresentationMask));
  __ CmpP(ip, Operand(kConsStringTag));
  __ beq(&cons_string);
  __ CmpP(ip, Operand(kThinStringTag));
  __ beq(&thin_string);
95 96 97 98 99 100

  // Handle slices.
  __ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
  __ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset));
  __ SmiUntag(ip, result);
  __ AddP(index, ip);
101 102 103 104 105 106
  __ b(&indirect_string_loaded);

  // Handle thin strings.
  __ bind(&thin_string);
  __ LoadP(string, FieldMemOperand(string, ThinString::kActualOffset));
  __ b(&indirect_string_loaded);
107 108 109 110 111 112 113 114 115 116 117 118

  // Handle cons strings.
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ bind(&cons_string);
  __ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset));
  __ CompareRoot(result, Heap::kempty_stringRootIndex);
  __ bne(call_runtime);
  // Get the first of the two strings and load its instance type.
  __ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset));
119
  __ b(&indirect_string_loaded);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

  // Distinguish sequential and external strings. Only these two string
  // representations can reach here (slices and flat cons strings have been
  // reduced to the underlying sequential or external string).
  Label external_string, check_encoding;
  __ bind(&check_sequential);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ mov(r0, Operand(kStringRepresentationMask));
  __ AndP(r0, result);
  __ bne(&external_string, Label::kNear);

  // Prepare sequential strings
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
  __ AddP(string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
  __ b(&check_encoding, Label::kNear);

  // Handle external strings.
  __ bind(&external_string);
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ mov(r0, Operand(kIsIndirectStringMask));
    __ AndP(r0, result);
    __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
  }
  // Rule out short external strings.
  STATIC_ASSERT(kShortExternalStringTag != 0);
  __ mov(r0, Operand(kShortExternalStringMask));
  __ AndP(r0, result);
  __ bne(call_runtime /*, cr0*/);
  __ LoadP(string,
           FieldMemOperand(string, ExternalString::kResourceDataOffset));

  Label one_byte, done;
  __ bind(&check_encoding);
  STATIC_ASSERT(kTwoByteStringTag == 0);
  __ mov(r0, Operand(kStringEncodingMask));
  __ AndP(r0, result);
  __ bne(&one_byte, Label::kNear);
  // Two-byte string.
  __ ShiftLeftP(result, index, Operand(1));
  __ LoadLogicalHalfWordP(result, MemOperand(string, result));
  __ b(&done, Label::kNear);
  __ bind(&one_byte);
  // One-byte string.
  __ LoadlB(result, MemOperand(string, index));
  __ bind(&done);
}

#undef __

CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
  USE(isolate);
  DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
  // Since patcher is a large object, allocate it dynamically when needed,
  // to avoid overloading the stack in stress conditions.
  // DONT_FLUSH is used because the CodeAgingHelper is initialized early in
  // the process, before ARM simulator ICache is setup.
178
  std::unique_ptr<CodePatcher> patcher(
179 180 181
      new CodePatcher(isolate, young_sequence_.start(),
                      young_sequence_.length(), CodePatcher::DONT_FLUSH));
  PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
182
  patcher->masm()->PushStandardFrame(r3);
183 184 185 186 187 188 189 190 191 192 193 194 195 196
}

#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
  return Assembler::IsNop(Assembler::instr_at(candidate));
}
#endif

bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
  bool result = isolate->code_aging_helper()->IsYoung(sequence);
  DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
  return result;
}

197 198 199 200 201 202 203 204
Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) {
  if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge;

  Code* code = NULL;
  Address target_address =
      Assembler::target_address_at(sequence + kCodeAgingTargetDelta, code);
  Code* stub = GetCodeFromTargetAddress(target_address);
  return GetAgeOfCodeAgeStub(stub);
205 206
}

207 208
void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence,
                                Code::Age age) {
209 210 211 212 213 214
  uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
  if (age == kNoAgeCodeAge) {
    isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
    Assembler::FlushICache(isolate, sequence, young_length);
  } else {
    // FIXED_SEQUENCE
215
    Code* stub = GetCodeAgeStub(isolate, age);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    CodePatcher patcher(isolate, sequence, young_length);
    intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
    // We need to push lr on stack so that GenerateMakeCodeYoungAgainCommon
    // knows where to pick up the return address
    //
    // Since we can no longer guarentee ip will hold the branch address
    // because of BRASL, use Call so that GenerateMakeCodeYoungAgainCommon
    // can calculate the branch address offset
    patcher.masm()->nop();  // marker to detect sequence (see IsOld)
    patcher.masm()->CleanseP(r14);
    patcher.masm()->Push(r14);
    patcher.masm()->mov(r2, Operand(target));
    patcher.masm()->Call(r2);
    for (int i = 0; i < kNoCodeAgeSequenceLength - kCodeAgingSequenceLength;
         i += 2) {
      // TODO(joransiu): Create nop function to pad
      //       (kNoCodeAgeSequenceLength - kCodeAgingSequenceLength) bytes.
      patcher.masm()->nop();  // 2-byte nops().
    }
  }
}

}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_S390