macros.h 16.1 KB
Newer Older
1
// Copyright 2014 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4 5 6 7

#ifndef V8_BASE_MACROS_H_
#define V8_BASE_MACROS_H_

8 9
#include <limits>

10
#include "src/base/compiler-specific.h"
jfb's avatar
jfb committed
11
#include "src/base/format-macros.h"
12
#include "src/base/logging.h"
13

14 15
// No-op macro which is used to work around MSVC's funky VA_ARGS support.
#define EXPAND(x) x
16

17 18 19
// TODO(all) Replace all uses of this macro with C++'s offsetof. To do that, we
// have to make sure that only standard-layout types and simple field
// designators are used.
20 21
#define OFFSET_OF(type, field) \
  (reinterpret_cast<intptr_t>(&(reinterpret_cast<type*>(16)->field)) - 16)
22 23


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// The arraysize(arr) macro returns the # of elements in an array arr.
// The expression is a compile-time constant, and therefore can be
// used in defining new arrays, for example.  If you use arraysize on
// a pointer by mistake, you will get a compile-time error.
#define arraysize(array) (sizeof(ArraySizeHelper(array)))


// This template function declaration is used in defining arraysize.
// Note that the function doesn't need an implementation, as we only
// use its type.
template <typename T, size_t N>
char (&ArraySizeHelper(T (&array)[N]))[N];


#if !V8_CC_MSVC
// That gcc wants both of these prototypes seems mysterious. VC, for
// its part, can't decide which to use (another mystery). Matching of
// template overloads: the final frontier.
template <typename T, size_t N>
char (&ArraySizeHelper(const T (&array)[N]))[N];
#endif

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
// bit_cast<Dest,Source> is a template function that implements the
// equivalent of "*reinterpret_cast<Dest*>(&source)".  We need this in
// very low-level functions like the protobuf library and fast math
// support.
//
//   float f = 3.14159265358979;
//   int i = bit_cast<int32>(f);
//   // i = 0x40490fdb
//
// The classical address-casting method is:
//
//   // WRONG
//   float f = 3.14159265358979;            // WRONG
//   int i = * reinterpret_cast<int*>(&f);  // WRONG
//
// The address-casting method actually produces undefined behavior
// according to ISO C++ specification section 3.10 -15 -.  Roughly, this
// section says: if an object in memory has one type, and a program
// accesses it with a different type, then the result is undefined
// behavior for most values of "different type".
//
// This is true for any cast syntax, either *(int*)&f or
// *reinterpret_cast<int*>(&f).  And it is particularly true for
// conversions between integral lvalues and floating-point lvalues.
//
// The purpose of 3.10 -15- is to allow optimizing compilers to assume
// that expressions with different types refer to different memory.  gcc
// 4.0.1 has an optimizer that takes advantage of this.  So a
// non-conforming program quietly produces wildly incorrect output.
//
// The problem is not the use of reinterpret_cast.  The problem is type
// punning: holding an object in memory of one type and reading its bits
// back using a different type.
//
// The C++ standard is more subtle and complex than this, but that
// is the basic idea.
//
// Anyways ...
//
// bit_cast<> calls memcpy() which is blessed by the standard,
// especially by the example in section 3.9 .  Also, of course,
// bit_cast<> wraps up the nasty logic in one place.
//
// Fortunately memcpy() is very fast.  In optimized mode, with a
// constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
// code with the minimal amount of data movement.  On a 32-bit system,
// memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
// compiles to two loads and two stores.
//
// I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
//
// WARNING: if Dest or Source is a non-POD type, the result of the memcpy
// is likely to surprise you.
template <class Dest, class Source>
100
V8_INLINE Dest bit_cast(Source const& source) {
101 102
  static_assert(sizeof(Dest) == sizeof(Source),
                "source and dest must be same size");
103 104 105 106 107
  Dest dest;
  memcpy(&dest, &source, sizeof(dest));
  return dest;
}

108 109
// Explicitly declare the assignment operator as deleted.
#define DISALLOW_ASSIGN(TypeName) TypeName& operator=(const TypeName&) = delete;
110

111
// Explicitly declare the copy constructor and assignment operator as deleted.
112 113
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&) = delete;      \
114
  DISALLOW_ASSIGN(TypeName)
115

116 117 118 119 120 121
// Explicitly declare all copy/move constructors and assignments as deleted.
#define DISALLOW_COPY_AND_MOVE_AND_ASSIGN(TypeName) \
  TypeName(TypeName&&) = delete;                    \
  TypeName& operator=(TypeName&&) = delete;         \
  DISALLOW_COPY_AND_ASSIGN(TypeName)

122
// Explicitly declare all implicit constructors as deleted, namely the
123
// default constructor, copy constructor and operator= functions.
124
// This is especially useful for classes containing only static methods.
125 126
#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
  TypeName() = delete;                           \
127 128
  DISALLOW_COPY_AND_ASSIGN(TypeName)

129 130 131 132 133 134 135 136 137 138 139 140 141
// Disallow copying a type, but provide default construction, move construction
// and move assignment. Especially useful for move-only structs.
#define MOVE_ONLY_WITH_DEFAULT_CONSTRUCTORS(TypeName) \
  TypeName() = default;                               \
  MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(TypeName)

// Disallow copying a type, and only provide move construction and move
// assignment. Especially useful for move-only structs.
#define MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(TypeName) \
  TypeName(TypeName&&) = default;                  \
  TypeName& operator=(TypeName&&) = default;       \
  DISALLOW_COPY_AND_ASSIGN(TypeName)

142 143 144 145 146 147 148 149 150 151 152
// A macro to disallow the dynamic allocation.
// This should be used in the private: declarations for a class
// Declaring operator new and delete as deleted is not spec compliant.
// Extract from 3.2.2 of C++11 spec:
//  [...] A non-placement deallocation function for a class is
//  odr-used by the definition of the destructor of that class, [...]
#define DISALLOW_NEW_AND_DELETE()                            \
  void* operator new(size_t) { base::OS::Abort(); }          \
  void* operator new[](size_t) { base::OS::Abort(); };       \
  void operator delete(void*, size_t) { base::OS::Abort(); } \
  void operator delete[](void*, size_t) { base::OS::Abort(); }
153

154
// Define V8_USE_ADDRESS_SANITIZER macro.
155 156
#if defined(__has_feature)
#if __has_feature(address_sanitizer)
157
#define V8_USE_ADDRESS_SANITIZER 1
158 159 160
#endif
#endif

161
// Define DISABLE_ASAN macro.
162 163 164
#ifdef V8_USE_ADDRESS_SANITIZER
#define DISABLE_ASAN __attribute__((no_sanitize_address))
#else
165 166 167
#define DISABLE_ASAN
#endif

168 169 170 171 172 173 174
// Define V8_USE_MEMORY_SANITIZER macro.
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#define V8_USE_MEMORY_SANITIZER 1
#endif
#endif

175
// Helper macro to define no_sanitize attributes only with clang.
krasin's avatar
krasin committed
176 177
#if defined(__clang__) && defined(__has_attribute)
#if __has_attribute(no_sanitize)
178
#define CLANG_NO_SANITIZE(what) __attribute__((no_sanitize(what)))
krasin's avatar
krasin committed
179 180
#endif
#endif
181 182
#if !defined(CLANG_NO_SANITIZE)
#define CLANG_NO_SANITIZE(what)
krasin's avatar
krasin committed
183
#endif
184

185 186 187 188 189 190 191
// DISABLE_CFI_PERF -- Disable Control Flow Integrity checks for Perf reasons.
#define DISABLE_CFI_PERF CLANG_NO_SANITIZE("cfi")

// DISABLE_CFI_ICALL -- Disable Control Flow Integrity indirect call checks,
// useful because calls into JITed code can not be CFI verified.
#define DISABLE_CFI_ICALL CLANG_NO_SANITIZE("cfi-icall")

192 193 194 195 196 197
#if V8_CC_GNU
#define V8_IMMEDIATE_CRASH() __builtin_trap()
#else
#define V8_IMMEDIATE_CRASH() ((void(*)())0)()
#endif

198

199
// TODO(all) Replace all uses of this macro with static_assert, remove macro.
200 201
#define STATIC_ASSERT(test) static_assert(test, #test)

202 203 204
namespace v8 {
namespace base {

205 206 207 208
// Note that some implementations of std::is_trivially_copyable mandate that at
// least one of the copy constructor, move constructor, copy assignment or move
// assignment is non-deleted, while others do not. Be aware that also
// base::is_trivially_copyable will differ for these cases.
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
template <typename T>
struct is_trivially_copyable {
#if V8_CC_MSVC
  // Unfortunately, MSVC 2015 is broken in that std::is_trivially_copyable can
  // be false even though it should be true according to the standard.
  // (status at 2018-02-26, observed on the msvc waterfall bot).
  // Interestingly, the lower-level primitives used below are working as
  // intended, so we reimplement this according to the standard.
  // See also https://developercommunity.visualstudio.com/content/problem/
  //          170883/msvc-type-traits-stdis-trivial-is-bugged.html.
  static constexpr bool value =
      // Copy constructor is trivial or deleted.
      (std::is_trivially_copy_constructible<T>::value ||
       !std::is_copy_constructible<T>::value) &&
      // Copy assignment operator is trivial or deleted.
      (std::is_trivially_copy_assignable<T>::value ||
       !std::is_copy_assignable<T>::value) &&
      // Move constructor is trivial or deleted.
      (std::is_trivially_move_constructible<T>::value ||
       !std::is_move_constructible<T>::value) &&
      // Move assignment operator is trivial or deleted.
      (std::is_trivially_move_assignable<T>::value ||
       !std::is_move_assignable<T>::value) &&
232 233
      // (Some implementations mandate that one of the above is non-deleted, but
      // the standard does not, so let's skip this check.)
234 235 236 237 238 239 240 241 242 243 244 245 246 247
      // Trivial non-deleted destructor.
      std::is_trivially_destructible<T>::value;

#elif defined(__GNUC__) && __GNUC__ < 5
  // WARNING:
  // On older libstdc++ versions, there is no way to correctly implement
  // is_trivially_copyable. The workaround below is an approximation (neither
  // over- nor underapproximation). E.g. it wrongly returns true if the move
  // constructor is non-trivial, and it wrongly returns false if the copy
  // constructor is deleted, but copy assignment is trivial.
  // TODO(rongjie) Remove this workaround once we require gcc >= 5.0
  static constexpr bool value =
      __has_trivial_copy(T) && __has_trivial_destructor(T);

248
#else
249 250 251 252 253 254 255 256 257 258 259
  static constexpr bool value = std::is_trivially_copyable<T>::value;
#endif
};
#if defined(__GNUC__) && __GNUC__ < 5
// On older libstdc++ versions, base::is_trivially_copyable<T>::value is only an
// approximation (see above), so make ASSERT_{NOT_,}TRIVIALLY_COPYABLE a noop.
#define ASSERT_TRIVIALLY_COPYABLE(T) static_assert(true, "check disabled")
#define ASSERT_NOT_TRIVIALLY_COPYABLE(T) static_assert(true, "check disabled")
#else
#define ASSERT_TRIVIALLY_COPYABLE(T)                         \
  static_assert(::v8::base::is_trivially_copyable<T>::value, \
260
                #T " should be trivially copyable")
261 262
#define ASSERT_NOT_TRIVIALLY_COPYABLE(T)                      \
  static_assert(!::v8::base::is_trivially_copyable<T>::value, \
263
                #T " should not be trivially copyable")
264
#endif
265

266
// The USE(x, ...) template is used to silence C++ compiler warnings
267
// issued for (yet) unused variables (typically parameters).
268 269 270 271 272
// The arguments are guaranteed to be evaluated from left to right.
struct Use {
  template <typename T>
  Use(T&&) {}  // NOLINT(runtime/explicit)
};
273 274 275 276
#define USE(...)                                                   \
  do {                                                             \
    ::v8::base::Use unused_tmp_array_for_use_macro[]{__VA_ARGS__}; \
    (void)unused_tmp_array_for_use_macro;                          \
277
  } while (false)
278

279 280 281
}  // namespace base
}  // namespace v8

282 283 284 285 286 287 288 289
// implicit_cast<A>(x) triggers an implicit cast from {x} to type {A}. This is
// useful in situations where static_cast<A>(x) would do too much.
// Only use this for cheap-to-copy types, or use move semantics explicitly.
template <class A>
V8_INLINE A implicit_cast(A x) {
  return x;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303
// Define our own macros for writing 64-bit constants.  This is less fragile
// than defining __STDC_CONSTANT_MACROS before including <stdint.h>, and it
// works on compilers that don't have it (like MSVC).
#if V8_CC_MSVC
# if V8_HOST_ARCH_64_BIT
#  define V8_PTR_PREFIX   "ll"
# else
#  define V8_PTR_PREFIX   ""
# endif  // V8_HOST_ARCH_64_BIT
#elif V8_CC_MINGW64
# define V8_PTR_PREFIX    "I64"
#elif V8_HOST_ARCH_64_BIT
# define V8_PTR_PREFIX    "l"
#else
304 305 306
#if V8_OS_AIX
#define V8_PTR_PREFIX "l"
#else
307 308
# define V8_PTR_PREFIX    ""
#endif
309
#endif
310 311 312 313 314

#define V8PRIxPTR V8_PTR_PREFIX "x"
#define V8PRIdPTR V8_PTR_PREFIX "d"
#define V8PRIuPTR V8_PTR_PREFIX "u"

315 316 317 318 319 320 321 322
#ifdef V8_TARGET_ARCH_64_BIT
#define V8_PTR_HEX_DIGITS 12
#define V8PRIxPTR_FMT "0x%012" V8PRIxPTR
#else
#define V8_PTR_HEX_DIGITS 8
#define V8PRIxPTR_FMT "0x%08" V8PRIxPTR
#endif

jfb's avatar
jfb committed
323 324 325 326 327 328 329 330 331 332 333
// ptrdiff_t is 't' according to the standard, but MSVC uses 'I'.
#if V8_CC_MSVC
#define V8PRIxPTRDIFF "Ix"
#define V8PRIdPTRDIFF "Id"
#define V8PRIuPTRDIFF "Iu"
#else
#define V8PRIxPTRDIFF "tx"
#define V8PRIdPTRDIFF "td"
#define V8PRIuPTRDIFF "tu"
#endif

334 335 336 337
// Fix for Mac OS X defining uintptr_t as "unsigned long":
#if V8_OS_MACOSX
#undef V8PRIxPTR
#define V8PRIxPTR "lx"
jfb's avatar
jfb committed
338 339
#undef V8PRIdPTR
#define V8PRIdPTR "ld"
340 341
#undef V8PRIuPTR
#define V8PRIuPTR "lxu"
342 343
#endif

344 345 346 347 348
// The following macro works on both 32 and 64-bit platforms.
// Usage: instead of writing 0x1234567890123456
//      write V8_2PART_UINT64_C(0x12345678,90123456);
#define V8_2PART_UINT64_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))

349 350 351 352 353

// Compute the 0-relative offset of some absolute value x of type T.
// This allows conversion of Addresses and integral types into
// 0-relative int offsets.
template <typename T>
354
constexpr inline intptr_t OffsetFrom(T x) {
355 356 357 358 359 360 361 362
  return x - static_cast<T>(0);
}


// Compute the absolute value of type T for some 0-relative offset x.
// This allows conversion of 0-relative int offsets into Addresses and
// integral types.
template <typename T>
363
constexpr inline T AddressFrom(intptr_t x) {
364 365 366 367 368 369 370
  return static_cast<T>(static_cast<T>(0) + x);
}


// Return the largest multiple of m which is <= x.
template <typename T>
inline T RoundDown(T x, intptr_t m) {
371 372
  // m must be a power of two.
  DCHECK(m != 0 && ((m & (m - 1)) == 0));
373 374
  return AddressFrom<T>(OffsetFrom(x) & -m);
}
375 376 377 378 379 380
template <intptr_t m, typename T>
constexpr inline T RoundDown(T x) {
  // m must be a power of two.
  STATIC_ASSERT(m != 0 && ((m & (m - 1)) == 0));
  return AddressFrom<T>(OffsetFrom(x) & -m);
}
381 382 383 384 385 386

// Return the smallest multiple of m which is >= x.
template <typename T>
inline T RoundUp(T x, intptr_t m) {
  return RoundDown<T>(static_cast<T>(x + m - 1), m);
}
387 388 389 390
template <intptr_t m, typename T>
constexpr inline T RoundUp(T x) {
  return RoundDown<m, T>(static_cast<T>(x + m - 1));
}
391

392 393 394 395 396 397 398
inline void* AlignedAddress(void* address, size_t alignment) {
  // The alignment must be a power of two.
  DCHECK_EQ(alignment & (alignment - 1), 0u);
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(address) &
                                 ~static_cast<uintptr_t>(alignment - 1));
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
// Bounds checks for float to integer conversions, which does truncation. Hence,
// the range of legal values is (min - 1, max + 1).
template <typename int_t, typename float_t, typename biggest_int_t = int64_t>
bool is_inbounds(float_t v) {
  static_assert(sizeof(int_t) < sizeof(biggest_int_t),
                "int_t can't be bounds checked by the compiler");
  constexpr float_t kLowerBound =
      static_cast<float_t>(std::numeric_limits<int_t>::min()) - 1;
  constexpr float_t kUpperBound =
      static_cast<float_t>(std::numeric_limits<int_t>::max()) + 1;
  constexpr bool kLowerBoundIsMin =
      static_cast<biggest_int_t>(kLowerBound) ==
      static_cast<biggest_int_t>(std::numeric_limits<int_t>::min());
  constexpr bool kUpperBoundIsMax =
      static_cast<biggest_int_t>(kUpperBound) ==
      static_cast<biggest_int_t>(std::numeric_limits<int_t>::max());
  return (kLowerBoundIsMin ? (kLowerBound <= v) : (kLowerBound < v)) &&
         (kUpperBoundIsMax ? (v <= kUpperBound) : (v < kUpperBound));
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#ifdef V8_OS_WIN

// Setup for Windows shared library export.
#ifdef BUILDING_V8_SHARED
#define V8_EXPORT_PRIVATE __declspec(dllexport)
#elif USING_V8_SHARED
#define V8_EXPORT_PRIVATE __declspec(dllimport)
#else
#define V8_EXPORT_PRIVATE
#endif  // BUILDING_V8_SHARED

#else  // V8_OS_WIN

// Setup for Linux shared library export.
#if V8_HAS_ATTRIBUTE_VISIBILITY
#ifdef BUILDING_V8_SHARED
#define V8_EXPORT_PRIVATE __attribute__((visibility("default")))
#else
#define V8_EXPORT_PRIVATE
#endif
#else
#define V8_EXPORT_PRIVATE
#endif

#endif  // V8_OS_WIN

445
#endif  // V8_BASE_MACROS_H_