node.cc 12.6 KB
Newer Older
1 2 3 4
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

5
#include "src/compiler/node.h"
6

7 8 9 10
namespace v8 {
namespace internal {
namespace compiler {

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Node::OutOfLineInputs* Node::OutOfLineInputs::New(Zone* zone, int capacity) {
  size_t size =
      sizeof(OutOfLineInputs) + capacity * (sizeof(Node*) + sizeof(Use));
  intptr_t raw_buffer = reinterpret_cast<intptr_t>(zone->New(size));
  Node::OutOfLineInputs* outline =
      reinterpret_cast<OutOfLineInputs*>(raw_buffer + capacity * sizeof(Use));
  outline->capacity_ = capacity;
  outline->count_ = 0;
  return outline;
}


void Node::OutOfLineInputs::ExtractFrom(Use* old_use_ptr, Node** old_input_ptr,
                                        int count) {
  // Extract the inputs from the old use and input pointers and copy them
  // to this out-of-line-storage.
  Use* new_use_ptr = reinterpret_cast<Use*>(this) - 1;
  Node** new_input_ptr = inputs_;
  for (int current = 0; current < count; current++) {
    new_use_ptr->bit_field_ =
        Use::InputIndexField::encode(current) | Use::InlineField::encode(false);
    DCHECK_EQ(old_input_ptr, old_use_ptr->input_ptr());
    DCHECK_EQ(new_input_ptr, new_use_ptr->input_ptr());
    Node* old_to = *old_input_ptr;
    if (old_to) {
      *old_input_ptr = nullptr;
      old_to->RemoveUse(old_use_ptr);
      *new_input_ptr = old_to;
      old_to->AppendUse(new_use_ptr);
    } else {
      *new_input_ptr = nullptr;
    }
    old_input_ptr++;
    new_input_ptr++;
    old_use_ptr--;
    new_use_ptr--;
  }
  this->count_ = count;
}


52
Node* Node::New(Zone* zone, NodeId id, const Operator* op, int input_count,
53
                Node* const* inputs, bool has_extensible_inputs) {
54 55 56 57 58
  Node** input_ptr;
  Use* use_ptr;
  Node* node;
  bool is_inline;

59 60 61 62
#if DEBUG
  // Verify that none of the inputs are {nullptr}.
  for (int i = 0; i < input_count; i++) {
    if (inputs[i] == nullptr) {
63 64
      FATAL("Node::New() Error: #%d:%s[%d] is nullptr", static_cast<int>(id),
            op->mnemonic(), i);
65 66 67 68
    }
  }
#endif

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  if (input_count > kMaxInlineCapacity) {
    // Allocate out-of-line inputs.
    int capacity =
        has_extensible_inputs ? input_count + kMaxInlineCapacity : input_count;
    OutOfLineInputs* outline = OutOfLineInputs::New(zone, capacity);

    // Allocate node.
    void* node_buffer = zone->New(sizeof(Node));
    node = new (node_buffer) Node(id, op, kOutlineMarker, 0);
    node->inputs_.outline_ = outline;

    outline->node_ = node;
    outline->count_ = input_count;

    input_ptr = outline->inputs_;
    use_ptr = reinterpret_cast<Use*>(outline);
    is_inline = false;
  } else {
    // Allocate node with inline inputs.
    int capacity = input_count;
    if (has_extensible_inputs) {
      const int max = kMaxInlineCapacity;
      capacity = std::min(input_count + 3, max);
    }

    size_t size = sizeof(Node) + capacity * (sizeof(Node*) + sizeof(Use));
    intptr_t raw_buffer = reinterpret_cast<intptr_t>(zone->New(size));
    void* node_buffer =
        reinterpret_cast<void*>(raw_buffer + capacity * sizeof(Use));
98

99 100 101 102 103 104 105
    node = new (node_buffer) Node(id, op, input_count, capacity);
    input_ptr = node->inputs_.inline_;
    use_ptr = reinterpret_cast<Use*>(node);
    is_inline = true;
  }

  // Initialize the input pointers and the uses.
106 107
  for (int current = 0; current < input_count; ++current) {
    Node* to = *inputs++;
108 109 110 111
    input_ptr[current] = to;
    Use* use = use_ptr - 1 - current;
    use->bit_field_ = Use::InputIndexField::encode(current) |
                      Use::InlineField::encode(is_inline);
112 113
    to->AppendUse(use);
  }
114 115
  node->Verify();
  return node;
116 117 118
}


119 120 121 122 123 124
Node* Node::Clone(Zone* zone, NodeId id, const Node* node) {
  int const input_count = node->InputCount();
  Node* const* const inputs = node->has_inline_inputs()
                                  ? node->inputs_.inline_
                                  : node->inputs_.outline_->inputs_;
  Node* const clone = New(zone, id, node->op(), input_count, inputs, false);
125
  clone->set_type(node->type());
126 127 128 129
  return clone;
}


130 131
void Node::Kill() {
  DCHECK_NOT_NULL(op());
132
  NullAllInputs();
133 134 135 136
  DCHECK(uses().empty());
}


137 138 139
void Node::AppendInput(Zone* zone, Node* new_to) {
  DCHECK_NOT_NULL(zone);
  DCHECK_NOT_NULL(new_to);
140 141 142 143 144 145 146 147 148 149 150

  int inline_count = InlineCountField::decode(bit_field_);
  int inline_capacity = InlineCapacityField::decode(bit_field_);
  if (inline_count < inline_capacity) {
    // Append inline input.
    bit_field_ = InlineCountField::update(bit_field_, inline_count + 1);
    *GetInputPtr(inline_count) = new_to;
    Use* use = GetUsePtr(inline_count);
    use->bit_field_ = Use::InputIndexField::encode(inline_count) |
                      Use::InlineField::encode(true);
    new_to->AppendUse(use);
151
  } else {
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    // Append out-of-line input.
    int input_count = InputCount();
    OutOfLineInputs* outline = nullptr;
    if (inline_count != kOutlineMarker) {
      // switch to out of line inputs.
      outline = OutOfLineInputs::New(zone, input_count * 2 + 3);
      outline->node_ = this;
      outline->ExtractFrom(GetUsePtr(0), GetInputPtr(0), input_count);
      bit_field_ = InlineCountField::update(bit_field_, kOutlineMarker);
      inputs_.outline_ = outline;
    } else {
      // use current out of line inputs.
      outline = inputs_.outline_;
      if (input_count >= outline->capacity_) {
        // out of space in out-of-line inputs.
        outline = OutOfLineInputs::New(zone, input_count * 2 + 3);
        outline->node_ = this;
        outline->ExtractFrom(GetUsePtr(0), GetInputPtr(0), input_count);
        inputs_.outline_ = outline;
      }
    }
    outline->count_++;
    *GetInputPtr(input_count) = new_to;
    Use* use = GetUsePtr(input_count);
    use->bit_field_ = Use::InputIndexField::encode(input_count) |
                      Use::InlineField::encode(false);
    new_to->AppendUse(use);
179
  }
180
  Verify();
181 182 183 184 185 186 187 188 189 190
}


void Node::InsertInput(Zone* zone, int index, Node* new_to) {
  DCHECK_NOT_NULL(zone);
  DCHECK_LE(0, index);
  DCHECK_LT(index, InputCount());
  AppendInput(zone, InputAt(InputCount() - 1));
  for (int i = InputCount() - 1; i > index; --i) {
    ReplaceInput(i, InputAt(i - 1));
191
  }
192
  ReplaceInput(index, new_to);
193
  Verify();
194 195
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
void Node::InsertInputs(Zone* zone, int index, int count) {
  DCHECK_NOT_NULL(zone);
  DCHECK_LE(0, index);
  DCHECK_LT(0, count);
  DCHECK_LT(index, InputCount());
  for (int i = 0; i < count; i++) {
    AppendInput(zone, InputAt(Max(InputCount() - count, 0)));
  }
  for (int i = InputCount() - count - 1; i >= Max(index, count); --i) {
    ReplaceInput(i, InputAt(i - count));
  }
  for (int i = 0; i < count; i++) {
    ReplaceInput(index + i, nullptr);
  }
  Verify();
}
212

213 214 215 216 217 218 219
void Node::RemoveInput(int index) {
  DCHECK_LE(0, index);
  DCHECK_LT(index, InputCount());
  for (; index < InputCount() - 1; ++index) {
    ReplaceInput(index, InputAt(index + 1));
  }
  TrimInputCount(InputCount() - 1);
220
  Verify();
221 222 223
}


224 225 226 227 228 229 230 231 232 233 234 235
void Node::ClearInputs(int start, int count) {
  Node** input_ptr = GetInputPtr(start);
  Use* use_ptr = GetUsePtr(start);
  while (count-- > 0) {
    DCHECK_EQ(input_ptr, use_ptr->input_ptr());
    Node* input = *input_ptr;
    *input_ptr = nullptr;
    if (input) input->RemoveUse(use_ptr);
    input_ptr++;
    use_ptr--;
  }
  Verify();
236 237 238
}


239 240 241
void Node::NullAllInputs() { ClearInputs(0, InputCount()); }


242
void Node::TrimInputCount(int new_input_count) {
243 244 245 246 247 248
  int current_count = InputCount();
  DCHECK_LE(new_input_count, current_count);
  if (new_input_count == current_count) return;  // Nothing to do.
  ClearInputs(new_input_count, current_count - new_input_count);
  if (has_inline_inputs()) {
    bit_field_ = InlineCountField::update(bit_field_, new_input_count);
249
  } else {
250
    inputs_.outline_->count_ = new_input_count;
251 252 253 254
  }
}


255 256 257 258 259 260 261 262 263
int Node::UseCount() const {
  int use_count = 0;
  for (const Use* use = first_use_; use; use = use->next) {
    ++use_count;
  }
  return use_count;
}


264 265 266 267 268 269 270
void Node::ReplaceUses(Node* that) {
  DCHECK(this->first_use_ == nullptr || this->first_use_->prev == nullptr);
  DCHECK(that->first_use_ == nullptr || that->first_use_->prev == nullptr);

  // Update the pointers to {this} to point to {that}.
  Use* last_use = nullptr;
  for (Use* use = this->first_use_; use; use = use->next) {
271
    *use->input_ptr() = that;
272 273 274 275 276 277 278
    last_use = use;
  }
  if (last_use) {
    // Concat the use list of {this} and {that}.
    last_use->next = that->first_use_;
    if (that->first_use_) that->first_use_->prev = last_use;
    that->first_use_ = this->first_use_;
279 280 281 282 283
  }
  first_use_ = nullptr;
}


284 285 286
bool Node::OwnedBy(Node const* owner1, Node const* owner2) const {
  unsigned mask = 0;
  for (Use* use = first_use_; use; use = use->next) {
287 288
    Node* from = use->from();
    if (from == owner1) {
289
      mask |= 1;
290
    } else if (from == owner2) {
291 292 293 294 295 296 297 298
      mask |= 2;
    } else {
      return false;
    }
  }
  return mask == 3;
}

299 300 301 302 303 304 305 306 307 308 309 310 311
bool Node::OwnedByAddressingOperand() const {
  for (Use* use = first_use_; use; use = use->next) {
    Node* from = use->from();
    if (from->opcode() != IrOpcode::kLoad &&
        // If {from} is store, make sure it does not use {this} as value
        (from->opcode() != IrOpcode::kStore || from->InputAt(2) == this) &&
        from->opcode() != IrOpcode::kInt32Add &&
        from->opcode() != IrOpcode::kInt64Add) {
      return false;
    }
  }
  return true;
}
312

313 314 315
void Node::Print() const {
  OFStream os(stdout);
  os << *this << std::endl;
316 317 318
  for (Node* input : this->inputs()) {
    os << "  " << *input << std::endl;
  }
319 320
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
std::ostream& operator<<(std::ostream& os, const Node& n) {
  os << n.id() << ": " << *n.op();
  if (n.InputCount() > 0) {
    os << "(";
    for (int i = 0; i < n.InputCount(); ++i) {
      if (i != 0) os << ", ";
      if (n.InputAt(i)) {
        os << n.InputAt(i)->id();
      } else {
        os << "null";
      }
    }
    os << ")";
  }
  return os;
}
337

338
Node::Node(NodeId id, const Operator* op, int inline_count, int inline_capacity)
339
    : op_(op),
340
      type_(nullptr),
341
      mark_(0),
342 343 344 345
      bit_field_(IdField::encode(id) | InlineCountField::encode(inline_count) |
                 InlineCapacityField::encode(inline_capacity)),
      first_use_(nullptr) {
  // Inputs must either be out of line or within the inline capacity.
346
  DCHECK_GE(kMaxInlineCapacity, inline_capacity);
347
  DCHECK(inline_count == kOutlineMarker || inline_count <= inline_capacity);
348 349 350
}


351
void Node::AppendUse(Use* use) {
352
  DCHECK(first_use_ == nullptr || first_use_->prev == nullptr);
353
  DCHECK_EQ(this, *use->input_ptr());
354 355 356 357
  use->next = first_use_;
  use->prev = nullptr;
  if (first_use_) first_use_->prev = use;
  first_use_ = use;
358 359 360
}


361
void Node::RemoveUse(Use* use) {
362
  DCHECK(first_use_ == nullptr || first_use_->prev == nullptr);
363
  if (use->prev) {
364
    DCHECK_NE(first_use_, use);
365 366
    use->prev->next = use->next;
  } else {
367
    DCHECK_EQ(first_use_, use);
368 369 370 371
    first_use_ = use->next;
  }
  if (use->next) {
    use->next->prev = use->prev;
372 373 374 375
  }
}


376 377 378 379 380 381 382 383 384 385
#if DEBUG
void Node::Verify() {
  // Check basic sanity of input data structures.
  fflush(stdout);
  int count = this->InputCount();
  // Avoid quadratic explosion for mega nodes; only verify if the input
  // count is less than 200 or is a round number of 100s.
  if (count > 200 && count % 100) return;

  for (int i = 0; i < count; i++) {
386 387 388
    DCHECK_EQ(i, this->GetUsePtr(i)->input_index());
    DCHECK_EQ(this->GetInputPtr(i), this->GetUsePtr(i)->input_ptr());
    DCHECK_EQ(count, this->InputCount());
389 390 391 392
  }
  {  // Direct input iteration.
    int index = 0;
    for (Node* input : this->inputs()) {
393
      DCHECK_EQ(this->InputAt(index), input);
394 395
      index++;
    }
396 397
    DCHECK_EQ(count, index);
    DCHECK_EQ(this->InputCount(), index);
398 399 400 401
  }
  {  // Input edge iteration.
    int index = 0;
    for (Edge edge : this->input_edges()) {
402 403 404
      DCHECK_EQ(edge.from(), this);
      DCHECK_EQ(index, edge.index());
      DCHECK_EQ(this->InputAt(index), edge.to());
405 406
      index++;
    }
407 408
    DCHECK_EQ(count, index);
    DCHECK_EQ(this->InputCount(), index);
409 410 411 412
  }
}
#endif

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
Node::InputEdges::iterator Node::InputEdges::iterator::operator++(int n) {
  iterator result(*this);
  ++(*this);
  return result;
}


Node::Inputs::const_iterator Node::Inputs::const_iterator::operator++(int n) {
  const_iterator result(*this);
  ++(*this);
  return result;
}


Node::UseEdges::iterator Node::UseEdges::iterator::operator++(int n) {
  iterator result(*this);
  ++(*this);
  return result;
}


bool Node::UseEdges::empty() const { return begin() == end(); }


Node::Uses::const_iterator Node::Uses::const_iterator::operator++(int n) {
  const_iterator result(*this);
  ++(*this);
  return result;
}


bool Node::Uses::empty() const { return begin() == end(); }

446 447 448
}  // namespace compiler
}  // namespace internal
}  // namespace v8