store-buffer.h 6.32 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#ifndef V8_HEAP_STORE_BUFFER_H_
#define V8_HEAP_STORE_BUFFER_H_
7

8 9
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
10
#include "src/common/globals.h"
11
#include "src/heap/gc-tracer.h"
12
#include "src/heap/remembered-set.h"
ulan's avatar
ulan committed
13
#include "src/heap/slot-set.h"
14
#include "src/tasks/cancelable-task.h"
15
#include "src/utils/allocation.h"
16 17 18 19

namespace v8 {
namespace internal {

20
// Intermediate buffer that accumulates old-to-new stores from the generated
21 22 23 24 25
// code. Moreover, it stores invalid old-to-new slots with two entries.
// The first is a tagged address of the start of the invalid range, the second
// one is the end address of the invalid range or null if there is just one slot
// that needs to be removed from the remembered set. On buffer overflow the
// slots are moved to the remembered set.
26
// Store buffer entries are always full pointers.
27 28
class StoreBuffer {
 public:
29 30
  enum StoreBufferMode { IN_GC, NOT_IN_GC };

31
  static const int kStoreBuffers = 2;
32 33
  static const int kStoreBufferSize =
      Max(static_cast<int>(kMinExpectedOSPageSize / kStoreBuffers),
34
          1 << (11 + kSystemPointerSizeLog2));
35
  static const int kStoreBufferMask = kStoreBufferSize - 1;
36
  static const intptr_t kDeletionTag = 1;
37

38
  V8_EXPORT_PRIVATE static int StoreBufferOverflow(Isolate* isolate);
39

40 41 42 43 44 45 46 47 48
  static void DeleteDuringGarbageCollection(StoreBuffer* store_buffer,
                                            Address start, Address end);
  static void InsertDuringGarbageCollection(StoreBuffer* store_buffer,
                                            Address slot);

  static void DeleteDuringRuntime(StoreBuffer* store_buffer, Address start,
                                  Address end);
  static void InsertDuringRuntime(StoreBuffer* store_buffer, Address slot);

49
  explicit StoreBuffer(Heap* heap);
50
  void SetUp();
51 52
  void TearDown();

53 54
  // Used to add entries from generated code.
  inline Address* top_address() { return reinterpret_cast<Address*>(&top_); }
55

56 57 58 59
  // Moves entries from a specific store buffer to the remembered set. This
  // method takes a lock.
  void MoveEntriesToRememberedSet(int index);

60
  // This method ensures that all used store buffer entries are transferred to
61 62 63 64
  // the remembered set.
  void MoveAllEntriesToRememberedSet();

  inline bool IsDeletionAddress(Address address) const {
65
    return address & kDeletionTag;
66 67 68
  }

  inline Address MarkDeletionAddress(Address address) {
69
    return address | kDeletionTag;
70 71 72
  }

  inline Address UnmarkDeletionAddress(Address address) {
73
    return address & ~kDeletionTag;
74 75
  }

76 77 78 79 80 81 82 83 84 85
  inline void InsertDeletionIntoStoreBuffer(Address start, Address end);
  inline void InsertIntoStoreBuffer(Address slot);

  void InsertEntry(Address slot) {
    // Insertions coming from the GC are directly inserted into the remembered
    // set. Insertions coming from the runtime are added to the store buffer to
    // allow concurrent processing.
    insertion_callback(this, slot);
  }

86 87 88
  // If we only want to delete a single slot, end should be set to null which
  // will be written into the second field. When processing the store buffer
  // the more efficient Remove method will be called in this case.
89
  void DeleteEntry(Address start, Address end = kNullAddress) {
90 91 92 93 94 95
    // Deletions coming from the GC are directly deleted from the remembered
    // set. Deletions coming from the runtime are added to the store buffer
    // to allow concurrent processing.
    deletion_callback(this, start, end);
  }

96
  void SetMode(StoreBufferMode mode);
97

98 99 100 101 102 103 104 105 106 107 108 109
  // Used by the concurrent processing thread to transfer entries from the
  // store buffer to the remembered set.
  void ConcurrentlyProcessStoreBuffer();

  bool Empty() {
    for (int i = 0; i < kStoreBuffers; i++) {
      if (lazy_top_[i]) {
        return false;
      }
    }
    return top_ == start_[current_];
  }
110

111 112
  Heap* heap() { return heap_; }

113
 private:
114 115 116 117 118 119 120 121 122 123 124 125
  // There are two store buffers. If one store buffer fills up, the main thread
  // publishes the top pointer of the store buffer that needs processing in its
  // global lazy_top_ field. After that it start the concurrent processing
  // thread. The concurrent processing thread uses the pointer in lazy_top_.
  // It will grab the given mutex and transfer its entries to the remembered
  // set. If the concurrent thread does not make progress, the main thread will
  // perform the work.
  // Important: there is an ordering constrained. The store buffer with the
  // older entries has to be processed first.
  class Task : public CancelableTask {
   public:
    Task(Isolate* isolate, StoreBuffer* store_buffer)
126 127 128
        : CancelableTask(isolate),
          store_buffer_(store_buffer),
          tracer_(isolate->heap()->tracer()) {}
129
    ~Task() override = default;
130 131 132

   private:
    void RunInternal() override {
133 134
      TRACE_BACKGROUND_GC(tracer_,
                          GCTracer::BackgroundScope::BACKGROUND_STORE_BUFFER);
135 136 137
      store_buffer_->ConcurrentlyProcessStoreBuffer();
    }
    StoreBuffer* store_buffer_;
138
    GCTracer* tracer_;
139 140 141
    DISALLOW_COPY_AND_ASSIGN(Task);
  };

142 143
  StoreBufferMode mode() const { return mode_; }

144 145
  void FlipStoreBuffers();

146 147
  Heap* heap_;

148 149
  Address* top_;

ulan's avatar
ulan committed
150
  // The start and the limit of the buffer that contains store slots
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  // added from the generated code. We have two chunks of store buffers.
  // Whenever one fills up, we notify a concurrent processing thread and
  // use the other empty one in the meantime.
  Address* start_[kStoreBuffers];
  Address* limit_[kStoreBuffers];

  // At most one lazy_top_ pointer is set at any time.
  Address* lazy_top_[kStoreBuffers];
  base::Mutex mutex_;

  // We only want to have at most one concurrent processing tas running.
  bool task_running_;

  // Points to the current buffer in use.
  int current_;
166

167 168 169 170 171
  // During GC, entries are directly added to the remembered set without
  // going through the store buffer. This is signaled by a special
  // IN_GC mode.
  StoreBufferMode mode_;

172
  VirtualMemory virtual_memory_;
173 174 175

  // Callbacks are more efficient than reading out the gc state for every
  // store buffer operation.
176 177
  void (*insertion_callback)(StoreBuffer*, Address);
  void (*deletion_callback)(StoreBuffer*, Address, Address);
178 179
};

180 181
}  // namespace internal
}  // namespace v8
182

183
#endif  // V8_HEAP_STORE_BUFFER_H_