runtime-strings.cc 41.2 KB
Newer Older
1 2 3 4
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5
#include "src/runtime/runtime-utils.h"
6 7

#include "src/arguments.h"
8
#include "src/regexp/jsregexp-inl.h"
9
#include "src/string-builder.h"
10 11 12 13 14 15
#include "src/string-search.h"

namespace v8 {
namespace internal {


16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
// Perform string match of pattern on subject, starting at start index.
// Caller must ensure that 0 <= start_index <= sub->length(),
// and should check that pat->length() + start_index <= sub->length().
int StringMatch(Isolate* isolate, Handle<String> sub, Handle<String> pat,
                int start_index) {
  DCHECK(0 <= start_index);
  DCHECK(start_index <= sub->length());

  int pattern_length = pat->length();
  if (pattern_length == 0) return start_index;

  int subject_length = sub->length();
  if (start_index + pattern_length > subject_length) return -1;

  sub = String::Flatten(sub);
  pat = String::Flatten(pat);

  DisallowHeapAllocation no_gc;  // ensure vectors stay valid
  // Extract flattened substrings of cons strings before getting encoding.
  String::FlatContent seq_sub = sub->GetFlatContent();
  String::FlatContent seq_pat = pat->GetFlatContent();

  // dispatch on type of strings
  if (seq_pat.IsOneByte()) {
    Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector();
    if (seq_sub.IsOneByte()) {
      return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector,
                          start_index);
    }
    return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector,
                        start_index);
  }
  Vector<const uc16> pat_vector = seq_pat.ToUC16Vector();
  if (seq_sub.IsOneByte()) {
    return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector,
                        start_index);
  }
  return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector, start_index);
}


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
// This may return an empty MaybeHandle if an exception is thrown or
// we abort due to reaching the recursion limit.
MaybeHandle<String> StringReplaceOneCharWithString(
    Isolate* isolate, Handle<String> subject, Handle<String> search,
    Handle<String> replace, bool* found, int recursion_limit) {
  StackLimitCheck stackLimitCheck(isolate);
  if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
    return MaybeHandle<String>();
  }
  recursion_limit--;
  if (subject->IsConsString()) {
    ConsString* cons = ConsString::cast(*subject);
    Handle<String> first = Handle<String>(cons->first());
    Handle<String> second = Handle<String>(cons->second());
    Handle<String> new_first;
    if (!StringReplaceOneCharWithString(isolate, first, search, replace, found,
                                        recursion_limit).ToHandle(&new_first)) {
      return MaybeHandle<String>();
    }
    if (*found) return isolate->factory()->NewConsString(new_first, second);

    Handle<String> new_second;
    if (!StringReplaceOneCharWithString(isolate, second, search, replace, found,
                                        recursion_limit)
             .ToHandle(&new_second)) {
      return MaybeHandle<String>();
    }
    if (*found) return isolate->factory()->NewConsString(first, new_second);

    return subject;
  } else {
88
    int index = StringMatch(isolate, subject, search, 0);
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    if (index == -1) return subject;
    *found = true;
    Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
    Handle<String> cons1;
    ASSIGN_RETURN_ON_EXCEPTION(
        isolate, cons1, isolate->factory()->NewConsString(first, replace),
        String);
    Handle<String> second =
        isolate->factory()->NewSubString(subject, index + 1, subject->length());
    return isolate->factory()->NewConsString(cons1, second);
  }
}


RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 3);
  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
  CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);

  // If the cons string tree is too deep, we simply abort the recursion and
  // retry with a flattened subject string.
  const int kRecursionLimit = 0x1000;
  bool found = false;
  Handle<String> result;
  if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
                                     kRecursionLimit).ToHandle(&result)) {
    return *result;
  }
  if (isolate->has_pending_exception()) return isolate->heap()->exception();

  subject = String::Flatten(subject);
122 123 124 125 126 127 128
  if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
                                     kRecursionLimit).ToHandle(&result)) {
    return *result;
  }
  if (isolate->has_pending_exception()) return isolate->heap()->exception();
  // In case of empty handle and no pending exception we have stack overflow.
  return isolate->StackOverflow();
129 130 131 132 133 134 135 136 137 138 139
}


RUNTIME_FUNCTION(Runtime_StringIndexOf) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 3);

  CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
  CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);

140
  uint32_t start_index = 0;
141 142
  if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);

143
  CHECK(start_index <= static_cast<uint32_t>(sub->length()));
144
  int position = StringMatch(isolate, sub, pat, start_index);
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  return Smi::FromInt(position);
}


template <typename schar, typename pchar>
static int StringMatchBackwards(Vector<const schar> subject,
                                Vector<const pchar> pattern, int idx) {
  int pattern_length = pattern.length();
  DCHECK(pattern_length >= 1);
  DCHECK(idx + pattern_length <= subject.length());

  if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
    for (int i = 0; i < pattern_length; i++) {
      uc16 c = pattern[i];
      if (c > String::kMaxOneByteCharCode) {
        return -1;
      }
    }
  }

  pchar pattern_first_char = pattern[0];
  for (int i = idx; i >= 0; i--) {
    if (subject[i] != pattern_first_char) continue;
    int j = 1;
    while (j < pattern_length) {
      if (pattern[j] != subject[i + j]) {
        break;
      }
      j++;
    }
    if (j == pattern_length) {
      return i;
    }
  }
  return -1;
}


RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 3);

  CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
  CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);

191
  uint32_t start_index = 0;
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);

  uint32_t pat_length = pat->length();
  uint32_t sub_length = sub->length();

  if (start_index + pat_length > sub_length) {
    start_index = sub_length - pat_length;
  }

  if (pat_length == 0) {
    return Smi::FromInt(start_index);
  }

  sub = String::Flatten(sub);
  pat = String::Flatten(pat);

  int position = -1;
  DisallowHeapAllocation no_gc;  // ensure vectors stay valid

  String::FlatContent sub_content = sub->GetFlatContent();
  String::FlatContent pat_content = pat->GetFlatContent();

  if (pat_content.IsOneByte()) {
    Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
    if (sub_content.IsOneByte()) {
      position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
                                      start_index);
    } else {
      position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
                                      start_index);
    }
  } else {
    Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
    if (sub_content.IsOneByte()) {
      position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
                                      start_index);
    } else {
      position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
                                      start_index);
    }
  }

  return Smi::FromInt(position);
}


RUNTIME_FUNCTION(Runtime_StringLocaleCompare) {
  HandleScope handle_scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);

  if (str1.is_identical_to(str2)) return Smi::FromInt(0);  // Equal.
  int str1_length = str1->length();
  int str2_length = str2->length();

  // Decide trivial cases without flattening.
  if (str1_length == 0) {
    if (str2_length == 0) return Smi::FromInt(0);  // Equal.
    return Smi::FromInt(-str2_length);
  } else {
    if (str2_length == 0) return Smi::FromInt(str1_length);
  }

  int end = str1_length < str2_length ? str1_length : str2_length;

  // No need to flatten if we are going to find the answer on the first
  // character.  At this point we know there is at least one character
  // in each string, due to the trivial case handling above.
  int d = str1->Get(0) - str2->Get(0);
  if (d != 0) return Smi::FromInt(d);

  str1 = String::Flatten(str1);
  str2 = String::Flatten(str2);

  DisallowHeapAllocation no_gc;
  String::FlatContent flat1 = str1->GetFlatContent();
  String::FlatContent flat2 = str2->GetFlatContent();

  for (int i = 0; i < end; i++) {
    if (flat1.Get(i) != flat2.Get(i)) {
      return Smi::FromInt(flat1.Get(i) - flat2.Get(i));
    }
  }

  return Smi::FromInt(str1_length - str2_length);
}


282
RUNTIME_FUNCTION(Runtime_SubString) {
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
  HandleScope scope(isolate);
  DCHECK(args.length() == 3);

  CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
  int start, end;
  // We have a fast integer-only case here to avoid a conversion to double in
  // the common case where from and to are Smis.
  if (args[1]->IsSmi() && args[2]->IsSmi()) {
    CONVERT_SMI_ARG_CHECKED(from_number, 1);
    CONVERT_SMI_ARG_CHECKED(to_number, 2);
    start = from_number;
    end = to_number;
  } else {
    CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
    CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
    start = FastD2IChecked(from_number);
    end = FastD2IChecked(to_number);
  }
  RUNTIME_ASSERT(end >= start);
  RUNTIME_ASSERT(start >= 0);
  RUNTIME_ASSERT(end <= string->length());
  isolate->counters()->sub_string_runtime()->Increment();

  return *isolate->factory()->NewSubString(string, start, end);
}


310
RUNTIME_FUNCTION(Runtime_StringAdd) {
311 312 313 314 315
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);
  CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
  isolate->counters()->string_add_runtime()->Increment();
316 317
  RETURN_RESULT_OR_FAILURE(isolate,
                           isolate->factory()->NewConsString(str1, str2));
318 319 320 321 322
}


RUNTIME_FUNCTION(Runtime_InternalizeString) {
  HandleScope handles(isolate);
323
  DCHECK(args.length() == 1);
324 325 326 327 328 329 330 331 332 333 334 335 336
  CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
  return *isolate->factory()->InternalizeString(string);
}


RUNTIME_FUNCTION(Runtime_StringMatch) {
  HandleScope handles(isolate);
  DCHECK(args.length() == 3);

  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
  CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
  CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);

337
  CHECK(regexp_info->HasFastObjectElements());
338

339
  RegExpImpl::GlobalCache global_cache(regexp, subject, isolate);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  if (global_cache.HasException()) return isolate->heap()->exception();

  int capture_count = regexp->CaptureCount();

  ZoneScope zone_scope(isolate->runtime_zone());
  ZoneList<int> offsets(8, zone_scope.zone());

  while (true) {
    int32_t* match = global_cache.FetchNext();
    if (match == NULL) break;
    offsets.Add(match[0], zone_scope.zone());  // start
    offsets.Add(match[1], zone_scope.zone());  // end
  }

  if (global_cache.HasException()) return isolate->heap()->exception();

  if (offsets.length() == 0) {
    // Not a single match.
    return isolate->heap()->null_value();
  }

  RegExpImpl::SetLastMatchInfo(regexp_info, subject, capture_count,
                               global_cache.LastSuccessfulMatch());

  int matches = offsets.length() / 2;
  Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
  Handle<String> substring =
      isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
  elements->set(0, *substring);
369
  FOR_WITH_HANDLE_SCOPE(isolate, int, i = 1, i, i < matches, i++, {
370 371 372 373 374
    int from = offsets.at(i * 2);
    int to = offsets.at(i * 2 + 1);
    Handle<String> substring =
        isolate->factory()->NewProperSubString(subject, from, to);
    elements->set(i, *substring);
375
  });
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
  result->set_length(Smi::FromInt(matches));
  return *result;
}


RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
  HandleScope handle_scope(isolate);
  DCHECK(args.length() == 2);

  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
  CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);

  // Flatten the string.  If someone wants to get a char at an index
  // in a cons string, it is likely that more indices will be
  // accessed.
  subject = String::Flatten(subject);

  if (i >= static_cast<uint32_t>(subject->length())) {
    return isolate->heap()->nan_value();
  }

  return Smi::FromInt(subject->Get(i));
}


402
RUNTIME_FUNCTION(Runtime_StringCompare) {
403
  HandleScope handle_scope(isolate);
404
  DCHECK_EQ(2, args.length());
405 406 407
  CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
  isolate->counters()->string_compare_runtime()->Increment();
408 409 410 411 412 413 414 415 416
  switch (String::Compare(x, y)) {
    case ComparisonResult::kLessThan:
      return Smi::FromInt(LESS);
    case ComparisonResult::kEqual:
      return Smi::FromInt(EQUAL);
    case ComparisonResult::kGreaterThan:
      return Smi::FromInt(GREATER);
    case ComparisonResult::kUndefined:
      break;
417
  }
418 419
  UNREACHABLE();
  return Smi::FromInt(0);
420 421 422 423 424 425 426 427 428 429 430 431 432 433
}


RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 3);
  CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
  int32_t array_length;
  if (!args[1]->ToInt32(&array_length)) {
    THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
  }
  CONVERT_ARG_HANDLE_CHECKED(String, special, 2);

  size_t actual_array_length = 0;
434 435 436
  CHECK(TryNumberToSize(isolate, array->length(), &actual_array_length));
  CHECK(array_length >= 0);
  CHECK(static_cast<size_t>(array_length) <= actual_array_length);
437 438 439 440

  // This assumption is used by the slice encoding in one or two smis.
  DCHECK(Smi::kMaxValue >= String::kMaxLength);

441
  CHECK(array->HasFastElements());
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
  JSObject::EnsureCanContainHeapObjectElements(array);

  int special_length = special->length();
  if (!array->HasFastObjectElements()) {
    return isolate->Throw(isolate->heap()->illegal_argument_string());
  }

  int length;
  bool one_byte = special->HasOnlyOneByteChars();

  {
    DisallowHeapAllocation no_gc;
    FixedArray* fixed_array = FixedArray::cast(array->elements());
    if (fixed_array->length() < array_length) {
      array_length = fixed_array->length();
    }

    if (array_length == 0) {
      return isolate->heap()->empty_string();
    } else if (array_length == 1) {
      Object* first = fixed_array->get(0);
      if (first->IsString()) return first;
    }
    length = StringBuilderConcatLength(special_length, fixed_array,
                                       array_length, &one_byte);
  }

  if (length == -1) {
    return isolate->Throw(isolate->heap()->illegal_argument_string());
  }

  if (one_byte) {
    Handle<SeqOneByteString> answer;
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
        isolate, answer, isolate->factory()->NewRawOneByteString(length));
    StringBuilderConcatHelper(*special, answer->GetChars(),
                              FixedArray::cast(array->elements()),
                              array_length);
    return *answer;
  } else {
    Handle<SeqTwoByteString> answer;
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
        isolate, answer, isolate->factory()->NewRawTwoByteString(length));
    StringBuilderConcatHelper(*special, answer->GetChars(),
                              FixedArray::cast(array->elements()),
                              array_length);
    return *answer;
  }
}


493 494 495 496 497 498 499 500 501
RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 3);
  CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
  int32_t array_length;
  if (!args[1]->ToInt32(&array_length)) {
    THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
  }
  CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
502 503
  CHECK(array->HasFastObjectElements());
  CHECK(array_length >= 0);
504 505 506 507 508 509 510 511 512 513

  Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
  if (fixed_array->length() < array_length) {
    array_length = fixed_array->length();
  }

  if (array_length == 0) {
    return isolate->heap()->empty_string();
  } else if (array_length == 1) {
    Object* first = fixed_array->get(0);
514
    CHECK(first->IsString());
515 516 517 518
    return first;
  }

  int separator_length = separator->length();
519
  CHECK(separator_length > 0);
520 521 522 523 524 525 526 527
  int max_nof_separators =
      (String::kMaxLength + separator_length - 1) / separator_length;
  if (max_nof_separators < (array_length - 1)) {
    THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
  }
  int length = (array_length - 1) * separator_length;
  for (int i = 0; i < array_length; i++) {
    Object* element_obj = fixed_array->get(i);
528
    CHECK(element_obj->IsString());
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    String* element = String::cast(element_obj);
    int increment = element->length();
    if (increment > String::kMaxLength - length) {
      STATIC_ASSERT(String::kMaxLength < kMaxInt);
      length = kMaxInt;  // Provoke exception;
      break;
    }
    length += increment;
  }

  Handle<SeqTwoByteString> answer;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
      isolate, answer, isolate->factory()->NewRawTwoByteString(length));

  DisallowHeapAllocation no_gc;

  uc16* sink = answer->GetChars();
#ifdef DEBUG
  uc16* end = sink + length;
#endif

550
  CHECK(fixed_array->get(0)->IsString());
551 552
  String* first = String::cast(fixed_array->get(0));
  String* separator_raw = *separator;
553

554 555 556 557 558 559 560 561 562
  int first_length = first->length();
  String::WriteToFlat(first, sink, 0, first_length);
  sink += first_length;

  for (int i = 1; i < array_length; i++) {
    DCHECK(sink + separator_length <= end);
    String::WriteToFlat(separator_raw, sink, 0, separator_length);
    sink += separator_length;

563
    CHECK(fixed_array->get(i)->IsString());
564 565 566 567 568 569 570 571 572 573 574 575 576
    String* element = String::cast(fixed_array->get(i));
    int element_length = element->length();
    DCHECK(sink + element_length <= end);
    String::WriteToFlat(element, sink, 0, element_length);
    sink += element_length;
  }
  DCHECK(sink == end);

  // Use %_FastOneByteArrayJoin instead.
  DCHECK(!answer->IsOneByteRepresentation());
  return *answer;
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
template <typename sinkchar>
static void WriteRepeatToFlat(String* src, Vector<sinkchar> buffer, int cursor,
                              int repeat, int length) {
  if (repeat == 0) return;

  sinkchar* start = &buffer[cursor];
  String::WriteToFlat<sinkchar>(src, start, 0, length);

  int done = 1;
  sinkchar* next = start + length;

  while (done < repeat) {
    int block = Min(done, repeat - done);
    int block_chars = block * length;
    CopyChars(next, start, block_chars);
    next += block_chars;
    done += block;
  }
}

597 598 599 600 601 602 603 604 605
template <typename Char>
static void JoinSparseArrayWithSeparator(FixedArray* elements,
                                         int elements_length,
                                         uint32_t array_length,
                                         String* separator,
                                         Vector<Char> buffer) {
  DisallowHeapAllocation no_gc;
  int previous_separator_position = 0;
  int separator_length = separator->length();
606
  DCHECK_LT(0, separator_length);
607 608 609 610 611 612
  int cursor = 0;
  for (int i = 0; i < elements_length; i += 2) {
    int position = NumberToInt32(elements->get(i));
    String* string = String::cast(elements->get(i + 1));
    int string_length = string->length();
    if (string->length() > 0) {
613 614 615 616 617
      int repeat = position - previous_separator_position;
      WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat,
                              separator_length);
      cursor += repeat * separator_length;
      previous_separator_position = position;
618 619 620 621
      String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length);
      cursor += string->length();
    }
  }
622 623 624 625 626 627 628 629

  int last_array_index = static_cast<int>(array_length - 1);
  // Array length must be representable as a signed 32-bit number,
  // otherwise the total string length would have been too large.
  DCHECK(array_length <= 0x7fffffff);  // Is int32_t.
  int repeat = last_array_index - previous_separator_position;
  WriteRepeatToFlat<Char>(separator, buffer, cursor, repeat, separator_length);
  cursor += repeat * separator_length;
630 631 632 633 634 635 636 637 638 639 640 641
  DCHECK(cursor <= buffer.length());
}


RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 3);
  CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
  CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
  CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
  // elements_array is fast-mode JSarray of alternating positions
  // (increasing order) and strings.
642
  CHECK(elements_array->HasFastSmiOrObjectElements());
643 644
  // array_length is length of original array (used to add separators);
  // separator is string to put between elements. Assumed to be non-empty.
645
  CHECK(array_length > 0);
646 647 648 649 650 651

  // Find total length of join result.
  int string_length = 0;
  bool is_one_byte = separator->IsOneByteRepresentation();
  bool overflow = false;
  CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
652 653
  CHECK(elements_length <= elements_array->elements()->length());
  CHECK((elements_length & 1) == 0);  // Even length.
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
  FixedArray* elements = FixedArray::cast(elements_array->elements());
  {
    DisallowHeapAllocation no_gc;
    for (int i = 0; i < elements_length; i += 2) {
      String* string = String::cast(elements->get(i + 1));
      int length = string->length();
      if (is_one_byte && !string->IsOneByteRepresentation()) {
        is_one_byte = false;
      }
      if (length > String::kMaxLength ||
          String::kMaxLength - length < string_length) {
        overflow = true;
        break;
      }
      string_length += length;
    }
  }

  int separator_length = separator->length();
  if (!overflow && separator_length > 0) {
    if (array_length <= 0x7fffffffu) {
      int separator_count = static_cast<int>(array_length) - 1;
      int remaining_length = String::kMaxLength - string_length;
      if ((remaining_length / separator_length) >= separator_count) {
        string_length += separator_length * (array_length - 1);
      } else {
        // Not room for the separators within the maximal string length.
        overflow = true;
      }
    } else {
      // Nonempty separator and at least 2^31-1 separators necessary
      // means that the string is too large to create.
      STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
      overflow = true;
    }
  }
  if (overflow) {
    // Throw an exception if the resulting string is too large. See
    // https://code.google.com/p/chromium/issues/detail?id=336820
    // for details.
    THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
  }

  if (is_one_byte) {
    Handle<SeqOneByteString> result = isolate->factory()
                                          ->NewRawOneByteString(string_length)
                                          .ToHandleChecked();
    JoinSparseArrayWithSeparator<uint8_t>(
        FixedArray::cast(elements_array->elements()), elements_length,
        array_length, *separator,
        Vector<uint8_t>(result->GetChars(), string_length));
    return *result;
  } else {
    Handle<SeqTwoByteString> result = isolate->factory()
                                          ->NewRawTwoByteString(string_length)
                                          .ToHandleChecked();
    JoinSparseArrayWithSeparator<uc16>(
        FixedArray::cast(elements_array->elements()), elements_length,
        array_length, *separator,
        Vector<uc16>(result->GetChars(), string_length));
    return *result;
  }
}


// Copies Latin1 characters to the given fixed array looking up
// one-char strings in the cache. Gives up on the first char that is
// not in the cache and fills the remainder with smi zeros. Returns
// the length of the successfully copied prefix.
static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
                                         FixedArray* elements, int length) {
  DisallowHeapAllocation no_gc;
  FixedArray* one_byte_cache = heap->single_character_string_cache();
  Object* undefined = heap->undefined_value();
  int i;
  WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
  for (i = 0; i < length; ++i) {
    Object* value = one_byte_cache->get(chars[i]);
    if (value == undefined) break;
    elements->set(i, value, mode);
  }
  if (i < length) {
    DCHECK(Smi::FromInt(0) == 0);
    memset(elements->data_start() + i, 0, kPointerSize * (length - i));
  }
#ifdef DEBUG
  for (int j = 0; j < length; ++j) {
    Object* element = elements->get(j);
    DCHECK(element == Smi::FromInt(0) ||
           (element->IsString() && String::cast(element)->LooksValid()));
  }
#endif
  return i;
}


// Converts a String to JSArray.
// For example, "foo" => ["f", "o", "o"].
RUNTIME_FUNCTION(Runtime_StringToArray) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 2);
  CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
  CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);

  s = String::Flatten(s);
  const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));

  Handle<FixedArray> elements;
  int position = 0;
  if (s->IsFlat() && s->IsOneByteRepresentation()) {
    // Try using cached chars where possible.
    elements = isolate->factory()->NewUninitializedFixedArray(length);

    DisallowHeapAllocation no_gc;
    String::FlatContent content = s->GetFlatContent();
    if (content.IsOneByte()) {
      Vector<const uint8_t> chars = content.ToOneByteVector();
      // Note, this will initialize all elements (not only the prefix)
      // to prevent GC from seeing partially initialized array.
      position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
                                               *elements, length);
    } else {
      MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(),
                    length);
    }
  } else {
    elements = isolate->factory()->NewFixedArray(length);
  }
  for (int i = position; i < length; ++i) {
    Handle<Object> str =
        isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
    elements->set(i, *str);
  }

#ifdef DEBUG
  for (int i = 0; i < length; ++i) {
    DCHECK(String::cast(elements->get(i))->length() == 1);
  }
#endif

  return *isolate->factory()->NewJSArrayWithElements(elements);
}


798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static inline bool ToUpperOverflows(uc32 character) {
  // y with umlauts and the micro sign are the only characters that stop
  // fitting into one-byte when converting to uppercase.
  static const uc32 yuml_code = 0xff;
  static const uc32 micro_code = 0xb5;
  return (character == yuml_code || character == micro_code);
}


template <class Converter>
MUST_USE_RESULT static Object* ConvertCaseHelper(
    Isolate* isolate, String* string, SeqString* result, int result_length,
    unibrow::Mapping<Converter, 128>* mapping) {
  DisallowHeapAllocation no_gc;
  // We try this twice, once with the assumption that the result is no longer
  // than the input and, if that assumption breaks, again with the exact
  // length.  This may not be pretty, but it is nicer than what was here before
  // and I hereby claim my vaffel-is.
  //
  // NOTE: This assumes that the upper/lower case of an ASCII
  // character is also ASCII.  This is currently the case, but it
  // might break in the future if we implement more context and locale
  // dependent upper/lower conversions.
  bool has_changed_character = false;

  // Convert all characters to upper case, assuming that they will fit
  // in the buffer
  StringCharacterStream stream(string);
  unibrow::uchar chars[Converter::kMaxWidth];
  // We can assume that the string is not empty
  uc32 current = stream.GetNext();
  bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
  for (int i = 0; i < result_length;) {
    bool has_next = stream.HasMore();
    uc32 next = has_next ? stream.GetNext() : 0;
    int char_length = mapping->get(current, next, chars);
    if (char_length == 0) {
      // The case conversion of this character is the character itself.
      result->Set(i, current);
      i++;
    } else if (char_length == 1 &&
               (ignore_overflow || !ToUpperOverflows(current))) {
      // Common case: converting the letter resulted in one character.
      DCHECK(static_cast<uc32>(chars[0]) != current);
      result->Set(i, chars[0]);
      has_changed_character = true;
      i++;
    } else if (result_length == string->length()) {
      bool overflows = ToUpperOverflows(current);
      // We've assumed that the result would be as long as the
      // input but here is a character that converts to several
      // characters.  No matter, we calculate the exact length
      // of the result and try the whole thing again.
      //
      // Note that this leaves room for optimization.  We could just
      // memcpy what we already have to the result string.  Also,
      // the result string is the last object allocated we could
      // "realloc" it and probably, in the vast majority of cases,
      // extend the existing string to be able to hold the full
      // result.
      int next_length = 0;
      if (has_next) {
        next_length = mapping->get(next, 0, chars);
        if (next_length == 0) next_length = 1;
      }
      int current_length = i + char_length + next_length;
      while (stream.HasMore()) {
        current = stream.GetNext();
        overflows |= ToUpperOverflows(current);
        // NOTE: we use 0 as the next character here because, while
        // the next character may affect what a character converts to,
        // it does not in any case affect the length of what it convert
        // to.
        int char_length = mapping->get(current, 0, chars);
        if (char_length == 0) char_length = 1;
        current_length += char_length;
        if (current_length > String::kMaxLength) {
          AllowHeapAllocation allocate_error_and_return;
          THROW_NEW_ERROR_RETURN_FAILURE(isolate,
                                         NewInvalidStringLengthError());
        }
      }
      // Try again with the real length.  Return signed if we need
      // to allocate a two-byte string for to uppercase.
      return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
                                             : Smi::FromInt(current_length);
    } else {
      for (int j = 0; j < char_length; j++) {
        result->Set(i, chars[j]);
        i++;
      }
      has_changed_character = true;
    }
    current = next;
  }
  if (has_changed_character) {
    return result;
  } else {
    // If we didn't actually change anything in doing the conversion
    // we simple return the result and let the converted string
    // become garbage; there is no reason to keep two identical strings
    // alive.
    return string;
  }
}


static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
static const uintptr_t kAsciiMask = kOneInEveryByte << 7;

// Given a word and two range boundaries returns a word with high bit
// set in every byte iff the corresponding input byte was strictly in
// the range (m, n). All the other bits in the result are cleared.
// This function is only useful when it can be inlined and the
// boundaries are statically known.
// Requires: all bytes in the input word and the boundaries must be
// ASCII (less than 0x7F).
static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
  // Use strict inequalities since in edge cases the function could be
  // further simplified.
  DCHECK(0 < m && m < n);
  // Has high bit set in every w byte less than n.
  uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
  // Has high bit set in every w byte greater than m.
  uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
  return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
}


#ifdef DEBUG
static bool CheckFastAsciiConvert(char* dst, const char* src, int length,
                                  bool changed, bool is_to_lower) {
  bool expected_changed = false;
  for (int i = 0; i < length; i++) {
    if (dst[i] == src[i]) continue;
    expected_changed = true;
    if (is_to_lower) {
      DCHECK('A' <= src[i] && src[i] <= 'Z');
      DCHECK(dst[i] == src[i] + ('a' - 'A'));
    } else {
      DCHECK('a' <= src[i] && src[i] <= 'z');
      DCHECK(dst[i] == src[i] - ('a' - 'A'));
    }
  }
  return (expected_changed == changed);
}
#endif


template <class Converter>
static bool FastAsciiConvert(char* dst, const char* src, int length,
                             bool* changed_out) {
#ifdef DEBUG
  char* saved_dst = dst;
  const char* saved_src = src;
#endif
  DisallowHeapAllocation no_gc;
  // We rely on the distance between upper and lower case letters
  // being a known power of 2.
  DCHECK('a' - 'A' == (1 << 5));
  // Boundaries for the range of input characters than require conversion.
  static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
  static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
  bool changed = false;
  uintptr_t or_acc = 0;
  const char* const limit = src + length;

  // dst is newly allocated and always aligned.
  DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
  // Only attempt processing one word at a time if src is also aligned.
  if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
    // Process the prefix of the input that requires no conversion one aligned
    // (machine) word at a time.
    while (src <= limit - sizeof(uintptr_t)) {
      const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
      or_acc |= w;
      if (AsciiRangeMask(w, lo, hi) != 0) {
        changed = true;
        break;
      }
      *reinterpret_cast<uintptr_t*>(dst) = w;
      src += sizeof(uintptr_t);
      dst += sizeof(uintptr_t);
    }
    // Process the remainder of the input performing conversion when
    // required one word at a time.
    while (src <= limit - sizeof(uintptr_t)) {
      const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
      or_acc |= w;
      uintptr_t m = AsciiRangeMask(w, lo, hi);
      // The mask has high (7th) bit set in every byte that needs
      // conversion and we know that the distance between cases is
      // 1 << 5.
      *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
      src += sizeof(uintptr_t);
      dst += sizeof(uintptr_t);
    }
  }
  // Process the last few bytes of the input (or the whole input if
  // unaligned access is not supported).
  while (src < limit) {
    char c = *src;
    or_acc |= c;
    if (lo < c && c < hi) {
      c ^= (1 << 5);
      changed = true;
    }
    *dst = c;
    ++src;
    ++dst;
  }

  if ((or_acc & kAsciiMask) != 0) return false;

  DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
                               Converter::kIsToLower));

  *changed_out = changed;
  return true;
}


template <class Converter>
MUST_USE_RESULT static Object* ConvertCase(
    Handle<String> s, Isolate* isolate,
    unibrow::Mapping<Converter, 128>* mapping) {
  s = String::Flatten(s);
  int length = s->length();
  // Assume that the string is not empty; we need this assumption later
  if (length == 0) return *s;

  // Simpler handling of ASCII strings.
  //
  // NOTE: This assumes that the upper/lower case of an ASCII
  // character is also ASCII.  This is currently the case, but it
  // might break in the future if we implement more context and locale
  // dependent upper/lower conversions.
  if (s->IsOneByteRepresentationUnderneath()) {
    // Same length as input.
    Handle<SeqOneByteString> result =
        isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
    DisallowHeapAllocation no_gc;
    String::FlatContent flat_content = s->GetFlatContent();
    DCHECK(flat_content.IsFlat());
    bool has_changed_character = false;
    bool is_ascii = FastAsciiConvert<Converter>(
        reinterpret_cast<char*>(result->GetChars()),
        reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
        length, &has_changed_character);
    // If not ASCII, we discard the result and take the 2 byte path.
    if (is_ascii) return has_changed_character ? *result : *s;
  }

  Handle<SeqString> result;  // Same length as input.
  if (s->IsOneByteRepresentation()) {
    result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
  } else {
    result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
  }

  Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
1059
  if (answer->IsException(isolate) || answer->IsString()) return answer;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

  DCHECK(answer->IsSmi());
  length = Smi::cast(answer)->value();
  if (s->IsOneByteRepresentation() && length > 0) {
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
        isolate, result, isolate->factory()->NewRawOneByteString(length));
  } else {
    if (length < 0) length = -length;
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
        isolate, result, isolate->factory()->NewRawTwoByteString(length));
  }
  return ConvertCaseHelper(isolate, *s, *result, length, mapping);
}


RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
  HandleScope scope(isolate);
  DCHECK_EQ(args.length(), 1);
  CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
  return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping());
}


RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
  HandleScope scope(isolate);
  DCHECK_EQ(args.length(), 1);
  CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
  return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping());
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
RUNTIME_FUNCTION(Runtime_StringLessThan) {
  HandleScope handle_scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
  switch (String::Compare(x, y)) {
    case ComparisonResult::kLessThan:
      return isolate->heap()->true_value();
    case ComparisonResult::kEqual:
    case ComparisonResult::kGreaterThan:
      return isolate->heap()->false_value();
    case ComparisonResult::kUndefined:
      break;
  }
  UNREACHABLE();
  return Smi::FromInt(0);
}

RUNTIME_FUNCTION(Runtime_StringLessThanOrEqual) {
  HandleScope handle_scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
  switch (String::Compare(x, y)) {
    case ComparisonResult::kEqual:
    case ComparisonResult::kLessThan:
      return isolate->heap()->true_value();
    case ComparisonResult::kGreaterThan:
      return isolate->heap()->false_value();
    case ComparisonResult::kUndefined:
      break;
  }
  UNREACHABLE();
  return Smi::FromInt(0);
}

RUNTIME_FUNCTION(Runtime_StringGreaterThan) {
  HandleScope handle_scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
  switch (String::Compare(x, y)) {
    case ComparisonResult::kGreaterThan:
      return isolate->heap()->true_value();
    case ComparisonResult::kEqual:
    case ComparisonResult::kLessThan:
      return isolate->heap()->false_value();
    case ComparisonResult::kUndefined:
      break;
  }
  UNREACHABLE();
  return Smi::FromInt(0);
}

RUNTIME_FUNCTION(Runtime_StringGreaterThanOrEqual) {
  HandleScope handle_scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
  switch (String::Compare(x, y)) {
    case ComparisonResult::kEqual:
    case ComparisonResult::kGreaterThan:
      return isolate->heap()->true_value();
    case ComparisonResult::kLessThan:
      return isolate->heap()->false_value();
    case ComparisonResult::kUndefined:
      break;
  }
  UNREACHABLE();
  return Smi::FromInt(0);
}

1162
RUNTIME_FUNCTION(Runtime_StringEqual) {
1163
  HandleScope handle_scope(isolate);
1164
  DCHECK_EQ(2, args.length());
1165 1166
  CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
1167
  return isolate->heap()->ToBoolean(String::Equals(x, y));
1168 1169
}

1170 1171 1172 1173 1174 1175 1176
RUNTIME_FUNCTION(Runtime_StringNotEqual) {
  HandleScope handle_scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
  CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
  return isolate->heap()->ToBoolean(!String::Equals(x, y));
}
1177

1178 1179 1180 1181 1182 1183 1184 1185
RUNTIME_FUNCTION(Runtime_FlattenString) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
  return *String::Flatten(str);
}


1186
RUNTIME_FUNCTION(Runtime_StringCharFromCode) {
1187 1188 1189 1190 1191 1192 1193 1194
  HandleScope handlescope(isolate);
  DCHECK_EQ(1, args.length());
  if (args[0]->IsNumber()) {
    CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
    code &= 0xffff;
    return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
  }
  return isolate->heap()->empty_string();
1195 1196
}

1197 1198 1199 1200 1201 1202 1203
RUNTIME_FUNCTION(Runtime_ExternalStringGetChar) {
  SealHandleScope shs(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_CHECKED(ExternalString, string, 0);
  CONVERT_INT32_ARG_CHECKED(index, 1);
  return Smi::FromInt(string->Get(index));
}
1204

1205
RUNTIME_FUNCTION(Runtime_StringCharCodeAt) {
1206 1207 1208 1209 1210 1211 1212 1213
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 2);
  if (!args[0]->IsString()) return isolate->heap()->undefined_value();
  if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
  if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
  return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
}

1214 1215
}  // namespace internal
}  // namespace v8