memory-chunk.cc 19.4 KB
Newer Older
1 2 3 4 5 6
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/memory-chunk.h"

7
#include "src/base/logging.h"
8
#include "src/base/platform/platform.h"
9
#include "src/base/platform/wrappers.h"
10
#include "src/common/globals.h"
11
#include "src/heap/basic-memory-chunk.h"
12
#include "src/heap/code-object-registry.h"
13
#include "src/heap/memory-allocator.h"
14
#include "src/heap/memory-chunk-inl.h"
15
#include "src/heap/memory-chunk-layout.h"
16
#include "src/heap/spaces.h"
17
#include "src/objects/heap-object.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

namespace v8 {
namespace internal {

void MemoryChunk::DiscardUnusedMemory(Address addr, size_t size) {
  base::AddressRegion memory_area =
      MemoryAllocator::ComputeDiscardMemoryArea(addr, size);
  if (memory_area.size() != 0) {
    MemoryAllocator* memory_allocator = heap_->memory_allocator();
    v8::PageAllocator* page_allocator =
        memory_allocator->page_allocator(executable());
    CHECK(page_allocator->DiscardSystemPages(
        reinterpret_cast<void*>(memory_area.begin()), memory_area.size()));
  }
}

void MemoryChunk::InitializationMemoryFence() {
  base::SeqCst_MemoryFence();
#ifdef THREAD_SANITIZER
  // Since TSAN does not process memory fences, we use the following annotation
  // to tell TSAN that there is no data race when emitting a
  // InitializationMemoryFence. Note that the other thread still needs to
  // perform MemoryChunk::synchronized_heap().
  base::Release_Store(reinterpret_cast<base::AtomicWord*>(&heap_),
                      reinterpret_cast<base::AtomicWord>(heap_));
#endif
}

void MemoryChunk::DecrementWriteUnprotectCounterAndMaybeSetPermissions(
    PageAllocator::Permission permission) {
48
  DCHECK(!V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT);
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  DCHECK(permission == PageAllocator::kRead ||
         permission == PageAllocator::kReadExecute);
  DCHECK(IsFlagSet(MemoryChunk::IS_EXECUTABLE));
  DCHECK(owner_identity() == CODE_SPACE || owner_identity() == CODE_LO_SPACE);
  // Decrementing the write_unprotect_counter_ and changing the page
  // protection mode has to be atomic.
  base::MutexGuard guard(page_protection_change_mutex_);
  if (write_unprotect_counter_ == 0) {
    // This is a corner case that may happen when we have a
    // CodeSpaceMemoryModificationScope open and this page was newly
    // added.
    return;
  }
  write_unprotect_counter_--;
  DCHECK_LT(write_unprotect_counter_, kMaxWriteUnprotectCounter);
  if (write_unprotect_counter_ == 0) {
    Address protect_start =
        address() + MemoryChunkLayout::ObjectStartOffsetInCodePage();
    size_t page_size = MemoryAllocator::GetCommitPageSize();
    DCHECK(IsAligned(protect_start, page_size));
    size_t protect_size = RoundUp(area_size(), page_size);
    CHECK(reservation_.SetPermissions(protect_start, protect_size, permission));
  }
}

void MemoryChunk::SetReadable() {
  DecrementWriteUnprotectCounterAndMaybeSetPermissions(PageAllocator::kRead);
}

void MemoryChunk::SetReadAndExecutable() {
  DCHECK(!FLAG_jitless);
  DecrementWriteUnprotectCounterAndMaybeSetPermissions(
      PageAllocator::kReadExecute);
}

84
void MemoryChunk::SetCodeModificationPermissions() {
85
  DCHECK(!V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT);
86 87 88 89 90 91 92 93 94 95 96 97 98
  DCHECK(IsFlagSet(MemoryChunk::IS_EXECUTABLE));
  DCHECK(owner_identity() == CODE_SPACE || owner_identity() == CODE_LO_SPACE);
  // Incrementing the write_unprotect_counter_ and changing the page
  // protection mode has to be atomic.
  base::MutexGuard guard(page_protection_change_mutex_);
  write_unprotect_counter_++;
  DCHECK_LE(write_unprotect_counter_, kMaxWriteUnprotectCounter);
  if (write_unprotect_counter_ == 1) {
    Address unprotect_start =
        address() + MemoryChunkLayout::ObjectStartOffsetInCodePage();
    size_t page_size = MemoryAllocator::GetCommitPageSize();
    DCHECK(IsAligned(unprotect_start, page_size));
    size_t unprotect_size = RoundUp(area_size(), page_size);
99 100 101
    // We may use RWX pages to write code. Some CPUs have optimisations to push
    // updates to code to the icache through a fast path, and they may filter
    // updates based on the written memory being executable.
102 103 104
    CHECK(reservation_.SetPermissions(
        unprotect_start, unprotect_size,
        MemoryChunk::GetCodeModificationPermission()));
105 106 107
  }
}

108 109 110 111 112 113 114 115
void MemoryChunk::SetDefaultCodePermissions() {
  if (FLAG_jitless) {
    SetReadable();
  } else {
    SetReadAndExecutable();
  }
}

116 117 118
namespace {

PageAllocator::Permission DefaultWritableCodePermissions() {
119 120 121 122 123 124
  DCHECK(!V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT);
  // On MacOS on ARM64 RWX permissions are allowed to be set only when
  // fast W^X is enabled (see V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT).
  return V8_HAS_PTHREAD_JIT_WRITE_PROTECT || FLAG_jitless
             ? PageAllocator::kReadWrite
             : PageAllocator::kReadWriteExecute;
125 126 127 128
}

}  // namespace

129 130 131 132 133 134 135 136 137
MemoryChunk::MemoryChunk(Heap* heap, BaseSpace* space, size_t chunk_size,
                         Address area_start, Address area_end,
                         VirtualMemory reservation, Executability executable,
                         PageSize page_size)
    : BasicMemoryChunk(heap, space, chunk_size, area_start, area_end,
                       std::move(reservation)) {
  base::AsAtomicPointer::Release_Store(&slot_set_[OLD_TO_NEW], nullptr);
  base::AsAtomicPointer::Release_Store(&slot_set_[OLD_TO_OLD], nullptr);
  base::AsAtomicPointer::Release_Store(&slot_set_[OLD_TO_SHARED], nullptr);
138
  if (V8_EXTERNAL_CODE_SPACE_BOOL) {
139
    base::AsAtomicPointer::Release_Store(&slot_set_[OLD_TO_CODE], nullptr);
140
  }
141 142 143
  base::AsAtomicPointer::Release_Store(&typed_slot_set_[OLD_TO_NEW], nullptr);
  base::AsAtomicPointer::Release_Store(&typed_slot_set_[OLD_TO_OLD], nullptr);
  base::AsAtomicPointer::Release_Store(&typed_slot_set_[OLD_TO_SHARED],
144
                                       nullptr);
145 146
  invalidated_slots_[OLD_TO_NEW] = nullptr;
  invalidated_slots_[OLD_TO_OLD] = nullptr;
147 148
  if (V8_EXTERNAL_CODE_SPACE_BOOL) {
    // Not actually used but initialize anyway for predictability.
149
    invalidated_slots_[OLD_TO_CODE] = nullptr;
150
  }
151
  invalidated_slots_[OLD_TO_SHARED] = nullptr;
152 153 154 155 156 157
  progress_bar_.Initialize();
  set_concurrent_sweeping_state(ConcurrentSweepingState::kDone);
  page_protection_change_mutex_ = new base::Mutex();
  write_unprotect_counter_ = 0;
  mutex_ = new base::Mutex();
  young_generation_bitmap_ = nullptr;
158

159 160
  external_backing_store_bytes_[ExternalBackingStoreType::kArrayBuffer] = 0;
  external_backing_store_bytes_[ExternalBackingStoreType::kExternalString] = 0;
161

162
  categories_ = nullptr;
163

164
  heap->incremental_marking()->non_atomic_marking_state()->SetLiveBytes(this,
165 166
                                                                        0);
  if (executable == EXECUTABLE) {
167
    SetFlag(IS_EXECUTABLE);
168
    if (heap->write_protect_code_memory()) {
169
      write_unprotect_counter_ =
170
          heap->code_space_memory_modification_scope_depth();
171
    } else if (!V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT) {
172
      size_t page_size = MemoryAllocator::GetCommitPageSize();
173 174 175 176
      DCHECK(IsAligned(area_start_, page_size));
      size_t area_size = RoundUp(area_end_ - area_start_, page_size);
      CHECK(reservation_.SetPermissions(area_start_, area_size,
                                        DefaultWritableCodePermissions()));
177 178 179
    }
  }

180 181
  if (owner()->identity() == CODE_SPACE) {
    code_object_registry_ = new CodeObjectRegistry();
182
  } else {
183
    code_object_registry_ = nullptr;
184 185
  }

186
  possibly_empty_buckets_.Initialize();
187

188
  if (page_size == PageSize::kRegular) {
189 190
    active_system_pages_.Init(MemoryChunkLayout::kMemoryChunkHeaderSize,
                              MemoryAllocator::GetCommitPageSizeBits(), size());
191 192
  } else {
    // We do not track active system pages for large pages.
193
    active_system_pages_.Clear();
194 195
  }

196
  // All pages of a shared heap need to be marked with this flag.
197
  if (heap->IsShared()) SetFlag(MemoryChunk::IN_SHARED_HEAP);
198

199
#ifdef V8_ENABLE_CONSERVATIVE_STACK_SCANNING
200
  object_start_bitmap_ = ObjectStartBitmap(area_start_);
201 202
#endif

203
#ifdef DEBUG
204
  ValidateOffsets(this);
205
#endif
206 207
}

208
size_t MemoryChunk::CommittedPhysicalMemory() const {
209 210
  if (!base::OS::HasLazyCommits() || IsLargePage()) return size();
  return active_system_pages_.Size(MemoryAllocator::GetCommitPageSizeBits());
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
}

void MemoryChunk::SetOldGenerationPageFlags(bool is_marking) {
  if (is_marking) {
    SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
    SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
    SetFlag(MemoryChunk::INCREMENTAL_MARKING);
  } else {
    ClearFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
    SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
    ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
  }
}

void MemoryChunk::SetYoungGenerationPageFlags(bool is_marking) {
  SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
  if (is_marking) {
    SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
    SetFlag(MemoryChunk::INCREMENTAL_MARKING);
  } else {
    ClearFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
    ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
  }
}
// -----------------------------------------------------------------------------
// MemoryChunk implementation

void MemoryChunk::ReleaseAllocatedMemoryNeededForWritableChunk() {
  if (mutex_ != nullptr) {
    delete mutex_;
    mutex_ = nullptr;
  }
  if (page_protection_change_mutex_ != nullptr) {
    delete page_protection_change_mutex_;
    page_protection_change_mutex_ = nullptr;
  }
  if (code_object_registry_ != nullptr) {
    delete code_object_registry_;
    code_object_registry_ = nullptr;
  }

  possibly_empty_buckets_.Release();
  ReleaseSlotSet<OLD_TO_NEW>();
  ReleaseSlotSet<OLD_TO_OLD>();
255
  if (V8_EXTERNAL_CODE_SPACE_BOOL) ReleaseSlotSet<OLD_TO_CODE>();
256
  ReleaseSlotSet<OLD_TO_SHARED>();
257 258
  ReleaseTypedSlotSet<OLD_TO_NEW>();
  ReleaseTypedSlotSet<OLD_TO_OLD>();
259
  ReleaseTypedSlotSet<OLD_TO_SHARED>();
260 261
  ReleaseInvalidatedSlots<OLD_TO_NEW>();
  ReleaseInvalidatedSlots<OLD_TO_OLD>();
262
  ReleaseInvalidatedSlots<OLD_TO_SHARED>();
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

  if (young_generation_bitmap_ != nullptr) ReleaseYoungGenerationBitmap();

  if (!IsLargePage()) {
    Page* page = static_cast<Page*>(this);
    page->ReleaseFreeListCategories();
  }
}

void MemoryChunk::ReleaseAllAllocatedMemory() {
  ReleaseAllocatedMemoryNeededForWritableChunk();
}

template V8_EXPORT_PRIVATE SlotSet* MemoryChunk::AllocateSlotSet<OLD_TO_NEW>();
template V8_EXPORT_PRIVATE SlotSet* MemoryChunk::AllocateSlotSet<OLD_TO_OLD>();
278
template V8_EXPORT_PRIVATE SlotSet*
279
MemoryChunk::AllocateSlotSet<OLD_TO_SHARED>();
280
#ifdef V8_EXTERNAL_CODE_SPACE
281
template V8_EXPORT_PRIVATE SlotSet* MemoryChunk::AllocateSlotSet<OLD_TO_CODE>();
282
#endif  // V8_EXTERNAL_CODE_SPACE
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

template <RememberedSetType type>
SlotSet* MemoryChunk::AllocateSlotSet() {
  return AllocateSlotSet(&slot_set_[type]);
}

SlotSet* MemoryChunk::AllocateSlotSet(SlotSet** slot_set) {
  SlotSet* new_slot_set = SlotSet::Allocate(buckets());
  SlotSet* old_slot_set = base::AsAtomicPointer::AcquireRelease_CompareAndSwap(
      slot_set, nullptr, new_slot_set);
  if (old_slot_set != nullptr) {
    SlotSet::Delete(new_slot_set, buckets());
    new_slot_set = old_slot_set;
  }
  DCHECK(new_slot_set);
  return new_slot_set;
}

template void MemoryChunk::ReleaseSlotSet<OLD_TO_NEW>();
template void MemoryChunk::ReleaseSlotSet<OLD_TO_OLD>();
303
template void MemoryChunk::ReleaseSlotSet<OLD_TO_SHARED>();
304
#ifdef V8_EXTERNAL_CODE_SPACE
305
template void MemoryChunk::ReleaseSlotSet<OLD_TO_CODE>();
306
#endif  // V8_EXTERNAL_CODE_SPACE
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

template <RememberedSetType type>
void MemoryChunk::ReleaseSlotSet() {
  ReleaseSlotSet(&slot_set_[type]);
}

void MemoryChunk::ReleaseSlotSet(SlotSet** slot_set) {
  if (*slot_set) {
    SlotSet::Delete(*slot_set, buckets());
    *slot_set = nullptr;
  }
}

template TypedSlotSet* MemoryChunk::AllocateTypedSlotSet<OLD_TO_NEW>();
template TypedSlotSet* MemoryChunk::AllocateTypedSlotSet<OLD_TO_OLD>();
322
template TypedSlotSet* MemoryChunk::AllocateTypedSlotSet<OLD_TO_SHARED>();
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

template <RememberedSetType type>
TypedSlotSet* MemoryChunk::AllocateTypedSlotSet() {
  TypedSlotSet* typed_slot_set = new TypedSlotSet(address());
  TypedSlotSet* old_value = base::AsAtomicPointer::Release_CompareAndSwap(
      &typed_slot_set_[type], nullptr, typed_slot_set);
  if (old_value != nullptr) {
    delete typed_slot_set;
    typed_slot_set = old_value;
  }
  DCHECK(typed_slot_set);
  return typed_slot_set;
}

template void MemoryChunk::ReleaseTypedSlotSet<OLD_TO_NEW>();
template void MemoryChunk::ReleaseTypedSlotSet<OLD_TO_OLD>();
339
template void MemoryChunk::ReleaseTypedSlotSet<OLD_TO_SHARED>();
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

template <RememberedSetType type>
void MemoryChunk::ReleaseTypedSlotSet() {
  TypedSlotSet* typed_slot_set = typed_slot_set_[type];
  if (typed_slot_set) {
    typed_slot_set_[type] = nullptr;
    delete typed_slot_set;
  }
}

template InvalidatedSlots* MemoryChunk::AllocateInvalidatedSlots<OLD_TO_NEW>();
template InvalidatedSlots* MemoryChunk::AllocateInvalidatedSlots<OLD_TO_OLD>();

template <RememberedSetType type>
InvalidatedSlots* MemoryChunk::AllocateInvalidatedSlots() {
  DCHECK_NULL(invalidated_slots_[type]);
  invalidated_slots_[type] = new InvalidatedSlots();
  return invalidated_slots_[type];
}

template void MemoryChunk::ReleaseInvalidatedSlots<OLD_TO_NEW>();
template void MemoryChunk::ReleaseInvalidatedSlots<OLD_TO_OLD>();
362
template void MemoryChunk::ReleaseInvalidatedSlots<OLD_TO_SHARED>();
363 364 365 366 367 368 369 370 371 372

template <RememberedSetType type>
void MemoryChunk::ReleaseInvalidatedSlots() {
  if (invalidated_slots_[type]) {
    delete invalidated_slots_[type];
    invalidated_slots_[type] = nullptr;
  }
}

template V8_EXPORT_PRIVATE void
373 374
MemoryChunk::RegisterObjectWithInvalidatedSlots<OLD_TO_NEW>(HeapObject object,
                                                            int new_size);
375
template V8_EXPORT_PRIVATE void
376 377
MemoryChunk::RegisterObjectWithInvalidatedSlots<OLD_TO_OLD>(HeapObject object,
                                                            int new_size);
378
template V8_EXPORT_PRIVATE void MemoryChunk::RegisterObjectWithInvalidatedSlots<
379
    OLD_TO_SHARED>(HeapObject object, int new_size);
380 381

template <RememberedSetType type>
382 383
void MemoryChunk::RegisterObjectWithInvalidatedSlots(HeapObject object,
                                                     int new_size) {
384 385
  // ByteArray and FixedArray are still invalidated in tests.
  DCHECK(object.IsString() || object.IsByteArray() || object.IsFixedArray());
386 387
  bool skip_slot_recording;

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  switch (type) {
    case OLD_TO_NEW:
      skip_slot_recording = InYoungGeneration();
      break;

    case OLD_TO_OLD:
      skip_slot_recording = ShouldSkipEvacuationSlotRecording();
      break;

    case OLD_TO_SHARED:
      skip_slot_recording = InYoungGeneration();
      break;

    default:
      UNREACHABLE();
403 404 405 406 407 408 409 410 411 412
  }

  if (skip_slot_recording) {
    return;
  }

  if (invalidated_slots<type>() == nullptr) {
    AllocateInvalidatedSlots<type>();
  }

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
  DCHECK_GT(new_size, 0);
  InvalidatedSlots& invalidated_slots = *this->invalidated_slots<type>();
  DCHECK_IMPLIES(invalidated_slots.count(object) > 0,
                 new_size <= invalidated_slots[object]);
  invalidated_slots.insert_or_assign(object, new_size);
}

template V8_EXPORT_PRIVATE void
MemoryChunk::UpdateInvalidatedObjectSize<OLD_TO_NEW>(HeapObject object,
                                                     int new_size);
template V8_EXPORT_PRIVATE void
MemoryChunk::UpdateInvalidatedObjectSize<OLD_TO_OLD>(HeapObject object,
                                                     int new_size);
template V8_EXPORT_PRIVATE void
MemoryChunk::UpdateInvalidatedObjectSize<OLD_TO_SHARED>(HeapObject object,
                                                        int new_size);

template <RememberedSetType type>
void MemoryChunk::UpdateInvalidatedObjectSize(HeapObject object, int new_size) {
  DCHECK_GT(new_size, 0);

  if (invalidated_slots<type>() == nullptr) return;

  InvalidatedSlots& invalidated_slots = *this->invalidated_slots<type>();
  if (invalidated_slots.count(object) > 0) {
    DCHECK_LE(new_size, invalidated_slots[object]);
    DCHECK_NE(0, invalidated_slots[object]);
    invalidated_slots.insert_or_assign(object, new_size);
  }
442 443 444 445 446 447
}

template bool MemoryChunk::RegisteredObjectWithInvalidatedSlots<OLD_TO_NEW>(
    HeapObject object);
template bool MemoryChunk::RegisteredObjectWithInvalidatedSlots<OLD_TO_OLD>(
    HeapObject object);
448 449
template bool MemoryChunk::RegisteredObjectWithInvalidatedSlots<OLD_TO_SHARED>(
    HeapObject object);
450 451 452 453 454 455 456 457 458 459 460 461

template <RememberedSetType type>
bool MemoryChunk::RegisteredObjectWithInvalidatedSlots(HeapObject object) {
  if (invalidated_slots<type>() == nullptr) {
    return false;
  }
  return invalidated_slots<type>()->find(object) !=
         invalidated_slots<type>()->end();
}

void MemoryChunk::AllocateYoungGenerationBitmap() {
  DCHECK_NULL(young_generation_bitmap_);
462 463
  young_generation_bitmap_ =
      static_cast<Bitmap*>(base::Calloc(1, Bitmap::kSize));
464 465 466 467
}

void MemoryChunk::ReleaseYoungGenerationBitmap() {
  DCHECK_NOT_NULL(young_generation_bitmap_);
468
  base::Free(young_generation_bitmap_);
469 470 471
  young_generation_bitmap_ = nullptr;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
#ifdef DEBUG
void MemoryChunk::ValidateOffsets(MemoryChunk* chunk) {
  // Note that we cannot use offsetof because MemoryChunk is not a POD.
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->slot_set_) - chunk->address(),
            MemoryChunkLayout::kSlotSetOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->progress_bar_) - chunk->address(),
            MemoryChunkLayout::kProgressBarOffset);
  DCHECK_EQ(
      reinterpret_cast<Address>(&chunk->live_byte_count_) - chunk->address(),
      MemoryChunkLayout::kLiveByteCountOffset);
  DCHECK_EQ(
      reinterpret_cast<Address>(&chunk->typed_slot_set_) - chunk->address(),
      MemoryChunkLayout::kTypedSlotSetOffset);
  DCHECK_EQ(
      reinterpret_cast<Address>(&chunk->invalidated_slots_) - chunk->address(),
      MemoryChunkLayout::kInvalidatedSlotsOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->mutex_) - chunk->address(),
            MemoryChunkLayout::kMutexOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->concurrent_sweeping_) -
                chunk->address(),
            MemoryChunkLayout::kConcurrentSweepingOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->page_protection_change_mutex_) -
                chunk->address(),
            MemoryChunkLayout::kPageProtectionChangeMutexOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->write_unprotect_counter_) -
                chunk->address(),
            MemoryChunkLayout::kWriteUnprotectCounterOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->external_backing_store_bytes_) -
                chunk->address(),
            MemoryChunkLayout::kExternalBackingStoreBytesOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->list_node_) - chunk->address(),
            MemoryChunkLayout::kListNodeOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->categories_) - chunk->address(),
            MemoryChunkLayout::kCategoriesOffset);
  DCHECK_EQ(
      reinterpret_cast<Address>(&chunk->young_generation_live_byte_count_) -
          chunk->address(),
      MemoryChunkLayout::kYoungGenerationLiveByteCountOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->young_generation_bitmap_) -
                chunk->address(),
            MemoryChunkLayout::kYoungGenerationBitmapOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->code_object_registry_) -
                chunk->address(),
            MemoryChunkLayout::kCodeObjectRegistryOffset);
  DCHECK_EQ(reinterpret_cast<Address>(&chunk->possibly_empty_buckets_) -
                chunk->address(),
            MemoryChunkLayout::kPossiblyEmptyBucketsOffset);
}
#endif

522 523
}  // namespace internal
}  // namespace v8