ic-s390.cc 33.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_S390

#include "src/ic/ic.h"
#include "src/codegen.h"
#include "src/ic/ic-compiler.h"
#include "src/ic/stub-cache.h"

namespace v8 {
namespace internal {

// ----------------------------------------------------------------------------
// Static IC stub generators.
//

#define __ ACCESS_MASM(masm)

static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type,
                                            Label* global_object) {
  // Register usage:
  //   type: holds the receiver instance type on entry.
  __ CmpP(type, Operand(JS_GLOBAL_OBJECT_TYPE));
  __ beq(global_object);
  __ CmpP(type, Operand(JS_GLOBAL_PROXY_TYPE));
  __ beq(global_object);
}

// Helper function used from LoadIC GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
//           label is done.
// name:     Property name. It is not clobbered if a jump to the miss label is
//           done
// result:   Register for the result. It is only updated if a jump to the miss
//           label is not done. Can be the same as elements or name clobbering
//           one of these in the case of not jumping to the miss label.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss,
                                   Register elements, Register name,
                                   Register result, Register scratch1,
                                   Register scratch2) {
  // Main use of the scratch registers.
  // scratch1: Used as temporary and to hold the capacity of the property
  //           dictionary.
  // scratch2: Used as temporary.
  Label done;

  // Probe the dictionary.
  NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
                                                   name, scratch1, scratch2);

  // If probing finds an entry check that the value is a normal
  // property.
  __ bind(&done);  // scratch2 == elements + 4 * index
  const int kElementsStartOffset =
      NameDictionary::kHeaderSize +
      NameDictionary::kElementsStartIndex * kPointerSize;
  const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
  __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
  __ LoadRR(r0, scratch2);
  __ LoadSmiLiteral(scratch2, Smi::FromInt(PropertyDetails::TypeField::kMask));
  __ AndP(scratch2, scratch1);
  __ bne(miss);
  __ LoadRR(scratch2, r0);

  // Get the value at the masked, scaled index and return.
  __ LoadP(result,
           FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
}

// Helper function used from StoreIC::GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
//           label is done.
// name:     Property name. It is not clobbered if a jump to the miss label is
//           done
// value:    The value to store.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss,
                                    Register elements, Register name,
                                    Register value, Register scratch1,
                                    Register scratch2) {
  // Main use of the scratch registers.
  // scratch1: Used as temporary and to hold the capacity of the property
  //           dictionary.
  // scratch2: Used as temporary.
  Label done;

  // Probe the dictionary.
  NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
                                                   name, scratch1, scratch2);

  // If probing finds an entry in the dictionary check that the value
  // is a normal property that is not read only.
  __ bind(&done);  // scratch2 == elements + 4 * index
  const int kElementsStartOffset =
      NameDictionary::kHeaderSize +
      NameDictionary::kElementsStartIndex * kPointerSize;
  const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
  int kTypeAndReadOnlyMask =
      PropertyDetails::TypeField::kMask |
      PropertyDetails::AttributesField::encode(READ_ONLY);
  __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
  __ LoadRR(r0, scratch2);
  __ LoadSmiLiteral(scratch2, Smi::FromInt(kTypeAndReadOnlyMask));
  __ AndP(scratch2, scratch1);
  __ bne(miss /*, cr0*/);
  __ LoadRR(scratch2, r0);

  // Store the value at the masked, scaled index and return.
  const int kValueOffset = kElementsStartOffset + kPointerSize;
  __ AddP(scratch2, Operand(kValueOffset - kHeapObjectTag));
  __ StoreP(value, MemOperand(scratch2));

  // Update the write barrier. Make sure not to clobber the value.
  __ LoadRR(scratch1, value);
  __ RecordWrite(elements, scratch2, scratch1, kLRHasNotBeenSaved,
                 kDontSaveFPRegs);
}

// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
                                           Register receiver, Register map,
                                           Register scratch,
                                           int interceptor_bit, Label* slow) {
  // Check that the object isn't a smi.
  __ JumpIfSmi(receiver, slow);
  // Get the map of the receiver.
  __ LoadP(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  // Check bit field.
  __ LoadlB(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
  DCHECK(((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)) < 0x8000);
  __ mov(r0,
         Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)));
  __ AndP(r0, scratch);
  __ bne(slow /*, cr0*/);
  // Check that the object is some kind of JS object EXCEPT JS Value type.
  // In the case that the object is a value-wrapper object,
  // we enter the runtime system to make sure that indexing into string
  // objects work as intended.
  DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE);
  __ LoadlB(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
  __ CmpP(scratch, Operand(JS_OBJECT_TYPE));
  __ blt(slow);
}

// Loads an indexed element from a fast case array.
static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver,
                                  Register key, Register elements,
                                  Register scratch1, Register scratch2,
                                  Register result, Label* slow) {
  // Register use:
  //
  // receiver - holds the receiver on entry.
  //            Unchanged unless 'result' is the same register.
  //
  // key      - holds the smi key on entry.
  //            Unchanged unless 'result' is the same register.
  //
  // result   - holds the result on exit if the load succeeded.
  //            Allowed to be the the same as 'receiver' or 'key'.
  //            Unchanged on bailout so 'receiver' and 'key' can be safely
  //            used by further computation.
  //
  // Scratch registers:
  //
  // elements - holds the elements of the receiver and its protoypes.
  //
  // scratch1 - used to hold elements length, bit fields, base addresses.
  //
  // scratch2 - used to hold maps, prototypes, and the loaded value.
  Label check_prototypes, check_next_prototype;
  Label done, in_bounds, absent;

  __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ AssertFastElements(elements);

  // Check that the key (index) is within bounds.
  __ LoadP(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
  __ CmpLogicalP(key, scratch1);
  __ blt(&in_bounds, Label::kNear);
  // Out-of-bounds. Check the prototype chain to see if we can just return
  // 'undefined'.
  __ CmpP(key, Operand::Zero());
  __ blt(slow);  // Negative keys can't take the fast OOB path.
  __ bind(&check_prototypes);
  __ LoadP(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ bind(&check_next_prototype);
  __ LoadP(scratch2, FieldMemOperand(scratch2, Map::kPrototypeOffset));
  // scratch2: current prototype
  __ CompareRoot(scratch2, Heap::kNullValueRootIndex);
  __ beq(&absent, Label::kNear);
  __ LoadP(elements, FieldMemOperand(scratch2, JSObject::kElementsOffset));
  __ LoadP(scratch2, FieldMemOperand(scratch2, HeapObject::kMapOffset));
  // elements: elements of current prototype
  // scratch2: map of current prototype
  __ CompareInstanceType(scratch2, scratch1, JS_OBJECT_TYPE);
  __ blt(slow);
  __ LoadlB(scratch1, FieldMemOperand(scratch2, Map::kBitFieldOffset));
  __ AndP(r0, scratch1, Operand((1 << Map::kIsAccessCheckNeeded) |
                                (1 << Map::kHasIndexedInterceptor)));
  __ bne(slow);
  __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex);
  __ bne(slow);
  __ jmp(&check_next_prototype);

  __ bind(&absent);
  __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
  __ jmp(&done);

  __ bind(&in_bounds);
  // Fast case: Do the load.
  __ AddP(scratch1, elements,
          Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  // The key is a smi.
  __ SmiToPtrArrayOffset(scratch2, key);
  __ LoadP(scratch2, MemOperand(scratch2, scratch1));
  __ CompareRoot(scratch2, Heap::kTheHoleValueRootIndex);
  // In case the loaded value is the_hole we have to check the prototype chain.
  __ beq(&check_prototypes);
  __ LoadRR(result, scratch2);
  __ bind(&done);
}

// Checks whether a key is an array index string or a unique name.
// Falls through if a key is a unique name.
static void GenerateKeyNameCheck(MacroAssembler* masm, Register key,
                                 Register map, Register hash,
                                 Label* index_string, Label* not_unique) {
  // The key is not a smi.
  Label unique;
  // Is it a name?
  __ CompareObjectType(key, map, hash, LAST_UNIQUE_NAME_TYPE);
  __ bgt(not_unique);
  STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
  __ beq(&unique, Label::kNear);

  // Is the string an array index, with cached numeric value?
  __ LoadlW(hash, FieldMemOperand(key, Name::kHashFieldOffset));
  __ mov(r7, Operand(Name::kContainsCachedArrayIndexMask));
  __ AndP(r0, hash, r7);
  __ beq(index_string);

  // Is the string internalized? We know it's a string, so a single
  // bit test is enough.
  // map: key map
  __ LoadlB(hash, FieldMemOperand(map, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kInternalizedTag == 0);
  __ tmll(hash, Operand(kIsNotInternalizedMask));
  __ bne(not_unique);

  __ bind(&unique);
}

void LoadIC::GenerateNormal(MacroAssembler* masm) {
  Register dictionary = r2;
  DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
  DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));

  Label slow;

  __ LoadP(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(),
                                       JSObject::kPropertiesOffset));
  GenerateDictionaryLoad(masm, &slow, dictionary,
                         LoadDescriptor::NameRegister(), r2, r5, r6);
  __ Ret();

  // Dictionary load failed, go slow (but don't miss).
  __ bind(&slow);
  GenerateRuntimeGetProperty(masm);
}

// A register that isn't one of the parameters to the load ic.
static const Register LoadIC_TempRegister() { return r5; }

static void LoadIC_PushArgs(MacroAssembler* masm) {
  Register receiver = LoadDescriptor::ReceiverRegister();
  Register name = LoadDescriptor::NameRegister();
  Register slot = LoadDescriptor::SlotRegister();
  Register vector = LoadWithVectorDescriptor::VectorRegister();

  __ Push(receiver, name, slot, vector);
}

void LoadIC::GenerateMiss(MacroAssembler* masm) {
  // The return address is in lr.
  Isolate* isolate = masm->isolate();

  DCHECK(!AreAliased(r6, r7, LoadWithVectorDescriptor::SlotRegister(),
                     LoadWithVectorDescriptor::VectorRegister()));
  __ IncrementCounter(isolate->counters()->ic_load_miss(), 1, r6, r7);

  LoadIC_PushArgs(masm);

  // Perform tail call to the entry.
  __ TailCallRuntime(Runtime::kLoadIC_Miss);
}

void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
  // The return address is in lr.

  __ LoadRR(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister());
  __ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister());

  // Do tail-call to runtime routine.
  __ TailCallRuntime(Runtime::kGetProperty);
}

void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
  // The return address is in lr.
  Isolate* isolate = masm->isolate();

  DCHECK(!AreAliased(r6, r7, LoadWithVectorDescriptor::SlotRegister(),
                     LoadWithVectorDescriptor::VectorRegister()));
  __ IncrementCounter(isolate->counters()->ic_keyed_load_miss(), 1, r6, r7);

  LoadIC_PushArgs(masm);

  // Perform tail call to the entry.
  __ TailCallRuntime(Runtime::kKeyedLoadIC_Miss);
}

void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
  // The return address is in lr.

  __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());

  // Do tail-call to runtime routine.
  __ TailCallRuntime(Runtime::kKeyedGetProperty);
}

void KeyedLoadIC::GenerateMegamorphic(MacroAssembler* masm) {
  // The return address is in lr.
  Label slow, check_name, index_smi, index_name, property_array_property;
  Label probe_dictionary, check_number_dictionary;

  Register key = LoadDescriptor::NameRegister();
  Register receiver = LoadDescriptor::ReceiverRegister();
  DCHECK(key.is(r4));
  DCHECK(receiver.is(r3));

  Isolate* isolate = masm->isolate();

  // Check that the key is a smi.
  __ JumpIfNotSmi(key, &check_name);
  __ bind(&index_smi);
  // Now the key is known to be a smi. This place is also jumped to from below
  // where a numeric string is converted to a smi.

  GenerateKeyedLoadReceiverCheck(masm, receiver, r2, r5,
                                 Map::kHasIndexedInterceptor, &slow);

  // Check the receiver's map to see if it has fast elements.
  __ CheckFastElements(r2, r5, &check_number_dictionary);

  GenerateFastArrayLoad(masm, receiver, key, r2, r5, r6, r2, &slow);
  __ IncrementCounter(isolate->counters()->ic_keyed_load_generic_smi(), 1, r6,
                      r5);
  __ Ret();

  __ bind(&check_number_dictionary);
  __ LoadP(r6, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ LoadP(r5, FieldMemOperand(r6, JSObject::kMapOffset));

  // Check whether the elements is a number dictionary.
  // r5: elements map
  // r6: elements
  __ CompareRoot(r5, Heap::kHashTableMapRootIndex);
  __ bne(&slow, Label::kNear);
  __ SmiUntag(r2, key);
  __ LoadFromNumberDictionary(&slow, r6, key, r2, r2, r5, r7);
  __ Ret();

  // Slow case, key and receiver still in r2 and r3.
  __ bind(&slow);
  __ IncrementCounter(isolate->counters()->ic_keyed_load_generic_slow(), 1, r6,
                      r5);
  GenerateRuntimeGetProperty(masm);

  __ bind(&check_name);
  GenerateKeyNameCheck(masm, key, r2, r5, &index_name, &slow);

  GenerateKeyedLoadReceiverCheck(masm, receiver, r2, r5,
                                 Map::kHasNamedInterceptor, &slow);

  // If the receiver is a fast-case object, check the stub cache. Otherwise
  // probe the dictionary.
  __ LoadP(r5, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
  __ LoadP(r6, FieldMemOperand(r5, HeapObject::kMapOffset));
  __ CompareRoot(r6, Heap::kHashTableMapRootIndex);
  __ beq(&probe_dictionary);

  // The handlers in the stub cache expect a vector and slot. Since we won't
  // change the IC from any downstream misses, a dummy vector can be used.
  Register vector = LoadWithVectorDescriptor::VectorRegister();
  Register slot = LoadWithVectorDescriptor::SlotRegister();
  DCHECK(!AreAliased(vector, slot, r6, r7, r8, r9));
  Handle<TypeFeedbackVector> dummy_vector =
      TypeFeedbackVector::DummyVector(masm->isolate());
  int slot_index = dummy_vector->GetIndex(
      FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot));
  __ LoadRoot(vector, Heap::kDummyVectorRootIndex);
  __ LoadSmiLiteral(slot, Smi::FromInt(slot_index));

415 416
  masm->isolate()->load_stub_cache()->GenerateProbe(masm, receiver, key, r6, r7,
                                                    r8, r9);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
  // Cache miss.
  GenerateMiss(masm);

  // Do a quick inline probe of the receiver's dictionary, if it
  // exists.
  __ bind(&probe_dictionary);
  // r5: elements
  __ LoadP(r2, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ LoadlB(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
  GenerateGlobalInstanceTypeCheck(masm, r2, &slow);
  // Load the property to r2.
  GenerateDictionaryLoad(masm, &slow, r5, key, r2, r7, r6);
  __ IncrementCounter(isolate->counters()->ic_keyed_load_generic_symbol(), 1,
                      r6, r5);
  __ Ret();

  __ bind(&index_name);
  __ IndexFromHash(r5, key);
  // Now jump to the place where smi keys are handled.
  __ b(&index_smi);
}

static void StoreIC_PushArgs(MacroAssembler* masm) {
  __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
          StoreDescriptor::ValueRegister(),
442 443
          StoreWithVectorDescriptor::SlotRegister(),
          StoreWithVectorDescriptor::VectorRegister());
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
}

void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
  StoreIC_PushArgs(masm);

  __ TailCallRuntime(Runtime::kKeyedStoreIC_Miss);
}

static void KeyedStoreGenerateMegamorphicHelper(
    MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
    KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length,
    Register value, Register key, Register receiver, Register receiver_map,
    Register elements_map, Register elements) {
  Label transition_smi_elements;
  Label finish_object_store, non_double_value, transition_double_elements;
  Label fast_double_without_map_check;

  // Fast case: Do the store, could be either Object or double.
  __ bind(fast_object);
  Register scratch = r6;
  Register address = r7;
  DCHECK(!AreAliased(value, key, receiver, receiver_map, elements_map, elements,
                     scratch, address));

  if (check_map == kCheckMap) {
    __ LoadP(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
    __ CmpP(elements_map,
            Operand(masm->isolate()->factory()->fixed_array_map()));
    __ bne(fast_double);
  }

  // HOLECHECK: guards "A[i] = V"
  // We have to go to the runtime if the current value is the hole because
  // there may be a callback on the element
  Label holecheck_passed1;
  // @TODO(joransiu) : Fold AddP into memref of LoadP
  __ AddP(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ SmiToPtrArrayOffset(scratch, key);
  __ LoadP(scratch, MemOperand(address, scratch));
  __ CmpP(scratch, Operand(masm->isolate()->factory()->the_hole_value()));
  __ bne(&holecheck_passed1, Label::kNear);
  __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow);

  __ bind(&holecheck_passed1);

  // Smi stores don't require further checks.
  Label non_smi_value;
  __ JumpIfNotSmi(value, &non_smi_value);

  if (increment_length == kIncrementLength) {
    // Add 1 to receiver->length.
    __ AddSmiLiteral(scratch, key, Smi::FromInt(1), r0);
    __ StoreP(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset));
  }
  // It's irrelevant whether array is smi-only or not when writing a smi.
  __ AddP(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ SmiToPtrArrayOffset(scratch, key);
  __ StoreP(value, MemOperand(address, scratch));
  __ Ret();

  __ bind(&non_smi_value);
  // Escape to elements kind transition case.
  __ CheckFastObjectElements(receiver_map, scratch, &transition_smi_elements);

  // Fast elements array, store the value to the elements backing store.
  __ bind(&finish_object_store);
  if (increment_length == kIncrementLength) {
    // Add 1 to receiver->length.
    __ AddSmiLiteral(scratch, key, Smi::FromInt(1), r0);
    __ StoreP(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset));
  }
  __ AddP(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ SmiToPtrArrayOffset(scratch, key);
  __ StoreP(value, MemOperand(address, scratch));
  __ la(address, MemOperand(address, scratch));
  // Update write barrier for the elements array address.
  __ LoadRR(scratch, value);  // Preserve the value which is returned.
  __ RecordWrite(elements, address, scratch, kLRHasNotBeenSaved,
                 kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
  __ Ret();

  __ bind(fast_double);
  if (check_map == kCheckMap) {
    // Check for fast double array case. If this fails, call through to the
    // runtime.
    __ CompareRoot(elements_map, Heap::kFixedDoubleArrayMapRootIndex);
    __ bne(slow);
  }

  // HOLECHECK: guards "A[i] double hole?"
  // We have to see if the double version of the hole is present. If so
  // go to the runtime.
  // @TODO(joransiu) : Fold AddP Operand into LoadlW
  __ AddP(address, elements,
          Operand((FixedDoubleArray::kHeaderSize + Register::kExponentOffset -
                   kHeapObjectTag)));
  __ SmiToDoubleArrayOffset(scratch, key);
  __ LoadlW(scratch, MemOperand(address, scratch));
  __ CmpP(scratch, Operand(kHoleNanUpper32));
  __ bne(&fast_double_without_map_check, Label::kNear);
  __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow);

  __ bind(&fast_double_without_map_check);
  __ StoreNumberToDoubleElements(value, key, elements, scratch, d0,
                                 &transition_double_elements);
  if (increment_length == kIncrementLength) {
    // Add 1 to receiver->length.
    __ AddSmiLiteral(scratch, key, Smi::FromInt(1), r0);
    __ StoreP(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset));
  }
  __ Ret();

  __ bind(&transition_smi_elements);
  // Transition the array appropriately depending on the value type.
  __ LoadP(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
  __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
  __ bne(&non_double_value);

  // Value is a double. Transition FAST_SMI_ELEMENTS ->
  // FAST_DOUBLE_ELEMENTS and complete the store.
  __ LoadTransitionedArrayMapConditional(
      FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, scratch, slow);
  AllocationSiteMode mode =
      AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
  ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
                                                   receiver_map, mode, slow);
  __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ b(&fast_double_without_map_check);

  __ bind(&non_double_value);
  // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
  __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS,
                                         receiver_map, scratch, slow);
  mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
  ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
      masm, receiver, key, value, receiver_map, mode, slow);
  __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ b(&finish_object_store);

  __ bind(&transition_double_elements);
  // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
  // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
  // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
  __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
                                         receiver_map, scratch, slow);
  mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
  ElementsTransitionGenerator::GenerateDoubleToObject(
      masm, receiver, key, value, receiver_map, mode, slow);
  __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ b(&finish_object_store);
}

void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
                                       LanguageMode language_mode) {
  // ---------- S t a t e --------------
  //  -- r2     : value
  //  -- r3     : key
  //  -- r4     : receiver
  //  -- lr     : return address
  // -----------------------------------
  Label slow, fast_object, fast_object_grow;
  Label fast_double, fast_double_grow;
  Label array, extra, check_if_double_array, maybe_name_key, miss;

  // Register usage.
  Register value = StoreDescriptor::ValueRegister();
  Register key = StoreDescriptor::NameRegister();
  Register receiver = StoreDescriptor::ReceiverRegister();
  DCHECK(receiver.is(r3));
  DCHECK(key.is(r4));
  DCHECK(value.is(r2));
  Register receiver_map = r5;
  Register elements_map = r8;
  Register elements = r9;  // Elements array of the receiver.
  // r6 and r7 are used as general scratch registers.

  // Check that the key is a smi.
  __ JumpIfNotSmi(key, &maybe_name_key);
  // Check that the object isn't a smi.
  __ JumpIfSmi(receiver, &slow);
  // Get the map of the object.
  __ LoadP(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
626 627
  // Check that the receiver does not require access checks.
  // The generic stub does not perform map checks.
628
  __ LoadlB(ip, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
629
  __ AndP(r0, ip, Operand(1 << Map::kIsAccessCheckNeeded));
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  __ bne(&slow, Label::kNear);
  // Check if the object is a JS array or not.
  __ LoadlB(r6, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
  __ CmpP(r6, Operand(JS_ARRAY_TYPE));
  __ beq(&array);
  // Check that the object is some kind of JSObject.
  __ CmpP(r6, Operand(FIRST_JS_OBJECT_TYPE));
  __ blt(&slow, Label::kNear);

  // Object case: Check key against length in the elements array.
  __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  // Check array bounds. Both the key and the length of FixedArray are smis.
  __ CmpLogicalP(key, FieldMemOperand(elements, FixedArray::kLengthOffset));
  __ blt(&fast_object);

  // Slow case, handle jump to runtime.
  __ bind(&slow);
  // Entry registers are intact.
  // r2: value.
  // r3: key.
  // r4: receiver.
  PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode);
  // Never returns to here.

  __ bind(&maybe_name_key);
  __ LoadP(r6, FieldMemOperand(key, HeapObject::kMapOffset));
  __ LoadlB(r6, FieldMemOperand(r6, Map::kInstanceTypeOffset));
  __ JumpIfNotUniqueNameInstanceType(r6, &slow);

  // The handlers in the stub cache expect a vector and slot. Since we won't
  // change the IC from any downstream misses, a dummy vector can be used.
661 662
  Register vector = StoreWithVectorDescriptor::VectorRegister();
  Register slot = StoreWithVectorDescriptor::SlotRegister();
663 664 665 666 667 668 669 670
  DCHECK(!AreAliased(vector, slot, r7, r8, r9, ip));
  Handle<TypeFeedbackVector> dummy_vector =
      TypeFeedbackVector::DummyVector(masm->isolate());
  int slot_index = dummy_vector->GetIndex(
      FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot));
  __ LoadRoot(vector, Heap::kDummyVectorRootIndex);
  __ LoadSmiLiteral(slot, Smi::FromInt(slot_index));

671 672
  masm->isolate()->store_stub_cache()->GenerateProbe(masm, receiver, key, r7,
                                                     r8, r9, ip);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
  // Cache miss.
  __ b(&miss);

  // Extra capacity case: Check if there is extra capacity to
  // perform the store and update the length. Used for adding one
  // element to the array by writing to array[array.length].
  __ bind(&extra);
  // Condition code from comparing key and array length is still available.
  __ bne(&slow);  // Only support writing to writing to array[array.length].
  // Check for room in the elements backing store.
  // Both the key and the length of FixedArray are smis.
  __ CmpLogicalP(key, FieldMemOperand(elements, FixedArray::kLengthOffset));
  __ bge(&slow);
  __ LoadP(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
  __ CmpP(elements_map, Operand(masm->isolate()->factory()->fixed_array_map()));
  __ bne(&check_if_double_array, Label::kNear);
  __ b(&fast_object_grow);

  __ bind(&check_if_double_array);
  __ CmpP(elements_map,
          Operand(masm->isolate()->factory()->fixed_double_array_map()));
  __ bne(&slow);
  __ b(&fast_double_grow);

  // Array case: Get the length and the elements array from the JS
  // array. Check that the array is in fast mode (and writable); if it
  // is the length is always a smi.
  __ bind(&array);
  __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));

  // Check the key against the length in the array.
  __ CmpLogicalP(key, FieldMemOperand(receiver, JSArray::kLengthOffset));
  __ bge(&extra);

  KeyedStoreGenerateMegamorphicHelper(
      masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength,
      value, key, receiver, receiver_map, elements_map, elements);
  KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
                                      &fast_double_grow, &slow, kDontCheckMap,
                                      kIncrementLength, value, key, receiver,
                                      receiver_map, elements_map, elements);
  __ bind(&miss);
  GenerateMiss(masm);
}

void StoreIC::GenerateMiss(MacroAssembler* masm) {
  StoreIC_PushArgs(masm);

  // Perform tail call to the entry.
  __ TailCallRuntime(Runtime::kStoreIC_Miss);
}

void StoreIC::GenerateNormal(MacroAssembler* masm) {
  Label miss;
  Register receiver = StoreDescriptor::ReceiverRegister();
  Register name = StoreDescriptor::NameRegister();
  Register value = StoreDescriptor::ValueRegister();
  Register dictionary = r7;
  DCHECK(receiver.is(r3));
  DCHECK(name.is(r4));
  DCHECK(value.is(r2));
734 735
  DCHECK(StoreWithVectorDescriptor::VectorRegister().is(r5));
  DCHECK(StoreWithVectorDescriptor::SlotRegister().is(r6));
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

  __ LoadP(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset));

  GenerateDictionaryStore(masm, &miss, dictionary, name, value, r8, r9);
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->ic_store_normal_hit(), 1, r8, r9);
  __ Ret();

  __ bind(&miss);
  __ IncrementCounter(counters->ic_store_normal_miss(), 1, r8, r9);
  GenerateMiss(masm);
}

#undef __

Condition CompareIC::ComputeCondition(Token::Value op) {
  switch (op) {
    case Token::EQ_STRICT:
    case Token::EQ:
      return eq;
    case Token::LT:
      return lt;
    case Token::GT:
      return gt;
    case Token::LTE:
      return le;
    case Token::GTE:
      return ge;
    default:
      UNREACHABLE();
      return kNoCondition;
  }
}

bool CompareIC::HasInlinedSmiCode(Address address) {
  // The address of the instruction following the call.
  Address cmp_instruction_address =
      Assembler::return_address_from_call_start(address);

  // If the instruction following the call is not a CHI, nothing
  // was inlined.
  return (Instruction::S390OpcodeValue(cmp_instruction_address) == CHI);
}

//
// This code is paired with the JumpPatchSite class in full-codegen-s390.cc
//
void PatchInlinedSmiCode(Isolate* isolate, Address address,
                         InlinedSmiCheck check) {
  Address cmp_instruction_address =
      Assembler::return_address_from_call_start(address);

  // If the instruction following the call is not a cmp rx, #yyy, nothing
  // was inlined.
  Instr instr = Assembler::instr_at(cmp_instruction_address);
  if (Instruction::S390OpcodeValue(cmp_instruction_address) != CHI) {
    return;
  }

  if (Instruction::S390OpcodeValue(address) != BRASL) {
    return;
  }
  // The delta to the start of the map check instruction and the
  // condition code uses at the patched jump.
  int delta = instr & 0x0000ffff;

  // If the delta is 0 the instruction is cmp r0, #0 which also signals that
  // nothing was inlined.
  if (delta == 0) {
    return;
  }

  if (FLAG_trace_ic) {
809 810 811
    PrintF("[  patching ic at %p, cmp=%p, delta=%d\n",
           static_cast<void*>(address),
           static_cast<void*>(cmp_instruction_address), delta);
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
  }

  // Expected sequence to enable by changing the following
  //   CR/CGR  Rx, Rx    // 2 / 4 bytes
  //   LR  R0, R0        // 2 bytes   // 31-bit only!
  //   BRC/BRCL          // 4 / 6 bytes
  // into
  //   TMLL    Rx, XXX   // 4 bytes
  //   BRC/BRCL          // 4 / 6 bytes
  // And vice versa to disable.

  // The following constant is the size of the CR/CGR + LR + LR
  const int kPatchAreaSizeNoBranch = 4;
  Address patch_address = cmp_instruction_address - delta;
  Address branch_address = patch_address + kPatchAreaSizeNoBranch;

  Instr instr_at_patch = Assembler::instr_at(patch_address);
  SixByteInstr branch_instr = Assembler::instr_at(branch_address);

  // This is patching a conditional "jump if not smi/jump if smi" site.
  size_t patch_size = 0;
  if (Instruction::S390OpcodeValue(branch_address) == BRC) {
    patch_size = kPatchAreaSizeNoBranch + 4;
  } else if (Instruction::S390OpcodeValue(branch_address) == BRCL) {
    patch_size = kPatchAreaSizeNoBranch + 6;
  } else {
    DCHECK(false);
  }
  CodePatcher patcher(isolate, patch_address, patch_size);
  Register reg;
  reg.reg_code = instr_at_patch & 0xf;
  if (check == ENABLE_INLINED_SMI_CHECK) {
    patcher.masm()->TestIfSmi(reg);
  } else {
    // Emit the NOP to ensure sufficient place for patching
    // (replaced by LR + NILL)
    DCHECK(check == DISABLE_INLINED_SMI_CHECK);
    patcher.masm()->CmpP(reg, reg);
#ifndef V8_TARGET_ARCH_S390X
    patcher.masm()->nop();
#endif
  }

  Condition cc = al;
  if (Instruction::S390OpcodeValue(branch_address) == BRC) {
    cc = static_cast<Condition>((branch_instr & 0x00f00000) >> 20);
    DCHECK((cc == ne) || (cc == eq));
    cc = (cc == ne) ? eq : ne;
    patcher.masm()->brc(cc, Operand((branch_instr & 0xffff) << 1));
  } else if (Instruction::S390OpcodeValue(branch_address) == BRCL) {
    cc = static_cast<Condition>(
        (branch_instr & (static_cast<uint64_t>(0x00f0) << 32)) >> 36);
    DCHECK((cc == ne) || (cc == eq));
    cc = (cc == ne) ? eq : ne;
    patcher.masm()->brcl(cc, Operand((branch_instr & 0xffffffff) << 1));
  } else {
    DCHECK(false);
  }
}

}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_S390