assembler-ppc-inl.h 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.

#ifndef V8_PPC_ASSEMBLER_PPC_INL_H_
#define V8_PPC_ASSEMBLER_PPC_INL_H_

#include "src/ppc/assembler-ppc.h"

#include "src/assembler.h"
43
#include "src/debug/debug.h"
44
#include "src/objects-inl.h"
45 46 47 48 49 50 51

namespace v8 {
namespace internal {


bool CpuFeatures::SupportsCrankshaft() { return true; }

52
bool CpuFeatures::SupportsWasmSimd128() { return false; }
53

54
void RelocInfo::apply(intptr_t delta) {
55 56 57 58 59 60 61 62 63
  // absolute code pointer inside code object moves with the code object.
  if (IsInternalReference(rmode_)) {
    // Jump table entry
    Address target = Memory::Address_at(pc_);
    Memory::Address_at(pc_) = target + delta;
  } else {
    // mov sequence
    DCHECK(IsInternalReferenceEncoded(rmode_));
    Address target = Assembler::target_address_at(pc_, host_);
64
    Assembler::set_target_address_at(nullptr, pc_, host_, target + delta,
65
                                     SKIP_ICACHE_FLUSH);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  }
}


Address RelocInfo::target_internal_reference() {
  if (IsInternalReference(rmode_)) {
    // Jump table entry
    return Memory::Address_at(pc_);
  } else {
    // mov sequence
    DCHECK(IsInternalReferenceEncoded(rmode_));
    return Assembler::target_address_at(pc_, host_);
  }
}


82 83 84
Address RelocInfo::target_internal_reference_address() {
  DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
  return reinterpret_cast<Address>(pc_);
85 86 87 88 89 90 91 92 93 94 95 96
}


Address RelocInfo::target_address() {
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
  return Assembler::target_address_at(pc_, host_);
}

Address RelocInfo::target_address_address() {
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
         rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);

97 98
  if (FLAG_enable_embedded_constant_pool &&
      Assembler::IsConstantPoolLoadStart(pc_)) {
99 100 101
    // We return the PC for embedded constant pool since this function is used
    // by the serializer and expects the address to reside within the code
    // object.
102 103 104
    return reinterpret_cast<Address>(pc_);
  }

105 106 107 108 109 110 111 112 113 114 115 116 117 118
  // Read the address of the word containing the target_address in an
  // instruction stream.
  // The only architecture-independent user of this function is the serializer.
  // The serializer uses it to find out how many raw bytes of instruction to
  // output before the next target.
  // For an instruction like LIS/ORI where the target bits are mixed into the
  // instruction bits, the size of the target will be zero, indicating that the
  // serializer should not step forward in memory after a target is resolved
  // and written.
  return reinterpret_cast<Address>(pc_);
}


Address RelocInfo::constant_pool_entry_address() {
119 120 121 122 123 124 125 126
  if (FLAG_enable_embedded_constant_pool) {
    Address constant_pool = host_->constant_pool();
    DCHECK(constant_pool);
    ConstantPoolEntry::Access access;
    if (Assembler::IsConstantPoolLoadStart(pc_, &access))
      return Assembler::target_constant_pool_address_at(
          pc_, constant_pool, access, ConstantPoolEntry::INTPTR);
  }
127 128 129 130 131 132 133
  UNREACHABLE();
  return NULL;
}


int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }

134 135 136 137 138 139 140 141 142 143 144
Address Assembler::target_address_at(Address pc, Code* code) {
  Address constant_pool = code ? code->constant_pool() : NULL;
  return target_address_at(pc, constant_pool);
}

void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
                                      Address target,
                                      ICacheFlushMode icache_flush_mode) {
  Address constant_pool = code ? code->constant_pool() : NULL;
  set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
}
145 146 147 148 149 150 151 152 153

Address Assembler::target_address_from_return_address(Address pc) {
// Returns the address of the call target from the return address that will
// be returned to after a call.
// Call sequence is :
//  mov   ip, @ call address
//  mtlr  ip
//  blrl
//                      @ return address
154 155 156 157 158 159 160 161 162
  int len;
  ConstantPoolEntry::Access access;
  if (FLAG_enable_embedded_constant_pool &&
      IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) {
    len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
  } else {
    len = kMovInstructionsNoConstantPool;
  }
  return pc - (len + 2) * kInstrSize;
163 164 165 166
}


Address Assembler::return_address_from_call_start(Address pc) {
167 168 169 170 171 172 173 174 175
  int len;
  ConstantPoolEntry::Access access;
  if (FLAG_enable_embedded_constant_pool &&
      IsConstantPoolLoadStart(pc, &access)) {
    len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
  } else {
    len = kMovInstructionsNoConstantPool;
  }
  return pc + (len + 2) * kInstrSize;
176 177
}

178
HeapObject* RelocInfo::target_object() {
179
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
180 181
  return HeapObject::cast(
      reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)));
182 183
}

184
Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
185
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
186 187
  return Handle<HeapObject>(
      reinterpret_cast<HeapObject**>(Assembler::target_address_at(pc_, host_)));
188 189
}

190
void RelocInfo::set_target_object(HeapObject* target,
191 192 193
                                  WriteBarrierMode write_barrier_mode,
                                  ICacheFlushMode icache_flush_mode) {
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
194
  Assembler::set_target_address_at(target->GetIsolate(), pc_, host_,
195 196
                                   reinterpret_cast<Address>(target),
                                   icache_flush_mode);
197 198 199
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
                                                                  target);
200
    host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
201 202 203 204
  }
}


205
Address RelocInfo::target_external_reference() {
206 207 208 209 210 211 212 213 214 215
  DCHECK(rmode_ == EXTERNAL_REFERENCE);
  return Assembler::target_address_at(pc_, host_);
}


Address RelocInfo::target_runtime_entry(Assembler* origin) {
  DCHECK(IsRuntimeEntry(rmode_));
  return target_address();
}

216
void RelocInfo::set_target_runtime_entry(Isolate* isolate, Address target,
217 218 219 220
                                         WriteBarrierMode write_barrier_mode,
                                         ICacheFlushMode icache_flush_mode) {
  DCHECK(IsRuntimeEntry(rmode_));
  if (target_address() != target)
221
    set_target_address(isolate, target, write_barrier_mode, icache_flush_mode);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}


Handle<Cell> RelocInfo::target_cell_handle() {
  DCHECK(rmode_ == RelocInfo::CELL);
  Address address = Memory::Address_at(pc_);
  return Handle<Cell>(reinterpret_cast<Cell**>(address));
}


Cell* RelocInfo::target_cell() {
  DCHECK(rmode_ == RelocInfo::CELL);
  return Cell::FromValueAddress(Memory::Address_at(pc_));
}


void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
                                ICacheFlushMode icache_flush_mode) {
  DCHECK(rmode_ == RelocInfo::CELL);
  Address address = cell->address() + Cell::kValueOffset;
  Memory::Address_at(pc_) = address;
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
244 245
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
                                                                  cell);
246 247 248 249
  }
}


250 251 252 253
static const int kNoCodeAgeInstructions =
    FLAG_enable_embedded_constant_pool ? 7 : 6;
static const int kCodeAgingInstructions =
    Assembler::kMovInstructionsNoConstantPool + 3;
254 255 256 257 258 259 260 261 262 263 264 265
static const int kNoCodeAgeSequenceInstructions =
    ((kNoCodeAgeInstructions >= kCodeAgingInstructions)
         ? kNoCodeAgeInstructions
         : kCodeAgingInstructions);
static const int kNoCodeAgeSequenceNops =
    (kNoCodeAgeSequenceInstructions - kNoCodeAgeInstructions);
static const int kCodeAgingSequenceNops =
    (kNoCodeAgeSequenceInstructions - kCodeAgingInstructions);
static const int kCodeAgingTargetDelta = 1 * Assembler::kInstrSize;
static const int kNoCodeAgeSequenceLength =
    (kNoCodeAgeSequenceInstructions * Assembler::kInstrSize);

266
Handle<Code> RelocInfo::code_age_stub_handle(Assembler* origin) {
267
  UNREACHABLE();  // This should never be reached on PPC.
268
  return Handle<Code>();
269 270 271 272 273 274 275 276 277 278 279 280 281
}


Code* RelocInfo::code_age_stub() {
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
  return Code::GetCodeFromTargetAddress(
      Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_));
}


void RelocInfo::set_code_age_stub(Code* stub,
                                  ICacheFlushMode icache_flush_mode) {
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
282 283 284
  Assembler::set_target_address_at(
      stub->GetIsolate(), pc_ + kCodeAgingTargetDelta, host_,
      stub->instruction_start(), icache_flush_mode);
285 286 287
}


288 289
Address RelocInfo::debug_call_address() {
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
290 291 292
  return Assembler::target_address_at(pc_, host_);
}

293
void RelocInfo::set_debug_call_address(Isolate* isolate, Address target) {
294
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
295
  Assembler::set_target_address_at(isolate, pc_, host_, target);
296
  if (host() != NULL) {
297 298 299
    Code* target_code = Code::GetCodeFromTargetAddress(target);
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
                                                                  target_code);
300 301 302
  }
}

303
void RelocInfo::WipeOut(Isolate* isolate) {
304
  DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
305 306 307 308 309 310 311 312
         IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
         IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
  if (IsInternalReference(rmode_)) {
    // Jump table entry
    Memory::Address_at(pc_) = NULL;
  } else if (IsInternalReferenceEncoded(rmode_)) {
    // mov sequence
    // Currently used only by deserializer, no need to flush.
313
    Assembler::set_target_address_at(isolate, pc_, host_, NULL,
314
                                     SKIP_ICACHE_FLUSH);
315
  } else {
316
    Assembler::set_target_address_at(isolate, pc_, host_, NULL);
317
  }
318 319
}

320
template <typename ObjectVisitor>
321 322 323
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
324
    visitor->VisitEmbeddedPointer(host(), this);
325
  } else if (RelocInfo::IsCodeTarget(mode)) {
326
    visitor->VisitCodeTarget(host(), this);
327
  } else if (mode == RelocInfo::CELL) {
328
    visitor->VisitCellPointer(host(), this);
329
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
330
    visitor->VisitExternalReference(host(), this);
331 332
  } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
             mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
333
    visitor->VisitInternalReference(host(), this);
334
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
335
    visitor->VisitCodeAgeSequence(host(), this);
336
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
337
             IsPatchedDebugBreakSlotSequence()) {
338
    visitor->VisitDebugTarget(host(), this);
339
  } else if (IsRuntimeEntry(mode)) {
340
    visitor->VisitRuntimeEntry(host(), this);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
  }
}


template <typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
    StaticVisitor::VisitEmbeddedPointer(heap, this);
  } else if (RelocInfo::IsCodeTarget(mode)) {
    StaticVisitor::VisitCodeTarget(heap, this);
  } else if (mode == RelocInfo::CELL) {
    StaticVisitor::VisitCell(heap, this);
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    StaticVisitor::VisitExternalReference(this);
356 357 358
  } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
             mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    StaticVisitor::VisitInternalReference(this);
359 360
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    StaticVisitor::VisitCodeAgeSequence(heap, this);
361
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
362
             IsPatchedDebugBreakSlotSequence()) {
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    StaticVisitor::VisitDebugTarget(heap, this);
  } else if (IsRuntimeEntry(mode)) {
    StaticVisitor::VisitRuntimeEntry(this);
  }
}

Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) {
  rm_ = no_reg;
  imm_ = immediate;
  rmode_ = rmode;
}

Operand::Operand(const ExternalReference& f) {
  rm_ = no_reg;
  imm_ = reinterpret_cast<intptr_t>(f.address());
  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
}

Operand::Operand(Smi* value) {
  rm_ = no_reg;
  imm_ = reinterpret_cast<intptr_t>(value);
  rmode_ = kRelocInfo_NONEPTR;
}

Operand::Operand(Register rm) {
  rm_ = rm;
  rmode_ = kRelocInfo_NONEPTR;  // PPC -why doesn't ARM do this?
}

void Assembler::CheckBuffer() {
  if (buffer_space() <= kGap) {
    GrowBuffer();
  }
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
void Assembler::TrackBranch() {
  DCHECK(!trampoline_emitted_);
  int count = tracked_branch_count_++;
  if (count == 0) {
    // We leave space (kMaxBlockTrampolineSectionSize)
    // for BlockTrampolinePoolScope buffer.
    next_trampoline_check_ =
        pc_offset() + kMaxCondBranchReach - kMaxBlockTrampolineSectionSize;
  } else {
    next_trampoline_check_ -= kTrampolineSlotsSize;
  }
}

void Assembler::UntrackBranch() {
  DCHECK(!trampoline_emitted_);
  DCHECK(tracked_branch_count_ > 0);
  int count = --tracked_branch_count_;
  if (count == 0) {
    // Reset
    next_trampoline_check_ = kMaxInt;
  } else {
    next_trampoline_check_ += kTrampolineSlotsSize;
  }
}

423
void Assembler::CheckTrampolinePoolQuick() {
424
  if (pc_offset() >= next_trampoline_check_) {
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    CheckTrampolinePool();
  }
}

void Assembler::emit(Instr x) {
  CheckBuffer();
  *reinterpret_cast<Instr*>(pc_) = x;
  pc_ += kInstrSize;
  CheckTrampolinePoolQuick();
}

bool Operand::is_reg() const { return rm_.is_valid(); }


// Fetch the 32bit value from the FIXED_SEQUENCE lis/ori
440 441 442 443 444 445 446 447
Address Assembler::target_address_at(Address pc, Address constant_pool) {
  if (FLAG_enable_embedded_constant_pool && constant_pool) {
    ConstantPoolEntry::Access access;
    if (IsConstantPoolLoadStart(pc, &access))
      return Memory::Address_at(target_constant_pool_address_at(
          pc, constant_pool, access, ConstantPoolEntry::INTPTR));
  }

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  Instr instr1 = instr_at(pc);
  Instr instr2 = instr_at(pc + kInstrSize);
  // Interpret 2 instructions generated by lis/ori
  if (IsLis(instr1) && IsOri(instr2)) {
#if V8_TARGET_ARCH_PPC64
    Instr instr4 = instr_at(pc + (3 * kInstrSize));
    Instr instr5 = instr_at(pc + (4 * kInstrSize));
    // Assemble the 64 bit value.
    uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) |
                   static_cast<uint32_t>(instr2 & kImm16Mask));
    uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) |
                   static_cast<uint32_t>(instr5 & kImm16Mask));
    return reinterpret_cast<Address>((hi << 32) | lo);
#else
    // Assemble the 32 bit value.
    return reinterpret_cast<Address>(((instr1 & kImm16Mask) << 16) |
                                     (instr2 & kImm16Mask));
#endif
  }

468 469
  UNREACHABLE();
  return NULL;
470 471 472
}


473
#if V8_TARGET_ARCH_PPC64
sampsong's avatar
sampsong committed
474
const uint32_t kLoadIntptrOpcode = LD;
475
#else
sampsong's avatar
sampsong committed
476
const uint32_t kLoadIntptrOpcode = LWZ;
477 478 479 480 481 482 483 484 485 486 487 488
#endif

// Constant pool load sequence detection:
// 1) REGULAR access:
//    load <dst>, kConstantPoolRegister + <offset>
//
// 2) OVERFLOWED access:
//    addis <scratch>, kConstantPoolRegister, <offset_high>
//    load <dst>, <scratch> + <offset_low>
bool Assembler::IsConstantPoolLoadStart(Address pc,
                                        ConstantPoolEntry::Access* access) {
  Instr instr = instr_at(pc);
sampsong's avatar
sampsong committed
489
  uint32_t opcode = instr & kOpcodeMask;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
  if (!GetRA(instr).is(kConstantPoolRegister)) return false;
  bool overflowed = (opcode == ADDIS);
#ifdef DEBUG
  if (overflowed) {
    opcode = instr_at(pc + kInstrSize) & kOpcodeMask;
  }
  DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD);
#endif
  if (access) {
    *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
                          : ConstantPoolEntry::REGULAR);
  }
  return true;
}


bool Assembler::IsConstantPoolLoadEnd(Address pc,
                                      ConstantPoolEntry::Access* access) {
  Instr instr = instr_at(pc);
sampsong's avatar
sampsong committed
509
  uint32_t opcode = instr & kOpcodeMask;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
  bool overflowed = false;
  if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false;
  if (!GetRA(instr).is(kConstantPoolRegister)) {
    instr = instr_at(pc - kInstrSize);
    opcode = instr & kOpcodeMask;
    if ((opcode != ADDIS) || !GetRA(instr).is(kConstantPoolRegister)) {
      return false;
    }
    overflowed = true;
  }
  if (access) {
    *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
                          : ConstantPoolEntry::REGULAR);
  }
  return true;
}


int Assembler::GetConstantPoolOffset(Address pc,
                                     ConstantPoolEntry::Access access,
                                     ConstantPoolEntry::Type type) {
  bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
#ifdef DEBUG
  ConstantPoolEntry::Access access_check =
      static_cast<ConstantPoolEntry::Access>(-1);
  DCHECK(IsConstantPoolLoadStart(pc, &access_check));
  DCHECK(access_check == access);
#endif
  int offset;
  if (overflowed) {
    offset = (instr_at(pc) & kImm16Mask) << 16;
    offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask);
    DCHECK(!is_int16(offset));
  } else {
    offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask));
  }
  return offset;
}


void Assembler::PatchConstantPoolAccessInstruction(
    int pc_offset, int offset, ConstantPoolEntry::Access access,
    ConstantPoolEntry::Type type) {
  Address pc = buffer_ + pc_offset;
  bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
555
  CHECK(overflowed != is_int16(offset));
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
#ifdef DEBUG
  ConstantPoolEntry::Access access_check =
      static_cast<ConstantPoolEntry::Access>(-1);
  DCHECK(IsConstantPoolLoadStart(pc, &access_check));
  DCHECK(access_check == access);
#endif
  if (overflowed) {
    int hi_word = static_cast<int>(offset >> 16);
    int lo_word = static_cast<int>(offset & 0xffff);
    if (lo_word & 0x8000) hi_word++;

    Instr instr1 = instr_at(pc);
    Instr instr2 = instr_at(pc + kInstrSize);
    instr1 &= ~kImm16Mask;
    instr1 |= (hi_word & kImm16Mask);
    instr2 &= ~kImm16Mask;
    instr2 |= (lo_word & kImm16Mask);
    instr_at_put(pc, instr1);
    instr_at_put(pc + kInstrSize, instr2);
  } else {
    Instr instr = instr_at(pc);
    instr &= ~kImm16Mask;
    instr |= (offset & kImm16Mask);
    instr_at_put(pc, instr);
  }
}


Address Assembler::target_constant_pool_address_at(
    Address pc, Address constant_pool, ConstantPoolEntry::Access access,
    ConstantPoolEntry::Type type) {
  Address addr = constant_pool;
  DCHECK(addr);
  addr += GetConstantPoolOffset(pc, access, type);
  return addr;
}


594 595 596 597 598
// This sets the branch destination (which gets loaded at the call address).
// This is for calls and branches within generated code.  The serializer
// has already deserialized the mov instructions etc.
// There is a FIXED_SEQUENCE assumption here
void Assembler::deserialization_set_special_target_at(
599 600
    Isolate* isolate, Address instruction_payload, Code* code, Address target) {
  set_target_address_at(isolate, instruction_payload, code, target);
601 602
}

603 604

void Assembler::deserialization_set_target_internal_reference_at(
605
    Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
606
  if (RelocInfo::IsInternalReferenceEncoded(mode)) {
607
    Code* code = NULL;
608
    set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH);
609 610 611 612 613 614
  } else {
    Memory::Address_at(pc) = target;
  }
}


615
// This code assumes the FIXED_SEQUENCE of lis/ori
616 617
void Assembler::set_target_address_at(Isolate* isolate, Address pc,
                                      Address constant_pool, Address target,
618
                                      ICacheFlushMode icache_flush_mode) {
619 620
  DCHECK_IMPLIES(isolate == nullptr, icache_flush_mode == SKIP_ICACHE_FLUSH);

621 622 623 624 625 626 627 628 629
  if (FLAG_enable_embedded_constant_pool && constant_pool) {
    ConstantPoolEntry::Access access;
    if (IsConstantPoolLoadStart(pc, &access)) {
      Memory::Address_at(target_constant_pool_address_at(
          pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target;
      return;
    }
  }

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
  Instr instr1 = instr_at(pc);
  Instr instr2 = instr_at(pc + kInstrSize);
  // Interpret 2 instructions generated by lis/ori
  if (IsLis(instr1) && IsOri(instr2)) {
#if V8_TARGET_ARCH_PPC64
    Instr instr4 = instr_at(pc + (3 * kInstrSize));
    Instr instr5 = instr_at(pc + (4 * kInstrSize));
    // Needs to be fixed up when mov changes to handle 64-bit values.
    uint32_t* p = reinterpret_cast<uint32_t*>(pc);
    uintptr_t itarget = reinterpret_cast<uintptr_t>(target);

    instr5 &= ~kImm16Mask;
    instr5 |= itarget & kImm16Mask;
    itarget = itarget >> 16;

    instr4 &= ~kImm16Mask;
    instr4 |= itarget & kImm16Mask;
    itarget = itarget >> 16;

    instr2 &= ~kImm16Mask;
    instr2 |= itarget & kImm16Mask;
    itarget = itarget >> 16;

    instr1 &= ~kImm16Mask;
    instr1 |= itarget & kImm16Mask;
    itarget = itarget >> 16;

    *p = instr1;
    *(p + 1) = instr2;
    *(p + 3) = instr4;
    *(p + 4) = instr5;
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
662
      Assembler::FlushICache(isolate, p, 5 * kInstrSize);
663 664 665 666 667 668 669 670 671 672 673 674 675 676
    }
#else
    uint32_t* p = reinterpret_cast<uint32_t*>(pc);
    uint32_t itarget = reinterpret_cast<uint32_t>(target);
    int lo_word = itarget & kImm16Mask;
    int hi_word = itarget >> 16;
    instr1 &= ~kImm16Mask;
    instr1 |= hi_word;
    instr2 &= ~kImm16Mask;
    instr2 |= lo_word;

    *p = instr1;
    *(p + 1) = instr2;
    if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
677
      Assembler::FlushICache(isolate, p, 2 * kInstrSize);
678 679
    }
#endif
680
    return;
681
  }
682
  UNREACHABLE();
683
}
684 685
}  // namespace internal
}  // namespace v8
686 687

#endif  // V8_PPC_ASSEMBLER_PPC_INL_H_