date.cc 14.9 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5
#include "src/date.h"
6

7
#include "src/conversions.h"
8
#include "src/objects-inl.h"
9
#include "src/objects.h"
10

11 12
#ifdef V8_INTL_SUPPORT
#include "src/intl.h"
13 14
#endif

15 16 17 18 19 20 21 22 23 24 25 26 27 28
namespace v8 {
namespace internal {


static const int kDaysIn4Years = 4 * 365 + 1;
static const int kDaysIn100Years = 25 * kDaysIn4Years - 1;
static const int kDaysIn400Years = 4 * kDaysIn100Years + 1;
static const int kDays1970to2000 = 30 * 365 + 7;
static const int kDaysOffset = 1000 * kDaysIn400Years + 5 * kDaysIn400Years -
                               kDays1970to2000;
static const int kYearsOffset = 400000;
static const char kDaysInMonths[] =
    {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

29 30 31
DateCache::DateCache()
    : stamp_(0),
      tz_cache_(
32
#ifdef V8_INTL_SUPPORT
33 34 35 36 37 38 39 40
          FLAG_icu_timezone_data ? new ICUTimezoneCache()
                                 : base::OS::CreateTimezoneCache()
#else
          base::OS::CreateTimezoneCache()
#endif
              ) {
  ResetDateCache();
}
41 42 43

void DateCache::ResetDateCache() {
  static const int kMaxStamp = Smi::kMaxValue;
44
  if (stamp_->value() >= kMaxStamp) {
45
    stamp_ = Smi::kZero;
46 47
  } else {
    stamp_ = Smi::FromInt(stamp_->value() + 1);
48
  }
49
  DCHECK(stamp_ != Smi::FromInt(kInvalidStamp));
50 51 52 53 54 55 56
  for (int i = 0; i < kDSTSize; ++i) {
    ClearSegment(&dst_[i]);
  }
  dst_usage_counter_ = 0;
  before_ = &dst_[0];
  after_ = &dst_[1];
  ymd_valid_ = false;
57 58 59 60 61 62 63
#ifdef V8_INTL_SUPPORT
  if (!FLAG_icu_timezone_data) {
#endif
    local_offset_ms_ = kInvalidLocalOffsetInMs;
#ifdef V8_INTL_SUPPORT
  }
#endif
64
  tz_cache_->Clear();
65 66
  tz_name_ = nullptr;
  dst_tz_name_ = nullptr;
67 68
}

69 70 71 72 73 74 75
// ECMA 262 - ES#sec-timeclip TimeClip (time)
double DateCache::TimeClip(double time) {
  if (-kMaxTimeInMs <= time && time <= kMaxTimeInMs) {
    return DoubleToInteger(time) + 0.0;
  }
  return std::numeric_limits<double>::quiet_NaN();
}
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

void DateCache::ClearSegment(DST* segment) {
  segment->start_sec = kMaxEpochTimeInSec;
  segment->end_sec = -kMaxEpochTimeInSec;
  segment->offset_ms = 0;
  segment->last_used = 0;
}


void DateCache::YearMonthDayFromDays(
    int days, int* year, int* month, int* day) {
  if (ymd_valid_) {
    // Check conservatively if the given 'days' has
    // the same year and month as the cached 'days'.
    int new_day = ymd_day_ + (days - ymd_days_);
    if (new_day >= 1 && new_day <= 28) {
      ymd_day_ = new_day;
      ymd_days_ = days;
      *year = ymd_year_;
      *month = ymd_month_;
      *day = new_day;
      return;
    }
  }
  int save_days = days;

  days += kDaysOffset;
  *year = 400 * (days / kDaysIn400Years) - kYearsOffset;
  days %= kDaysIn400Years;

106
  DCHECK_EQ(save_days, DaysFromYearMonth(*year, 0) + days);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

  days--;
  int yd1 = days / kDaysIn100Years;
  days %= kDaysIn100Years;
  *year += 100 * yd1;

  days++;
  int yd2 = days / kDaysIn4Years;
  days %= kDaysIn4Years;
  *year += 4 * yd2;

  days--;
  int yd3 = days / 365;
  days %= 365;
  *year += yd3;


  bool is_leap = (!yd1 || yd2) && !yd3;

126
  DCHECK_GE(days, -1);
127 128 129 130 131
  DCHECK(is_leap || (days >= 0));
  DCHECK((days < 365) || (is_leap && (days < 366)));
  DCHECK(is_leap == ((*year % 4 == 0) && (*year % 100 || (*year % 400 == 0))));
  DCHECK(is_leap || ((DaysFromYearMonth(*year, 0) + days) == save_days));
  DCHECK(!is_leap || ((DaysFromYearMonth(*year, 0) + days + 1) == save_days));
132 133 134 135

  days += is_leap;

  // Check if the date is after February.
136 137
  if (days >= 31 + 28 + BoolToInt(is_leap)) {
    days -= 31 + 28 + BoolToInt(is_leap);
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    // Find the date starting from March.
    for (int i = 2; i < 12; i++) {
      if (days < kDaysInMonths[i]) {
        *month = i;
        *day = days + 1;
        break;
      }
      days -= kDaysInMonths[i];
    }
  } else {
    // Check January and February.
    if (days < 31) {
      *month = 0;
      *day = days + 1;
    } else {
      *month = 1;
      *day = days - 31 + 1;
    }
  }
157
  DCHECK(DaysFromYearMonth(*year, *month) + *day - 1 == save_days);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  ymd_valid_ = true;
  ymd_year_ = *year;
  ymd_month_ = *month;
  ymd_day_ = *day;
  ymd_days_ = save_days;
}


int DateCache::DaysFromYearMonth(int year, int month) {
  static const int day_from_month[] = {0, 31, 59, 90, 120, 151,
                                       181, 212, 243, 273, 304, 334};
  static const int day_from_month_leap[] = {0, 31, 60, 91, 121, 152,
                                            182, 213, 244, 274, 305, 335};

  year += month / 12;
  month %= 12;
  if (month < 0) {
    year--;
    month += 12;
  }

179 180
  DCHECK_GE(month, 0);
  DCHECK_LT(month, 12);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

  // year_delta is an arbitrary number such that:
  // a) year_delta = -1 (mod 400)
  // b) year + year_delta > 0 for years in the range defined by
  //    ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
  //    Jan 1 1970. This is required so that we don't run into integer
  //    division of negative numbers.
  // c) there shouldn't be an overflow for 32-bit integers in the following
  //    operations.
  static const int year_delta = 399999;
  static const int base_day = 365 * (1970 + year_delta) +
                              (1970 + year_delta) / 4 -
                              (1970 + year_delta) / 100 +
                              (1970 + year_delta) / 400;

  int year1 = year + year_delta;
  int day_from_year = 365 * year1 +
                      year1 / 4 -
                      year1 / 100 +
                      year1 / 400 -
                      base_day;

  if ((year % 4 != 0) || (year % 100 == 0 && year % 400 != 0)) {
    return day_from_year + day_from_month[month];
  }
  return day_from_year + day_from_month_leap[month];
}


210 211 212 213 214 215 216 217 218 219 220 221 222
void DateCache::BreakDownTime(int64_t time_ms, int* year, int* month, int* day,
                              int* weekday, int* hour, int* min, int* sec,
                              int* ms) {
  int const days = DaysFromTime(time_ms);
  int const time_in_day_ms = TimeInDay(time_ms, days);
  YearMonthDayFromDays(days, year, month, day);
  *weekday = Weekday(days);
  *hour = time_in_day_ms / (60 * 60 * 1000);
  *min = (time_in_day_ms / (60 * 1000)) % 60;
  *sec = (time_in_day_ms / 1000) % 60;
  *ms = time_in_day_ms % 1000;
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
// Implements LocalTimeZonedjustment(t, isUTC)
// ECMA 262 - ES#sec-local-time-zone-adjustment
int DateCache::GetLocalOffsetFromOS(int64_t time_ms, bool is_utc) {
  double offset;
#ifdef V8_INTL_SUPPORT
  if (FLAG_icu_timezone_data) {
    offset = tz_cache_->LocalTimeOffset(static_cast<double>(time_ms), is_utc);
  } else {
#endif
    // When ICU timezone data is not used, we need to compute the timezone
    // offset for a given local time.
    //
    // The following shows that using DST for (t - LocalTZA - hour) produces
    // correct conversion where LocalTZA is the timezone offset in winter (no
    // DST) and the timezone offset is assumed to have no historical change.
    // Note that it does not work for the past and the future if LocalTZA (no
    // DST) is different from the current LocalTZA (no DST). For instance,
    // this will break for Europe/Moscow in 2012 ~ 2013 because LocalTZA was
    // 4h instead of the current 3h (as of 2018).
    //
    // Consider transition to DST at local time L1.
    // Let L0 = L1 - hour, L2 = L1 + hour,
    //     U1 = UTC time that corresponds to L1,
    //     U0 = U1 - hour.
    // Transitioning to DST moves local clock one hour forward L1 => L2, so
    // U0 = UTC time that corresponds to L0 = L0 - LocalTZA,
    // U1 = UTC time that corresponds to L1 = L1 - LocalTZA,
    // U1 = UTC time that corresponds to L2 = L2 - LocalTZA - hour.
    // Note that DST(U0 - hour) = 0, DST(U0) = 0, DST(U1) = 1.
    // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour),
    // U1 = L1 - LocalTZA - DST(L1 - LocalTZA - hour),
    // U1 = L2 - LocalTZA - DST(L2 - LocalTZA - hour).
    //
    // Consider transition from DST at local time L1.
    // Let L0 = L1 - hour,
    //     U1 = UTC time that corresponds to L1,
    //     U0 = U1 - hour, U2 = U1 + hour.
    // Transitioning from DST moves local clock one hour back L1 => L0, so
    // U0 = UTC time that corresponds to L0 (before transition)
    //    = L0 - LocalTZA - hour.
    // U1 = UTC time that corresponds to L0 (after transition)
    //    = L0 - LocalTZA = L1 - LocalTZA - hour
    // U2 = UTC time that corresponds to L1 = L1 - LocalTZA.
    // Note that DST(U0) = 1, DST(U1) = 0, DST(U2) = 0.
    // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour) = L0 - LocalTZA - DST(U0).
    // U2 = L1 - LocalTZA - DST(L1 - LocalTZA - hour) = L1 - LocalTZA - DST(U1).
    // It is impossible to get U1 from local time.
    if (local_offset_ms_ == kInvalidLocalOffsetInMs) {
      // This gets the constant LocalTZA (arguments are ignored).
      local_offset_ms_ =
          tz_cache_->LocalTimeOffset(static_cast<double>(time_ms), is_utc);
    }
    offset = local_offset_ms_;
    if (!is_utc) {
      const int kMsPerHour = 3600 * 1000;
      time_ms -= (offset + kMsPerHour);
    }
    offset += DaylightSavingsOffsetInMs(time_ms);
#ifdef V8_INTL_SUPPORT
  }
#endif
  DCHECK_LT(offset, kInvalidLocalOffsetInMs);
  return static_cast<int>(offset);
}
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
void DateCache::ExtendTheAfterSegment(int time_sec, int offset_ms) {
  if (after_->offset_ms == offset_ms &&
      after_->start_sec <= time_sec + kDefaultDSTDeltaInSec &&
      time_sec <= after_->end_sec) {
    // Extend the after_ segment.
    after_->start_sec = time_sec;
  } else {
    // The after_ segment is either invalid or starts too late.
    if (after_->start_sec <= after_->end_sec) {
      // If the after_ segment is valid, replace it with a new segment.
      after_ = LeastRecentlyUsedDST(before_);
    }
    after_->start_sec = time_sec;
    after_->end_sec = time_sec;
    after_->offset_ms = offset_ms;
    after_->last_used = ++dst_usage_counter_;
  }
}


int DateCache::DaylightSavingsOffsetInMs(int64_t time_ms) {
  int time_sec = (time_ms >= 0 && time_ms <= kMaxEpochTimeInMs)
      ? static_cast<int>(time_ms / 1000)
      : static_cast<int>(EquivalentTime(time_ms) / 1000);

  // Invalidate cache if the usage counter is close to overflow.
  // Note that dst_usage_counter is incremented less than ten times
  // in this function.
  if (dst_usage_counter_ >= kMaxInt - 10) {
    dst_usage_counter_ = 0;
    for (int i = 0; i < kDSTSize; ++i) {
      ClearSegment(&dst_[i]);
    }
  }

  // Optimistic fast check.
  if (before_->start_sec <= time_sec &&
      time_sec <= before_->end_sec) {
    // Cache hit.
    before_->last_used = ++dst_usage_counter_;
    return before_->offset_ms;
  }

  ProbeDST(time_sec);

333 334
  DCHECK(InvalidSegment(before_) || before_->start_sec <= time_sec);
  DCHECK(InvalidSegment(after_) || time_sec < after_->start_sec);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

  if (InvalidSegment(before_)) {
    // Cache miss.
    before_->start_sec = time_sec;
    before_->end_sec = time_sec;
    before_->offset_ms = GetDaylightSavingsOffsetFromOS(time_sec);
    before_->last_used = ++dst_usage_counter_;
    return before_->offset_ms;
  }

  if (time_sec <= before_->end_sec) {
    // Cache hit.
    before_->last_used = ++dst_usage_counter_;
    return before_->offset_ms;
  }

  if (time_sec > before_->end_sec + kDefaultDSTDeltaInSec) {
    // If the before_ segment ends too early, then just
    // query for the offset of the time_sec
    int offset_ms = GetDaylightSavingsOffsetFromOS(time_sec);
    ExtendTheAfterSegment(time_sec, offset_ms);
    // This swap helps the optimistic fast check in subsequent invocations.
    DST* temp = before_;
    before_ = after_;
    after_ = temp;
    return offset_ms;
  }

  // Now the time_sec is between
  // before_->end_sec and before_->end_sec + default DST delta.
  // Update the usage counter of before_ since it is going to be used.
  before_->last_used = ++dst_usage_counter_;

  // Check if after_ segment is invalid or starts too late.
  // Note that start_sec of invalid segments is kMaxEpochTimeInSec.
  if (before_->end_sec + kDefaultDSTDeltaInSec <= after_->start_sec) {
    int new_after_start_sec = before_->end_sec + kDefaultDSTDeltaInSec;
    int new_offset_ms = GetDaylightSavingsOffsetFromOS(new_after_start_sec);
    ExtendTheAfterSegment(new_after_start_sec, new_offset_ms);
  } else {
375
    DCHECK(!InvalidSegment(after_));
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    // Update the usage counter of after_ since it is going to be used.
    after_->last_used = ++dst_usage_counter_;
  }

  // Now the time_sec is between before_->end_sec and after_->start_sec.
  // Only one daylight savings offset change can occur in this interval.

  if (before_->offset_ms == after_->offset_ms) {
    // Merge two segments if they have the same offset.
    before_->end_sec = after_->end_sec;
    ClearSegment(after_);
    return before_->offset_ms;
  }

  // Binary search for daylight savings offset change point,
391
  // but give up if we don't find it in five iterations.
392 393 394 395 396 397 398 399 400 401
  for (int i = 4; i >= 0; --i) {
    int delta = after_->start_sec - before_->end_sec;
    int middle_sec = (i == 0) ? time_sec : before_->end_sec + delta / 2;
    int offset_ms = GetDaylightSavingsOffsetFromOS(middle_sec);
    if (before_->offset_ms == offset_ms) {
      before_->end_sec = middle_sec;
      if (time_sec <= before_->end_sec) {
        return offset_ms;
      }
    } else {
402
      DCHECK(after_->offset_ms == offset_ms);
403 404 405 406 407 408 409 410 411 412
      after_->start_sec = middle_sec;
      if (time_sec >= after_->start_sec) {
        // This swap helps the optimistic fast check in subsequent invocations.
        DST* temp = before_;
        before_ = after_;
        after_ = temp;
        return offset_ms;
      }
    }
  }
413
  return 0;
414 415 416 417
}


void DateCache::ProbeDST(int time_sec) {
418 419
  DST* before = nullptr;
  DST* after = nullptr;
420
  DCHECK(before_ != after_);
421 422 423

  for (int i = 0; i < kDSTSize; ++i) {
    if (dst_[i].start_sec <= time_sec) {
424
      if (before == nullptr || before->start_sec < dst_[i].start_sec) {
425 426 427
        before = &dst_[i];
      }
    } else if (time_sec < dst_[i].end_sec) {
428
      if (after == nullptr || after->end_sec > dst_[i].end_sec) {
429 430 431 432 433 434 435
        after = &dst_[i];
      }
    }
  }

  // If before or after segments were not found,
  // then set them to any invalid segment.
436
  if (before == nullptr) {
437 438
    before = InvalidSegment(before_) ? before_ : LeastRecentlyUsedDST(after);
  }
439
  if (after == nullptr) {
440 441 442 443
    after = InvalidSegment(after_) && before != after_
            ? after_ : LeastRecentlyUsedDST(before);
  }

444 445
  DCHECK_NOT_NULL(before);
  DCHECK_NOT_NULL(after);
446 447 448 449
  DCHECK(before != after);
  DCHECK(InvalidSegment(before) || before->start_sec <= time_sec);
  DCHECK(InvalidSegment(after) || time_sec < after->start_sec);
  DCHECK(InvalidSegment(before) || InvalidSegment(after) ||
450 451 452 453 454 455 456 457
         before->end_sec < after->start_sec);

  before_ = before;
  after_ = after;
}


DateCache::DST* DateCache::LeastRecentlyUsedDST(DST* skip) {
458
  DST* result = nullptr;
459 460
  for (int i = 0; i < kDSTSize; ++i) {
    if (&dst_[i] == skip) continue;
461
    if (result == nullptr || result->last_used > dst_[i].last_used) {
462 463 464 465 466 467 468
      result = &dst_[i];
    }
  }
  ClearSegment(result);
  return result;
}

469 470
}  // namespace internal
}  // namespace v8