test-assembler-ppc.cc 28 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "src/v8.h"

#include "src/disassembler.h"
#include "src/factory.h"
#include "src/ppc/assembler-ppc-inl.h"
#include "src/ppc/simulator-ppc.h"
#include "test/cctest/cctest.h"

using namespace v8::internal;


// Define these function prototypes to match JSEntryFunction in execution.cc.
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F3)(void* p0, int p1, int p2, int p3, int p4);
typedef Object* (*F4)(void* p0, void* p1, int p2, int p3, int p4);


#define __ assm.

// Simple add parameter 1 to parameter 2 and return
TEST(0) {
  CcTest::InitializeVM();
51
  Isolate* isolate = CcTest::i_isolate();
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  HandleScope scope(isolate);

  Assembler assm(isolate, NULL, 0);

  __ function_descriptor();

  __ add(r3, r3, r4);
  __ blr();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef DEBUG
  code->Print();
#endif
  F2 f = FUNCTION_CAST<F2>(code->entry());
69 70
  intptr_t res = reinterpret_cast<intptr_t>(
      CALL_GENERATED_CODE(isolate, f, 3, 4, 0, 0, 0));
71 72 73 74 75 76 77 78
  ::printf("f() = %" V8PRIdPTR "\n", res);
  CHECK_EQ(7, static_cast<int>(res));
}


// Loop 100 times, adding loop counter to result
TEST(1) {
  CcTest::InitializeVM();
79
  Isolate* isolate = CcTest::i_isolate();
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  HandleScope scope(isolate);

  Assembler assm(isolate, NULL, 0);
  Label L, C;

  __ function_descriptor();

  __ mr(r4, r3);
  __ li(r3, Operand::Zero());
  __ b(&C);

  __ bind(&L);
  __ add(r3, r3, r4);
  __ subi(r4, r4, Operand(1));

  __ bind(&C);
  __ cmpi(r4, Operand::Zero());
  __ bne(&L);
  __ blr();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef DEBUG
  code->Print();
#endif
  F1 f = FUNCTION_CAST<F1>(code->entry());
108 109
  intptr_t res = reinterpret_cast<intptr_t>(
      CALL_GENERATED_CODE(isolate, f, 100, 0, 0, 0, 0));
110 111 112 113 114 115 116
  ::printf("f() = %" V8PRIdPTR "\n", res);
  CHECK_EQ(5050, static_cast<int>(res));
}


TEST(2) {
  CcTest::InitializeVM();
117
  Isolate* isolate = CcTest::i_isolate();
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  HandleScope scope(isolate);

  Assembler assm(isolate, NULL, 0);
  Label L, C;

  __ function_descriptor();

  __ mr(r4, r3);
  __ li(r3, Operand(1));
  __ b(&C);

  __ bind(&L);
#if defined(V8_TARGET_ARCH_PPC64)
  __ mulld(r3, r4, r3);
#else
  __ mullw(r3, r4, r3);
#endif
  __ subi(r4, r4, Operand(1));

  __ bind(&C);
  __ cmpi(r4, Operand::Zero());
  __ bne(&L);
  __ blr();

  // some relocated stuff here, not executed
  __ RecordComment("dead code, just testing relocations");
  __ mov(r0, Operand(isolate->factory()->true_value()));
  __ RecordComment("dead code, just testing immediate operands");
  __ mov(r0, Operand(-1));
  __ mov(r0, Operand(0xFF000000));
  __ mov(r0, Operand(0xF0F0F0F0));
  __ mov(r0, Operand(0xFFF0FFFF));

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef DEBUG
  code->Print();
#endif
  F1 f = FUNCTION_CAST<F1>(code->entry());
159 160
  intptr_t res = reinterpret_cast<intptr_t>(
      CALL_GENERATED_CODE(isolate, f, 10, 0, 0, 0, 0));
161 162 163 164 165 166 167
  ::printf("f() = %" V8PRIdPTR "\n", res);
  CHECK_EQ(3628800, static_cast<int>(res));
}


TEST(3) {
  CcTest::InitializeVM();
168
  Isolate* isolate = CcTest::i_isolate();
169 170 171 172 173 174 175 176 177
  HandleScope scope(isolate);

  typedef struct {
    int i;
    char c;
    int16_t s;
  } T;
  T t;

178
  Assembler assm(CcTest::i_isolate(), NULL, 0);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  Label L, C;

  __ function_descriptor();

// build a frame
#if V8_TARGET_ARCH_PPC64
  __ stdu(sp, MemOperand(sp, -32));
  __ std(fp, MemOperand(sp, 24));
#else
  __ stwu(sp, MemOperand(sp, -16));
  __ stw(fp, MemOperand(sp, 12));
#endif
  __ mr(fp, sp);

  // r4 points to our struct
  __ mr(r4, r3);

  // modify field int i of struct
197
  __ lwz(r3, MemOperand(r4, offsetof(T, i)));
198
  __ srwi(r5, r3, Operand(1));
199
  __ stw(r5, MemOperand(r4, offsetof(T, i)));
200 201

  // modify field char c of struct
202
  __ lbz(r5, MemOperand(r4, offsetof(T, c)));
203 204
  __ add(r3, r5, r3);
  __ slwi(r5, r5, Operand(2));
205
  __ stb(r5, MemOperand(r4, offsetof(T, c)));
206 207

  // modify field int16_t s of struct
208
  __ lhz(r5, MemOperand(r4, offsetof(T, s)));
209 210
  __ add(r3, r5, r3);
  __ srwi(r5, r5, Operand(3));
211
  __ sth(r5, MemOperand(r4, offsetof(T, s)));
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

// restore frame
#if V8_TARGET_ARCH_PPC64
  __ addi(r11, fp, Operand(32));
  __ ld(fp, MemOperand(r11, -8));
#else
  __ addi(r11, fp, Operand(16));
  __ lwz(fp, MemOperand(r11, -4));
#endif
  __ mr(sp, r11);
  __ blr();

  CodeDesc desc;
  assm.GetCode(&desc);
  Handle<Code> code = isolate->factory()->NewCode(
      desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef DEBUG
  code->Print();
#endif
  F3 f = FUNCTION_CAST<F3>(code->entry());
  t.i = 100000;
  t.c = 10;
  t.s = 1000;
235 236
  intptr_t res = reinterpret_cast<intptr_t>(
      CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0));
237 238 239 240 241 242 243 244 245 246 247
  ::printf("f() = %" V8PRIdPTR "\n", res);
  CHECK_EQ(101010, static_cast<int>(res));
  CHECK_EQ(100000 / 2, t.i);
  CHECK_EQ(10 * 4, t.c);
  CHECK_EQ(1000 / 8, t.s);
}

#if 0
TEST(4) {
  // Test the VFP floating point instructions.
  CcTest::InitializeVM();
248
  Isolate* isolate = CcTest::i_isolate();
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
    int i;
    double m;
    double n;
    float x;
    float y;
  } T;
  T t;

  // Create a function that accepts &t, and loads, manipulates, and stores
  // the doubles and floats.
270
  Assembler assm(CcTest::i_isolate(), NULL, 0);
271 272 273 274 275 276 277 278 279 280
  Label L, C;

  if (CpuFeatures::IsSupported(VFP3)) {
    CpuFeatures::Scope scope(VFP3);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

    __ mov(r4, Operand(r0));
281 282
    __ vldr(d6, r4, offsetof(T, a));
    __ vldr(d7, r4, offsetof(T, b));
283
    __ vadd(d5, d6, d7);
284
    __ vstr(d5, r4, offsetof(T, c));
285 286 287

    __ vmov(r2, r3, d5);
    __ vmov(d4, r2, r3);
288
    __ vstr(d4, r4, offsetof(T, b));
289 290

    // Load t.x and t.y, switch values, and store back to the struct.
291 292
    __ vldr(s0, r4, offsetof(T, x));
    __ vldr(s31, r4, offsetof(T, y));
293 294 295
    __ vmov(s16, s0);
    __ vmov(s0, s31);
    __ vmov(s31, s16);
296 297
    __ vstr(s0, r4, offsetof(T, x));
    __ vstr(s31, r4, offsetof(T, y));
298 299 300

    // Move a literal into a register that can be encoded in the instruction.
    __ vmov(d4, 1.0);
301
    __ vstr(d4, r4, offsetof(T, e));
302 303 304 305

    // Move a literal into a register that requires 64 bits to encode.
    // 0x3ff0000010000000 = 1.000000059604644775390625
    __ vmov(d4, 1.000000059604644775390625);
306
    __ vstr(d4, r4, offsetof(T, d));
307 308 309 310

    // Convert from floating point to integer.
    __ vmov(d4, 2.0);
    __ vcvt_s32_f64(s31, d4);
311
    __ vstr(s31, r4, offsetof(T, i));
312 313 314 315 316

    // Convert from integer to floating point.
    __ mov(lr, Operand(42));
    __ vmov(s31, lr);
    __ vcvt_f64_s32(d4, s31);
317
    __ vstr(d4, r4, offsetof(T, f));
318 319

    // Test vabs.
320
    __ vldr(d1, r4, offsetof(T, g));
321
    __ vabs(d0, d1);
322 323
    __ vstr(d0, r4, offsetof(T, g));
    __ vldr(d2, r4, offsetof(T, h));
324
    __ vabs(d0, d2);
325
    __ vstr(d0, r4, offsetof(T, h));
326 327

    // Test vneg.
328
    __ vldr(d1, r4, offsetof(T, m));
329
    __ vneg(d0, d1);
330 331
    __ vstr(d0, r4, offsetof(T, m));
    __ vldr(d1, r4, offsetof(T, n));
332
    __ vneg(d0, d1);
333
    __ vstr(d0, r4, offsetof(T, n));
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = isolate->heap()->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F3 f = FUNCTION_CAST<F3>(Code::cast(code)->entry());
    t.a = 1.5;
    t.b = 2.75;
    t.c = 17.17;
    t.d = 0.0;
    t.e = 0.0;
    t.f = 0.0;
    t.g = -2718.2818;
    t.h = 31415926.5;
    t.i = 0;
    t.m = -2718.2818;
    t.n = 123.456;
    t.x = 4.5;
    t.y = 9.0;
361
    Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    USE(dummy);
    CHECK_EQ(4.5, t.y);
    CHECK_EQ(9.0, t.x);
    CHECK_EQ(-123.456, t.n);
    CHECK_EQ(2718.2818, t.m);
    CHECK_EQ(2, t.i);
    CHECK_EQ(2718.2818, t.g);
    CHECK_EQ(31415926.5, t.h);
    CHECK_EQ(42.0, t.f);
    CHECK_EQ(1.0, t.e);
    CHECK_EQ(1.000000059604644775390625, t.d);
    CHECK_EQ(4.25, t.c);
    CHECK_EQ(4.25, t.b);
    CHECK_EQ(1.5, t.a);
  }
}


TEST(5) {
  // Test the ARMv7 bitfield instructions.
  CcTest::InitializeVM();
383
  Isolate* isolate = CcTest::i_isolate();
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  HandleScope scope(isolate);

  Assembler assm(isolate, NULL, 0);

  if (CpuFeatures::IsSupported(ARMv7)) {
    CpuFeatures::Scope scope(ARMv7);
    // On entry, r0 = 0xAAAAAAAA = 0b10..10101010.
    __ ubfx(r0, r0, 1, 12);  // 0b00..010101010101 = 0x555
    __ sbfx(r0, r0, 0, 5);   // 0b11..111111110101 = -11
    __ bfc(r0, 1, 3);        // 0b11..111111110001 = -15
    __ mov(r1, Operand(7));
    __ bfi(r0, r1, 3, 3);    // 0b11..111111111001 = -7
    __ mov(pc, Operand(lr));

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = isolate->heap()->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
    int res = reinterpret_cast<int>(
410
                CALL_GENERATED_CODE(isolate, f, 0xAAAAAAAA, 0, 0, 0, 0));
411 412 413 414 415 416 417 418 419
    ::printf("f() = %d\n", res);
    CHECK_EQ(-7, res);
  }
}


TEST(6) {
  // Test saturating instructions.
  CcTest::InitializeVM();
420
  Isolate* isolate = CcTest::i_isolate();
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
  HandleScope scope(isolate);

  Assembler assm(isolate, NULL, 0);

  if (CpuFeatures::IsSupported(ARMv7)) {
    CpuFeatures::Scope scope(ARMv7);
    __ usat(r1, 8, Operand(r0));           // Sat 0xFFFF to 0-255 = 0xFF.
    __ usat(r2, 12, Operand(r0, ASR, 9));  // Sat (0xFFFF>>9) to 0-4095 = 0x7F.
    __ usat(r3, 1, Operand(r0, LSL, 16));  // Sat (0xFFFF<<16) to 0-1 = 0x0.
    __ addi(r0, r1, Operand(r2));
    __ addi(r0, r0, Operand(r3));
    __ mov(pc, Operand(lr));

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = isolate->heap()->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
    int res = reinterpret_cast<int>(
446
                CALL_GENERATED_CODE(isolate, f, 0xFFFF, 0, 0, 0, 0));
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    ::printf("f() = %d\n", res);
    CHECK_EQ(382, res);
  }
}

enum VCVTTypes {
  s32_f64,
  u32_f64
};

static void TestRoundingMode(VCVTTypes types,
                             VFPRoundingMode mode,
                             double value,
                             int expected,
                             bool expected_exception = false) {
  CcTest::InitializeVM();
463
  Isolate* isolate = CcTest::i_isolate();
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  HandleScope scope(isolate);

  Assembler assm(isolate, NULL, 0);

  if (CpuFeatures::IsSupported(VFP3)) {
    CpuFeatures::Scope scope(VFP3);

    Label wrong_exception;

    __ vmrs(r1);
    // Set custom FPSCR.
    __ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask));
    __ orr(r2, r2, Operand(mode));
    __ vmsr(r2);

    // Load value, convert, and move back result to r0 if everything went well.
    __ vmov(d1, value);
    switch (types) {
      case s32_f64:
        __ vcvt_s32_f64(s0, d1, kFPSCRRounding);
        break;

      case u32_f64:
        __ vcvt_u32_f64(s0, d1, kFPSCRRounding);
        break;

      default:
        UNREACHABLE();
        break;
    }
    // Check for vfp exceptions
    __ vmrs(r2);
    __ tst(r2, Operand(kVFPExceptionMask));
    // Check that we behaved as expected.
    __ b(&wrong_exception,
         expected_exception ? eq : ne);
    // There was no exception. Retrieve the result and return.
    __ vmov(r0, s0);
    __ mov(pc, Operand(lr));

    // The exception behaviour is not what we expected.
    // Load a special value and return.
    __ bind(&wrong_exception);
    __ mov(r0, Operand(11223344));
    __ mov(pc, Operand(lr));

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = isolate->heap()->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F1 f = FUNCTION_CAST<F1>(Code::cast(code)->entry());
    int res = reinterpret_cast<int>(
522
                CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    ::printf("res = %d\n", res);
    CHECK_EQ(expected, res);
  }
}


TEST(7) {
  // Test vfp rounding modes.

  // s32_f64 (double to integer).

  TestRoundingMode(s32_f64, RN,  0, 0);
  TestRoundingMode(s32_f64, RN,  0.5, 0);
  TestRoundingMode(s32_f64, RN, -0.5, 0);
  TestRoundingMode(s32_f64, RN,  1.5, 2);
  TestRoundingMode(s32_f64, RN, -1.5, -2);
  TestRoundingMode(s32_f64, RN,  123.7, 124);
  TestRoundingMode(s32_f64, RN, -123.7, -124);
  TestRoundingMode(s32_f64, RN,  123456.2,  123456);
  TestRoundingMode(s32_f64, RN, -123456.2, -123456);
  TestRoundingMode(s32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt);
  TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true);
  TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true);
  TestRoundingMode(s32_f64, RN, static_cast<double>(kMinInt), kMinInt);
  TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt);
  TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true);
  TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true);

  TestRoundingMode(s32_f64, RM,  0, 0);
  TestRoundingMode(s32_f64, RM,  0.5, 0);
  TestRoundingMode(s32_f64, RM, -0.5, -1);
  TestRoundingMode(s32_f64, RM,  123.7, 123);
  TestRoundingMode(s32_f64, RM, -123.7, -124);
  TestRoundingMode(s32_f64, RM,  123456.2,  123456);
  TestRoundingMode(s32_f64, RM, -123456.2, -123457);
  TestRoundingMode(s32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true);
  TestRoundingMode(s32_f64, RM, static_cast<double>(kMinInt), kMinInt);
  TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true);
  TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt);

  TestRoundingMode(s32_f64, RZ,  0, 0);
  TestRoundingMode(s32_f64, RZ,  0.5, 0);
  TestRoundingMode(s32_f64, RZ, -0.5, 0);
  TestRoundingMode(s32_f64, RZ,  123.7,  123);
  TestRoundingMode(s32_f64, RZ, -123.7, -123);
  TestRoundingMode(s32_f64, RZ,  123456.2,  123456);
  TestRoundingMode(s32_f64, RZ, -123456.2, -123456);
  TestRoundingMode(s32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true);
  TestRoundingMode(s32_f64, RZ, static_cast<double>(kMinInt), kMinInt);
  TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt);
  TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true);


  // u32_f64 (double to integer).

  // Negative values.
  TestRoundingMode(u32_f64, RN, -0.5, 0);
  TestRoundingMode(u32_f64, RN, -123456.7, 0, true);
  TestRoundingMode(u32_f64, RN, static_cast<double>(kMinInt), 0, true);
  TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true);

  TestRoundingMode(u32_f64, RM, -0.5, 0, true);
  TestRoundingMode(u32_f64, RM, -123456.7, 0, true);
  TestRoundingMode(u32_f64, RM, static_cast<double>(kMinInt), 0, true);
  TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true);

  TestRoundingMode(u32_f64, RZ, -0.5, 0);
  TestRoundingMode(u32_f64, RZ, -123456.7, 0, true);
  TestRoundingMode(u32_f64, RZ, static_cast<double>(kMinInt), 0, true);
  TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true);

  // Positive values.
  // kMaxInt is the maximum *signed* integer: 0x7fffffff.
  static const uint32_t kMaxUInt = 0xffffffffu;
  TestRoundingMode(u32_f64, RZ,  0, 0);
  TestRoundingMode(u32_f64, RZ,  0.5, 0);
  TestRoundingMode(u32_f64, RZ,  123.7,  123);
  TestRoundingMode(u32_f64, RZ,  123456.2,  123456);
  TestRoundingMode(u32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0),
                                static_cast<uint32_t>(kMaxInt) + 1);
  TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt);
  TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true);

  TestRoundingMode(u32_f64, RM,  0, 0);
  TestRoundingMode(u32_f64, RM,  0.5, 0);
  TestRoundingMode(u32_f64, RM,  123.7, 123);
  TestRoundingMode(u32_f64, RM,  123456.2,  123456);
  TestRoundingMode(u32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt);
  TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0),
                                static_cast<uint32_t>(kMaxInt) + 1);
  TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt);
  TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true);

  TestRoundingMode(u32_f64, RN,  0, 0);
  TestRoundingMode(u32_f64, RN,  0.5, 0);
  TestRoundingMode(u32_f64, RN,  1.5, 2);
  TestRoundingMode(u32_f64, RN,  123.7, 124);
  TestRoundingMode(u32_f64, RN,  123456.2,  123456);
  TestRoundingMode(u32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
  TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt);
  TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5),
                                static_cast<uint32_t>(kMaxInt) + 1);
  TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt);
  TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true);
  TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true);
}


TEST(8) {
  // Test VFP multi load/store with ia_w.
  CcTest::InitializeVM();
642
  Isolate* isolate = CcTest::i_isolate();
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
  } D;
  D d;

  typedef struct {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
    float g;
    float h;
  } F;
  F f;

  // Create a function that uses vldm/vstm to move some double and
  // single precision values around in memory.
  Assembler assm(isolate, NULL, 0);

  if (CpuFeatures::IsSupported(VFP2)) {
    CpuFeatures::Scope scope(VFP2);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

680
    __ addi(r4, r0, Operand(offsetof(D, a)));
681 682 683
    __ vldm(ia_w, r4, d0, d3);
    __ vldm(ia_w, r4, d4, d7);

684
    __ addi(r4, r0, Operand(offsetof(D, a)));
685 686 687
    __ vstm(ia_w, r4, d6, d7);
    __ vstm(ia_w, r4, d0, d5);

688
    __ addi(r4, r1, Operand(offsetof(F, a)));
689 690 691
    __ vldm(ia_w, r4, s0, s3);
    __ vldm(ia_w, r4, s4, s7);

692
    __ addi(r4, r1, Operand(offsetof(F, a)));
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    __ vstm(ia_w, r4, s6, s7);
    __ vstm(ia_w, r4, s0, s5);

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = isolate->heap()->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F4 fn = FUNCTION_CAST<F4>(Code::cast(code)->entry());
    d.a = 1.1;
    d.b = 2.2;
    d.c = 3.3;
    d.d = 4.4;
    d.e = 5.5;
    d.f = 6.6;
    d.g = 7.7;
    d.h = 8.8;

    f.a = 1.0;
    f.b = 2.0;
    f.c = 3.0;
    f.d = 4.0;
    f.e = 5.0;
    f.f = 6.0;
    f.g = 7.0;
    f.h = 8.0;

727
    Object* dummy = CALL_GENERATED_CODE(isolate, fn, &d, &f, 0, 0, 0);
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    USE(dummy);

    CHECK_EQ(7.7, d.a);
    CHECK_EQ(8.8, d.b);
    CHECK_EQ(1.1, d.c);
    CHECK_EQ(2.2, d.d);
    CHECK_EQ(3.3, d.e);
    CHECK_EQ(4.4, d.f);
    CHECK_EQ(5.5, d.g);
    CHECK_EQ(6.6, d.h);

    CHECK_EQ(7.0, f.a);
    CHECK_EQ(8.0, f.b);
    CHECK_EQ(1.0, f.c);
    CHECK_EQ(2.0, f.d);
    CHECK_EQ(3.0, f.e);
    CHECK_EQ(4.0, f.f);
    CHECK_EQ(5.0, f.g);
    CHECK_EQ(6.0, f.h);
  }
}


TEST(9) {
  // Test VFP multi load/store with ia.
  CcTest::InitializeVM();
754
  Isolate* isolate = CcTest::i_isolate();
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
  } D;
  D d;

  typedef struct {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
    float g;
    float h;
  } F;
  F f;

  // Create a function that uses vldm/vstm to move some double and
  // single precision values around in memory.
  Assembler assm(isolate, NULL, 0);

  if (CpuFeatures::IsSupported(VFP2)) {
    CpuFeatures::Scope scope(VFP2);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

792
    __ addi(r4, r0, Operand(offsetof(D, a)));
793 794 795 796
    __ vldm(ia, r4, d0, d3);
    __ addi(r4, r4, Operand(4 * 8));
    __ vldm(ia, r4, d4, d7);

797
    __ addi(r4, r0, Operand(offsetof(D, a)));
798 799 800 801
    __ vstm(ia, r4, d6, d7);
    __ addi(r4, r4, Operand(2 * 8));
    __ vstm(ia, r4, d0, d5);

802
    __ addi(r4, r1, Operand(offsetof(F, a)));
803 804 805 806
    __ vldm(ia, r4, s0, s3);
    __ addi(r4, r4, Operand(4 * 4));
    __ vldm(ia, r4, s4, s7);

807
    __ addi(r4, r1, Operand(offsetof(F, a)));
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
    __ vstm(ia, r4, s6, s7);
    __ addi(r4, r4, Operand(2 * 4));
    __ vstm(ia, r4, s0, s5);

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = isolate->heap()->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F4 fn = FUNCTION_CAST<F4>(Code::cast(code)->entry());
    d.a = 1.1;
    d.b = 2.2;
    d.c = 3.3;
    d.d = 4.4;
    d.e = 5.5;
    d.f = 6.6;
    d.g = 7.7;
    d.h = 8.8;

    f.a = 1.0;
    f.b = 2.0;
    f.c = 3.0;
    f.d = 4.0;
    f.e = 5.0;
    f.f = 6.0;
    f.g = 7.0;
    f.h = 8.0;

843
    Object* dummy = CALL_GENERATED_CODE(isolate, fn, &d, &f, 0, 0, 0);
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
    USE(dummy);

    CHECK_EQ(7.7, d.a);
    CHECK_EQ(8.8, d.b);
    CHECK_EQ(1.1, d.c);
    CHECK_EQ(2.2, d.d);
    CHECK_EQ(3.3, d.e);
    CHECK_EQ(4.4, d.f);
    CHECK_EQ(5.5, d.g);
    CHECK_EQ(6.6, d.h);

    CHECK_EQ(7.0, f.a);
    CHECK_EQ(8.0, f.b);
    CHECK_EQ(1.0, f.c);
    CHECK_EQ(2.0, f.d);
    CHECK_EQ(3.0, f.e);
    CHECK_EQ(4.0, f.f);
    CHECK_EQ(5.0, f.g);
    CHECK_EQ(6.0, f.h);
  }
}


TEST(10) {
  // Test VFP multi load/store with db_w.
  CcTest::InitializeVM();
870
  Isolate* isolate = CcTest::i_isolate();
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
  HandleScope scope(isolate);

  typedef struct {
    double a;
    double b;
    double c;
    double d;
    double e;
    double f;
    double g;
    double h;
  } D;
  D d;

  typedef struct {
    float a;
    float b;
    float c;
    float d;
    float e;
    float f;
    float g;
    float h;
  } F;
  F f;

  // Create a function that uses vldm/vstm to move some double and
  // single precision values around in memory.
  Assembler assm(isolate, NULL, 0);

  if (CpuFeatures::IsSupported(VFP2)) {
    CpuFeatures::Scope scope(VFP2);

    __ mov(ip, Operand(sp));
    __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    __ sub(fp, ip, Operand(4));

908
    __ addi(r4, r0, Operand(offsetof(D, h) + 8));
909 910 911
    __ vldm(db_w, r4, d4, d7);
    __ vldm(db_w, r4, d0, d3);

912
    __ addi(r4, r0, Operand(offsetof(D, h) + 8));
913 914 915
    __ vstm(db_w, r4, d0, d5);
    __ vstm(db_w, r4, d6, d7);

916
    __ addi(r4, r1, Operand(offsetof(F, h) + 4));
917 918 919
    __ vldm(db_w, r4, s4, s7);
    __ vldm(db_w, r4, s0, s3);

920
    __ addi(r4, r1, Operand(offsetof(F, h) + 4));
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
    __ vstm(db_w, r4, s0, s5);
    __ vstm(db_w, r4, s6, s7);

    __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());

    CodeDesc desc;
    assm.GetCode(&desc);
    Object* code = isolate->heap()->CreateCode(
        desc,
        Code::ComputeFlags(Code::STUB),
        Handle<Code>())->ToObjectChecked();
    CHECK(code->IsCode());
#ifdef DEBUG
    Code::cast(code)->Print();
#endif
    F4 fn = FUNCTION_CAST<F4>(Code::cast(code)->entry());
    d.a = 1.1;
    d.b = 2.2;
    d.c = 3.3;
    d.d = 4.4;
    d.e = 5.5;
    d.f = 6.6;
    d.g = 7.7;
    d.h = 8.8;

    f.a = 1.0;
    f.b = 2.0;
    f.c = 3.0;
    f.d = 4.0;
    f.e = 5.0;
    f.f = 6.0;
    f.g = 7.0;
    f.h = 8.0;

955
    Object* dummy = CALL_GENERATED_CODE(isolate, fn, &d, &f, 0, 0, 0);
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
    USE(dummy);

    CHECK_EQ(7.7, d.a);
    CHECK_EQ(8.8, d.b);
    CHECK_EQ(1.1, d.c);
    CHECK_EQ(2.2, d.d);
    CHECK_EQ(3.3, d.e);
    CHECK_EQ(4.4, d.f);
    CHECK_EQ(5.5, d.g);
    CHECK_EQ(6.6, d.h);

    CHECK_EQ(7.0, f.a);
    CHECK_EQ(8.0, f.b);
    CHECK_EQ(1.0, f.c);
    CHECK_EQ(2.0, f.d);
    CHECK_EQ(3.0, f.e);
    CHECK_EQ(4.0, f.f);
    CHECK_EQ(5.0, f.g);
    CHECK_EQ(6.0, f.h);
  }
}


TEST(11) {
  // Test instructions using the carry flag.
  CcTest::InitializeVM();
982
  Isolate* isolate = CcTest::i_isolate();
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
  HandleScope scope(isolate);

  typedef struct {
    int32_t a;
    int32_t b;
    int32_t c;
    int32_t d;
  } I;
  I i;

  i.a = 0xabcd0001;
  i.b = 0xabcd0000;

  Assembler assm(isolate, NULL, 0);

  // Test HeapObject untagging.
999
  __ ldr(r1, MemOperand(r0, offsetof(I, a)));
1000 1001
  __ mov(r1, Operand(r1, ASR, 1), SetCC);
  __ adc(r1, r1, Operand(r1), LeaveCC, cs);
1002
  __ str(r1, MemOperand(r0, offsetof(I, a)));
1003

1004
  __ ldr(r2, MemOperand(r0, offsetof(I, b)));
1005 1006
  __ mov(r2, Operand(r2, ASR, 1), SetCC);
  __ adc(r2, r2, Operand(r2), LeaveCC, cs);
1007
  __ str(r2, MemOperand(r0, offsetof(I, b)));
1008 1009 1010 1011 1012 1013

  // Test corner cases.
  __ mov(r1, Operand(0xffffffff));
  __ mov(r2, Operand::Zero());
  __ mov(r3, Operand(r1, ASR, 1), SetCC);  // Set the carry.
  __ adc(r3, r1, Operand(r2));
1014
  __ str(r3, MemOperand(r0, offsetof(I, c)));
1015 1016 1017 1018 1019

  __ mov(r1, Operand(0xffffffff));
  __ mov(r2, Operand::Zero());
  __ mov(r3, Operand(r2, ASR, 1), SetCC);  // Unset the carry.
  __ adc(r3, r1, Operand(r2));
1020
  __ str(r3, MemOperand(r0, offsetof(I, d)));
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

  __ mov(pc, Operand(lr));

  CodeDesc desc;
  assm.GetCode(&desc);
  Object* code = isolate->heap()->CreateCode(
      desc,
      Code::ComputeFlags(Code::STUB),
      Handle<Code>())->ToObjectChecked();
  CHECK(code->IsCode());
#ifdef DEBUG
  Code::cast(code)->Print();
#endif
  F3 f = FUNCTION_CAST<F3>(Code::cast(code)->entry());
1035
  Object* dummy = CALL_GENERATED_CODE(isolate, f, &i, 0, 0, 0, 0);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
  USE(dummy);

  CHECK_EQ(0xabcd0001, i.a);
  CHECK_EQ(static_cast<int32_t>(0xabcd0000) >> 1, i.b);
  CHECK_EQ(0x00000000, i.c);
  CHECK_EQ(0xffffffff, i.d);
}


TEST(12) {
  // Test chaining of label usages within instructions (issue 1644).
  CcTest::InitializeVM();
1048
  Isolate* isolate = CcTest::i_isolate();
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
  HandleScope scope(isolate);

  Assembler assm(isolate, NULL, 0);
  Label target;
  __ b(eq, &target);
  __ b(ne, &target);
  __ bind(&target);
  __ nop();
}
#endif

#undef __