code-inl.h 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_CODE_INL_H_
#define V8_OBJECTS_CODE_INL_H_

#include "src/objects/code.h"

10
#include "src/interpreter/bytecode-register.h"
11
#include "src/isolate.h"
12
#include "src/objects/dictionary.h"
13
#include "src/objects/map-inl.h"
14
#include "src/objects/maybe-object-inl.h"
15 16 17 18 19 20 21 22 23 24 25
#include "src/v8memory.h"

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

CAST_ACCESSOR(AbstractCode)
CAST_ACCESSOR(BytecodeArray)
CAST_ACCESSOR(Code)
26
CAST_ACCESSOR(CodeDataContainer)
27
CAST_ACCESSOR(DependentCode)
28
CAST_ACCESSOR(DeoptimizationData)
29

30
int AbstractCode::raw_instruction_size() {
31
  if (IsCode()) {
32
    return GetCode()->raw_instruction_size();
33 34 35 36 37
  } else {
    return GetBytecodeArray()->length();
  }
}

38 39 40 41 42 43 44 45
int AbstractCode::InstructionSize() {
  if (IsCode()) {
    return GetCode()->InstructionSize();
  } else {
    return GetBytecodeArray()->length();
  }
}

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
ByteArray* AbstractCode::source_position_table() {
  if (IsCode()) {
    return GetCode()->SourcePositionTable();
  } else {
    return GetBytecodeArray()->SourcePositionTable();
  }
}

Object* AbstractCode::stack_frame_cache() {
  Object* maybe_table;
  if (IsCode()) {
    maybe_table = GetCode()->source_position_table();
  } else {
    maybe_table = GetBytecodeArray()->source_position_table();
  }
  if (maybe_table->IsSourcePositionTableWithFrameCache()) {
    return SourcePositionTableWithFrameCache::cast(maybe_table)
        ->stack_frame_cache();
  }
  return Smi::kZero;
}

int AbstractCode::SizeIncludingMetadata() {
  if (IsCode()) {
    return GetCode()->SizeIncludingMetadata();
  } else {
    return GetBytecodeArray()->SizeIncludingMetadata();
  }
}
int AbstractCode::ExecutableSize() {
  if (IsCode()) {
    return GetCode()->ExecutableSize();
  } else {
    return GetBytecodeArray()->BytecodeArraySize();
  }
}

83
Address AbstractCode::raw_instruction_start() {
84
  if (IsCode()) {
85
    return GetCode()->raw_instruction_start();
86 87 88 89 90
  } else {
    return GetBytecodeArray()->GetFirstBytecodeAddress();
  }
}

91 92 93 94 95 96 97 98
Address AbstractCode::InstructionStart() {
  if (IsCode()) {
    return GetCode()->InstructionStart();
  } else {
    return GetBytecodeArray()->GetFirstBytecodeAddress();
  }
}

99
Address AbstractCode::raw_instruction_end() {
100
  if (IsCode()) {
101
    return GetCode()->raw_instruction_end();
102 103 104 105 106 107
  } else {
    return GetBytecodeArray()->GetFirstBytecodeAddress() +
           GetBytecodeArray()->length();
  }
}

108 109 110 111 112 113 114 115 116
Address AbstractCode::InstructionEnd() {
  if (IsCode()) {
    return GetCode()->InstructionEnd();
  } else {
    return GetBytecodeArray()->GetFirstBytecodeAddress() +
           GetBytecodeArray()->length();
  }
}

117
bool AbstractCode::contains(Address inner_pointer) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  return (address() <= inner_pointer) && (inner_pointer <= address() + Size());
}

AbstractCode::Kind AbstractCode::kind() {
  if (IsCode()) {
    return static_cast<AbstractCode::Kind>(GetCode()->kind());
  } else {
    return INTERPRETED_FUNCTION;
  }
}

Code* AbstractCode::GetCode() { return Code::cast(this); }

BytecodeArray* AbstractCode::GetBytecodeArray() {
  return BytecodeArray::cast(this);
}

DependentCode* DependentCode::next_link() {
136
  return DependentCode::cast(Get(kNextLinkIndex)->ToStrongHeapObject());
137 138 139
}

void DependentCode::set_next_link(DependentCode* next) {
140
  Set(kNextLinkIndex, HeapObjectReference::Strong(next));
141 142
}

143
int DependentCode::flags() { return Smi::ToInt(Get(kFlagsIndex)->ToSmi()); }
144 145

void DependentCode::set_flags(int flags) {
146
  Set(kFlagsIndex, MaybeObject::FromObject(Smi::FromInt(flags)));
147 148 149 150 151 152 153 154 155 156 157 158
}

int DependentCode::count() { return CountField::decode(flags()); }

void DependentCode::set_count(int value) {
  set_flags(CountField::update(flags(), value));
}

DependentCode::DependencyGroup DependentCode::group() {
  return static_cast<DependencyGroup>(GroupField::decode(flags()));
}

159 160
void DependentCode::set_object_at(int i, MaybeObject* object) {
  Set(kCodesStartIndex + i, object);
161 162
}

163 164 165
MaybeObject* DependentCode::object_at(int i) {
  return Get(kCodesStartIndex + i);
}
166

167 168 169 170
void DependentCode::clear_at(int i) {
  Set(kCodesStartIndex + i,
      HeapObjectReference::Strong(GetReadOnlyRoots().undefined_value()));
}
171 172

void DependentCode::copy(int from, int to) {
173
  Set(kCodesStartIndex + to, Get(kCodesStartIndex + from));
174 175
}

176
INT_ACCESSORS(Code, raw_instruction_size, kInstructionSizeOffset)
177
INT_ACCESSORS(Code, handler_table_offset, kHandlerTableOffsetOffset)
178 179
#define CODE_ACCESSORS(name, type, offset) \
  ACCESSORS_CHECKED2(Code, name, type, offset, true, !Heap::InNewSpace(value))
180 181 182
CODE_ACCESSORS(relocation_info, ByteArray, kRelocationInfoOffset)
CODE_ACCESSORS(deoptimization_data, FixedArray, kDeoptimizationDataOffset)
CODE_ACCESSORS(source_position_table, Object, kSourcePositionTableOffset)
183
CODE_ACCESSORS(code_data_container, CodeDataContainer, kCodeDataContainerOffset)
184 185 186 187 188 189
#undef CODE_ACCESSORS

void Code::WipeOutHeader() {
  WRITE_FIELD(this, kRelocationInfoOffset, nullptr);
  WRITE_FIELD(this, kDeoptimizationDataOffset, nullptr);
  WRITE_FIELD(this, kSourcePositionTableOffset, nullptr);
190
  WRITE_FIELD(this, kCodeDataContainerOffset, nullptr);
191 192 193
}

void Code::clear_padding() {
194 195
  memset(reinterpret_cast<void*>(address() + kHeaderPaddingStart), 0,
         kHeaderSize - kHeaderPaddingStart);
196
  Address data_end =
197
      has_unwinding_info() ? unwinding_info_end() : raw_instruction_end();
198 199
  memset(reinterpret_cast<void*>(data_end), 0,
         CodeSize() - (data_end - address()));
200 201 202 203 204 205 206 207 208 209 210 211
}

ByteArray* Code::SourcePositionTable() const {
  Object* maybe_table = source_position_table();
  if (maybe_table->IsByteArray()) return ByteArray::cast(maybe_table);
  DCHECK(maybe_table->IsSourcePositionTableWithFrameCache());
  return SourcePositionTableWithFrameCache::cast(maybe_table)
      ->source_position_table();
}

uint32_t Code::stub_key() const {
  DCHECK(is_stub());
212
  return READ_UINT32_FIELD(this, kStubKeyOffset);
213 214 215
}

void Code::set_stub_key(uint32_t key) {
216 217
  DCHECK(is_stub() || key == 0);  // Allow zero initialization.
  WRITE_UINT32_FIELD(this, kStubKeyOffset, key);
218 219
}

220 221 222 223 224 225 226 227
Object* Code::next_code_link() const {
  return code_data_container()->next_code_link();
}

void Code::set_next_code_link(Object* value) {
  code_data_container()->set_next_code_link(value);
}

228
int Code::InstructionSize() const {
229
  if (is_off_heap_trampoline()) {
230
    DCHECK(FLAG_embedded_builtins);
231 232
    return OffHeapInstructionSize();
  }
233
  return raw_instruction_size();
234 235
}

236
Address Code::raw_instruction_start() const {
237
  return FIELD_ADDR(this, kHeaderSize);
238 239
}

240
Address Code::InstructionStart() const {
241
  if (is_off_heap_trampoline()) {
242
    DCHECK(FLAG_embedded_builtins);
243 244
    return OffHeapInstructionStart();
  }
245
  return raw_instruction_start();
246 247
}

248
Address Code::raw_instruction_end() const {
249
  return raw_instruction_start() + raw_instruction_size();
250 251
}

252
Address Code::InstructionEnd() const {
253
  if (is_off_heap_trampoline()) {
254
    DCHECK(FLAG_embedded_builtins);
255 256
    return OffHeapInstructionEnd();
  }
257
  return raw_instruction_end();
258 259
}

260 261
int Code::GetUnwindingInfoSizeOffset() const {
  DCHECK(has_unwinding_info());
262
  return RoundUp(kHeaderSize + raw_instruction_size(), kInt64Size);
263 264 265 266 267 268 269 270 271 272 273 274 275
}

int Code::unwinding_info_size() const {
  DCHECK(has_unwinding_info());
  return static_cast<int>(
      READ_UINT64_FIELD(this, GetUnwindingInfoSizeOffset()));
}

void Code::set_unwinding_info_size(int value) {
  DCHECK(has_unwinding_info());
  WRITE_UINT64_FIELD(this, GetUnwindingInfoSizeOffset(), value);
}

276
Address Code::unwinding_info_start() const {
277
  DCHECK(has_unwinding_info());
278
  return FIELD_ADDR(this, GetUnwindingInfoSizeOffset()) + kInt64Size;
279 280
}

281
Address Code::unwinding_info_end() const {
282 283 284 285 286 287 288
  DCHECK(has_unwinding_info());
  return unwinding_info_start() + unwinding_info_size();
}

int Code::body_size() const {
  int unpadded_body_size =
      has_unwinding_info()
289 290
          ? static_cast<int>(unwinding_info_end() - raw_instruction_start())
          : raw_instruction_size();
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  return RoundUp(unpadded_body_size, kObjectAlignment);
}

int Code::SizeIncludingMetadata() const {
  int size = CodeSize();
  size += relocation_info()->Size();
  size += deoptimization_data()->Size();
  return size;
}

ByteArray* Code::unchecked_relocation_info() const {
  return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset));
}

byte* Code::relocation_start() const {
  return unchecked_relocation_info()->GetDataStartAddress();
}

309 310 311 312 313
byte* Code::relocation_end() const {
  return unchecked_relocation_info()->GetDataStartAddress() +
         unchecked_relocation_info()->length();
}

314 315 316 317
int Code::relocation_size() const {
  return unchecked_relocation_info()->length();
}

318
Address Code::entry() const { return raw_instruction_start(); }
319

320
bool Code::contains(Address inner_pointer) {
321
  if (is_off_heap_trampoline()) {
322
    DCHECK(FLAG_embedded_builtins);
323 324 325 326
    if (OffHeapInstructionStart() <= inner_pointer &&
        inner_pointer < OffHeapInstructionEnd()) {
      return true;
    }
327 328
  }
  return (address() <= inner_pointer) && (inner_pointer < address() + Size());
329 330 331 332
}

int Code::ExecutableSize() const {
  // Check that the assumptions about the layout of the code object holds.
333
  DCHECK_EQ(static_cast<int>(raw_instruction_start() - address()),
334
            Code::kHeaderSize);
335
  return raw_instruction_size() + Code::kHeaderSize;
336 337 338 339 340 341 342 343
}

int Code::CodeSize() const { return SizeFor(body_size()); }

Code::Kind Code::kind() const {
  return KindField::decode(READ_UINT32_FIELD(this, kFlagsOffset));
}

344
void Code::initialize_flags(Kind kind, bool has_unwinding_info,
345 346
                            bool is_turbofanned, int stack_slots,
                            bool is_off_heap_trampoline) {
347
  CHECK(0 <= stack_slots && stack_slots < StackSlotsField::kMax);
348 349 350 351
  static_assert(Code::NUMBER_OF_KINDS <= KindField::kMax + 1, "field overflow");
  uint32_t flags = HasUnwindingInfoField::encode(has_unwinding_info) |
                   KindField::encode(kind) |
                   IsTurbofannedField::encode(is_turbofanned) |
352 353
                   StackSlotsField::encode(stack_slots) |
                   IsOffHeapTrampoline::encode(is_off_heap_trampoline);
354
  WRITE_UINT32_FIELD(this, kFlagsOffset, flags);
355
  DCHECK_IMPLIES(stack_slots != 0, has_safepoint_info());
356 357 358 359
}

inline bool Code::is_interpreter_trampoline_builtin() const {
  Builtins* builtins = GetIsolate()->builtins();
360 361
  Code* interpreter_entry_trampoline =
      builtins->builtin(Builtins::kInterpreterEntryTrampoline);
362
  bool is_interpreter_trampoline =
363
      (builtin_index() == interpreter_entry_trampoline->builtin_index() ||
364 365 366 367 368 369 370 371
       this == builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance) ||
       this == builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch));
  DCHECK_IMPLIES(is_interpreter_trampoline, !Builtins::IsLazy(builtin_index()));
  return is_interpreter_trampoline;
}

inline bool Code::checks_optimization_marker() const {
  Builtins* builtins = GetIsolate()->builtins();
372 373
  Code* interpreter_entry_trampoline =
      builtins->builtin(Builtins::kInterpreterEntryTrampoline);
374 375
  bool checks_marker =
      (this == builtins->builtin(Builtins::kCompileLazy) ||
376
       builtin_index() == interpreter_entry_trampoline->builtin_index());
377 378 379 380 381 382
  DCHECK_IMPLIES(checks_marker, !Builtins::IsLazy(builtin_index()));
  return checks_marker ||
         (kind() == OPTIMIZED_FUNCTION && marked_for_deoptimization());
}

inline bool Code::has_tagged_params() const {
383 384
  return kind() != JS_TO_WASM_FUNCTION && kind() != C_WASM_ENTRY &&
         kind() != WASM_FUNCTION;
385 386
}

387 388
inline bool Code::has_unwinding_info() const {
  return HasUnwindingInfoField::decode(READ_UINT32_FIELD(this, kFlagsOffset));
389 390 391
}

inline bool Code::is_turbofanned() const {
392
  return IsTurbofannedField::decode(READ_UINT32_FIELD(this, kFlagsOffset));
393 394 395 396
}

inline bool Code::can_have_weak_objects() const {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
397 398
  int flags = code_data_container()->kind_specific_flags();
  return CanHaveWeakObjectsField::decode(flags);
399 400 401 402
}

inline void Code::set_can_have_weak_objects(bool value) {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
403
  int previous = code_data_container()->kind_specific_flags();
404
  int updated = CanHaveWeakObjectsField::update(previous, value);
405
  code_data_container()->set_kind_specific_flags(updated);
406 407 408 409
}

inline bool Code::is_construct_stub() const {
  DCHECK(kind() == BUILTIN);
410 411
  int flags = code_data_container()->kind_specific_flags();
  return IsConstructStubField::decode(flags);
412 413 414 415
}

inline void Code::set_is_construct_stub(bool value) {
  DCHECK(kind() == BUILTIN);
416
  int previous = code_data_container()->kind_specific_flags();
417
  int updated = IsConstructStubField::update(previous, value);
418
  code_data_container()->set_kind_specific_flags(updated);
419 420 421 422
}

inline bool Code::is_promise_rejection() const {
  DCHECK(kind() == BUILTIN);
423 424
  int flags = code_data_container()->kind_specific_flags();
  return IsPromiseRejectionField::decode(flags);
425 426 427 428
}

inline void Code::set_is_promise_rejection(bool value) {
  DCHECK(kind() == BUILTIN);
429
  int previous = code_data_container()->kind_specific_flags();
430
  int updated = IsPromiseRejectionField::update(previous, value);
431
  code_data_container()->set_kind_specific_flags(updated);
432 433 434 435
}

inline bool Code::is_exception_caught() const {
  DCHECK(kind() == BUILTIN);
436 437
  int flags = code_data_container()->kind_specific_flags();
  return IsExceptionCaughtField::decode(flags);
438 439 440 441
}

inline void Code::set_is_exception_caught(bool value) {
  DCHECK(kind() == BUILTIN);
442
  int previous = code_data_container()->kind_specific_flags();
443
  int updated = IsExceptionCaughtField::update(previous, value);
444
  code_data_container()->set_kind_specific_flags(updated);
445 446
}

447 448 449 450
inline bool Code::is_off_heap_trampoline() const {
  return IsOffHeapTrampoline::decode(READ_UINT32_FIELD(this, kFlagsOffset));
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
inline HandlerTable::CatchPrediction Code::GetBuiltinCatchPrediction() {
  if (is_promise_rejection()) return HandlerTable::PROMISE;
  if (is_exception_caught()) return HandlerTable::CAUGHT;
  return HandlerTable::UNCAUGHT;
}

int Code::builtin_index() const {
  int index = READ_INT_FIELD(this, kBuiltinIndexOffset);
  DCHECK(index == -1 || Builtins::IsBuiltinId(index));
  return index;
}

void Code::set_builtin_index(int index) {
  DCHECK(index == -1 || Builtins::IsBuiltinId(index));
  WRITE_INT_FIELD(this, kBuiltinIndexOffset, index);
}

bool Code::is_builtin() const { return builtin_index() != -1; }

470 471 472 473
bool Code::has_safepoint_info() const {
  return is_turbofanned() || is_wasm_code();
}

474
int Code::stack_slots() const {
475
  DCHECK(has_safepoint_info());
476
  return StackSlotsField::decode(READ_UINT32_FIELD(this, kFlagsOffset));
477 478
}

479
int Code::safepoint_table_offset() const {
480
  DCHECK(has_safepoint_info());
481
  return READ_INT32_FIELD(this, kSafepointTableOffsetOffset);
482 483
}

484 485
void Code::set_safepoint_table_offset(int offset) {
  CHECK_LE(0, offset);
486
  DCHECK(has_safepoint_info() || offset == 0);  // Allow zero initialization.
487
  DCHECK(IsAligned(offset, static_cast<unsigned>(kIntSize)));
488
  WRITE_INT32_FIELD(this, kSafepointTableOffsetOffset, offset);
489 490 491 492
}

bool Code::marked_for_deoptimization() const {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
493 494
  int flags = code_data_container()->kind_specific_flags();
  return MarkedForDeoptimizationField::decode(flags);
495 496 497 498 499
}

void Code::set_marked_for_deoptimization(bool flag) {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
  DCHECK_IMPLIES(flag, AllowDeoptimization::IsAllowed(GetIsolate()));
500
  int previous = code_data_container()->kind_specific_flags();
501
  int updated = MarkedForDeoptimizationField::update(previous, flag);
502
  code_data_container()->set_kind_specific_flags(updated);
503 504 505 506
}

bool Code::deopt_already_counted() const {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
507 508
  int flags = code_data_container()->kind_specific_flags();
  return DeoptAlreadyCountedField::decode(flags);
509 510 511 512 513
}

void Code::set_deopt_already_counted(bool flag) {
  DCHECK(kind() == OPTIMIZED_FUNCTION);
  DCHECK_IMPLIES(flag, AllowDeoptimization::IsAllowed(GetIsolate()));
514
  int previous = code_data_container()->kind_specific_flags();
515
  int updated = DeoptAlreadyCountedField::update(previous, flag);
516
  code_data_container()->set_kind_specific_flags(updated);
517 518 519 520 521 522
}

bool Code::is_stub() const { return kind() == STUB; }
bool Code::is_optimized_code() const { return kind() == OPTIMIZED_FUNCTION; }
bool Code::is_wasm_code() const { return kind() == WASM_FUNCTION; }

523
int Code::constant_pool_offset() const {
524
  if (!FLAG_enable_embedded_constant_pool) return InstructionSize();
525 526 527 528 529 530 531 532
  return READ_INT_FIELD(this, kConstantPoolOffset);
}

void Code::set_constant_pool_offset(int value) {
  if (!FLAG_enable_embedded_constant_pool) return;
  WRITE_INT_FIELD(this, kConstantPoolOffset, value);
}

533
Address Code::constant_pool() const {
534 535
  if (FLAG_enable_embedded_constant_pool) {
    int offset = constant_pool_offset();
536 537
    if (offset < InstructionSize()) {
      return InstructionStart() + offset;
538 539
    }
  }
540
  return kNullAddress;
541 542 543
}

Code* Code::GetCodeFromTargetAddress(Address address) {
544 545 546 547 548 549 550
  {
    // TODO(jgruber,v8:6666): Support embedded builtins here. We'd need to pass
    // in the current isolate.
    Address start = reinterpret_cast<Address>(Isolate::CurrentEmbeddedBlob());
    Address end = start + Isolate::CurrentEmbeddedBlobSize();
    CHECK(address < start || address >= end);
  }
551

552 553 554 555 556 557 558 559 560 561 562 563 564 565
  HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
  // GetCodeFromTargetAddress might be called when marking objects during mark
  // sweep. reinterpret_cast is therefore used instead of the more appropriate
  // Code::cast. Code::cast does not work when the object's map is
  // marked.
  Code* result = reinterpret_cast<Code*>(code);
  return result;
}

Object* Code::GetObjectFromCodeEntry(Address code_entry) {
  return HeapObject::FromAddress(code_entry - Code::kHeaderSize);
}

Object* Code::GetObjectFromEntryAddress(Address location_of_address) {
566
  return GetObjectFromCodeEntry(Memory<Address>(location_of_address));
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
}

bool Code::CanContainWeakObjects() {
  return is_optimized_code() && can_have_weak_objects();
}

bool Code::IsWeakObject(Object* object) {
  return (CanContainWeakObjects() && IsWeakObjectInOptimizedCode(object));
}

bool Code::IsWeakObjectInOptimizedCode(Object* object) {
  if (object->IsMap()) {
    return Map::cast(object)->CanTransition();
  }
  if (object->IsCell()) {
    object = Cell::cast(object)->value();
  } else if (object->IsPropertyCell()) {
    object = PropertyCell::cast(object)->value();
  }
  if (object->IsJSReceiver() || object->IsContext()) {
    return true;
  }
  return false;
}

592
INT_ACCESSORS(CodeDataContainer, kind_specific_flags, kKindSpecificFlagsOffset)
593
ACCESSORS(CodeDataContainer, next_code_link, Object, kNextCodeLinkOffset)
594 595

void CodeDataContainer::clear_padding() {
596 597
  memset(reinterpret_cast<void*>(address() + kUnalignedSize), 0,
         kSize - kUnalignedSize);
598 599
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
byte BytecodeArray::get(int index) {
  DCHECK(index >= 0 && index < this->length());
  return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}

void BytecodeArray::set(int index, byte value) {
  DCHECK(index >= 0 && index < this->length());
  WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
}

void BytecodeArray::set_frame_size(int frame_size) {
  DCHECK_GE(frame_size, 0);
  DCHECK(IsAligned(frame_size, static_cast<unsigned>(kPointerSize)));
  WRITE_INT_FIELD(this, kFrameSizeOffset, frame_size);
}

int BytecodeArray::frame_size() const {
  return READ_INT_FIELD(this, kFrameSizeOffset);
}

int BytecodeArray::register_count() const {
  return frame_size() / kPointerSize;
}

void BytecodeArray::set_parameter_count(int number_of_parameters) {
  DCHECK_GE(number_of_parameters, 0);
  // Parameter count is stored as the size on stack of the parameters to allow
  // it to be used directly by generated code.
  WRITE_INT_FIELD(this, kParameterSizeOffset,
                  (number_of_parameters << kPointerSizeLog2));
}

interpreter::Register BytecodeArray::incoming_new_target_or_generator_register()
    const {
  int register_operand =
      READ_INT_FIELD(this, kIncomingNewTargetOrGeneratorRegisterOffset);
  if (register_operand == 0) {
    return interpreter::Register::invalid_value();
  } else {
    return interpreter::Register::FromOperand(register_operand);
  }
}

void BytecodeArray::set_incoming_new_target_or_generator_register(
    interpreter::Register incoming_new_target_or_generator_register) {
  if (!incoming_new_target_or_generator_register.is_valid()) {
    WRITE_INT_FIELD(this, kIncomingNewTargetOrGeneratorRegisterOffset, 0);
  } else {
    DCHECK(incoming_new_target_or_generator_register.index() <
           register_count());
    DCHECK_NE(0, incoming_new_target_or_generator_register.ToOperand());
    WRITE_INT_FIELD(this, kIncomingNewTargetOrGeneratorRegisterOffset,
                    incoming_new_target_or_generator_register.ToOperand());
  }
}

int BytecodeArray::interrupt_budget() const {
  return READ_INT_FIELD(this, kInterruptBudgetOffset);
}

void BytecodeArray::set_interrupt_budget(int interrupt_budget) {
  DCHECK_GE(interrupt_budget, 0);
  WRITE_INT_FIELD(this, kInterruptBudgetOffset, interrupt_budget);
}

int BytecodeArray::osr_loop_nesting_level() const {
  return READ_INT8_FIELD(this, kOSRNestingLevelOffset);
}

void BytecodeArray::set_osr_loop_nesting_level(int depth) {
  DCHECK(0 <= depth && depth <= AbstractCode::kMaxLoopNestingMarker);
  STATIC_ASSERT(AbstractCode::kMaxLoopNestingMarker < kMaxInt8);
  WRITE_INT8_FIELD(this, kOSRNestingLevelOffset, depth);
}

BytecodeArray::Age BytecodeArray::bytecode_age() const {
  // Bytecode is aged by the concurrent marker.
  return static_cast<Age>(RELAXED_READ_INT8_FIELD(this, kBytecodeAgeOffset));
}

void BytecodeArray::set_bytecode_age(BytecodeArray::Age age) {
  DCHECK_GE(age, kFirstBytecodeAge);
  DCHECK_LE(age, kLastBytecodeAge);
  STATIC_ASSERT(kLastBytecodeAge <= kMaxInt8);
  // Bytecode is aged by the concurrent marker.
  RELAXED_WRITE_INT8_FIELD(this, kBytecodeAgeOffset, static_cast<int8_t>(age));
}

int BytecodeArray::parameter_count() const {
  // Parameter count is stored as the size on stack of the parameters to allow
  // it to be used directly by generated code.
  return READ_INT_FIELD(this, kParameterSizeOffset) >> kPointerSizeLog2;
}

ACCESSORS(BytecodeArray, constant_pool, FixedArray, kConstantPoolOffset)
695
ACCESSORS(BytecodeArray, handler_table, ByteArray, kHandlerTableOffset)
696 697 698 699 700
ACCESSORS(BytecodeArray, source_position_table, Object,
          kSourcePositionTableOffset)

void BytecodeArray::clear_padding() {
  int data_size = kHeaderSize + length();
701 702
  memset(reinterpret_cast<void*>(address() + data_size), 0,
         SizeFor(length()) - data_size);
703 704 705 706 707 708 709 710 711 712 713 714 715 716
}

Address BytecodeArray::GetFirstBytecodeAddress() {
  return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
}

ByteArray* BytecodeArray::SourcePositionTable() {
  Object* maybe_table = source_position_table();
  if (maybe_table->IsByteArray()) return ByteArray::cast(maybe_table);
  DCHECK(maybe_table->IsSourcePositionTableWithFrameCache());
  return SourcePositionTableWithFrameCache::cast(maybe_table)
      ->source_position_table();
}

717 718 719 720 721 722 723 724
void BytecodeArray::ClearFrameCacheFromSourcePositionTable() {
  Object* maybe_table = source_position_table();
  if (maybe_table->IsByteArray()) return;
  DCHECK(maybe_table->IsSourcePositionTableWithFrameCache());
  set_source_position_table(SourcePositionTableWithFrameCache::cast(maybe_table)
                                ->source_position_table());
}

725 726 727 728 729 730 731 732 733 734
int BytecodeArray::BytecodeArraySize() { return SizeFor(this->length()); }

int BytecodeArray::SizeIncludingMetadata() {
  int size = BytecodeArraySize();
  size += constant_pool()->Size();
  size += handler_table()->Size();
  size += SourcePositionTable()->Size();
  return size;
}

735
BailoutId DeoptimizationData::BytecodeOffset(int i) {
736 737 738
  return BailoutId(BytecodeOffsetRaw(i)->value());
}

739
void DeoptimizationData::SetBytecodeOffset(int i, BailoutId value) {
740 741 742
  SetBytecodeOffsetRaw(i, Smi::FromInt(value.ToInt()));
}

743
int DeoptimizationData::DeoptCount() {
744 745 746 747 748 749 750 751 752
  return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
}

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_CODE_INL_H_