constants-ppc.h 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_PPC_CONSTANTS_PPC_H_
#define V8_PPC_CONSTANTS_PPC_H_

namespace v8 {
namespace internal {

// Number of registers
const int kNumRegisters = 32;

// FP support.
const int kNumFPDoubleRegisters = 32;
const int kNumFPRegisters = kNumFPDoubleRegisters;

const int kNoRegister = -1;

20 21 22 23 24
// Used in embedded constant pool builder - max reach in bits for
// various load instructions (one less due to unsigned)
const int kLoadPtrMaxReachBits = 15;
const int kLoadDoubleMaxReachBits = 15;

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// sign-extend the least significant 16-bits of value <imm>
#define SIGN_EXT_IMM16(imm) ((static_cast<int>(imm) << 16) >> 16)

// sign-extend the least significant 26-bits of value <imm>
#define SIGN_EXT_IMM26(imm) ((static_cast<int>(imm) << 6) >> 6)

// -----------------------------------------------------------------------------
// Conditions.

// Defines constants and accessor classes to assemble, disassemble and
// simulate PPC instructions.
//
// Section references in the code refer to the "PowerPC Microprocessor
// Family: The Programmer.s Reference Guide" from 10/95
// https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600741775/$file/prg.pdf
//

// Constants for specific fields are defined in their respective named enums.
// General constants are in an anonymous enum in class Instr.
enum Condition {
  kNoCondition = -1,
  eq = 0,         // Equal.
  ne = 1,         // Not equal.
  ge = 2,         // Greater or equal.
  lt = 3,         // Less than.
  gt = 4,         // Greater than.
  le = 5,         // Less then or equal
  unordered = 6,  // Floating-point unordered
  ordered = 7,
  overflow = 8,  // Summary overflow
  nooverflow = 9,
  al = 10  // Always.
};


inline Condition NegateCondition(Condition cond) {
  DCHECK(cond != al);
  return static_cast<Condition>(cond ^ ne);
}


// Commute a condition such that {a cond b == b cond' a}.
inline Condition CommuteCondition(Condition cond) {
  switch (cond) {
    case lt:
      return gt;
    case gt:
      return lt;
    case ge:
      return le;
    case le:
      return ge;
    default:
      return cond;
  }
}

// -----------------------------------------------------------------------------
// Instructions encoding.

// Instr is merely used by the Assembler to distinguish 32bit integers
// representing instructions from usual 32 bit values.
// Instruction objects are pointers to 32bit values, and provide methods to
// access the various ISA fields.
typedef int32_t Instr;

// Opcodes as defined in section 4.2 table 34 (32bit PowerPC)
enum Opcode {
  TWI = 3 << 26,       // Trap Word Immediate
  MULLI = 7 << 26,     // Multiply Low Immediate
  SUBFIC = 8 << 26,    // Subtract from Immediate Carrying
  CMPLI = 10 << 26,    // Compare Logical Immediate
  CMPI = 11 << 26,     // Compare Immediate
  ADDIC = 12 << 26,    // Add Immediate Carrying
  ADDICx = 13 << 26,   // Add Immediate Carrying and Record
  ADDI = 14 << 26,     // Add Immediate
  ADDIS = 15 << 26,    // Add Immediate Shifted
  BCX = 16 << 26,      // Branch Conditional
  SC = 17 << 26,       // System Call
  BX = 18 << 26,       // Branch
  EXT1 = 19 << 26,     // Extended code set 1
  RLWIMIX = 20 << 26,  // Rotate Left Word Immediate then Mask Insert
  RLWINMX = 21 << 26,  // Rotate Left Word Immediate then AND with Mask
  RLWNMX = 23 << 26,   // Rotate Left Word then AND with Mask
  ORI = 24 << 26,      // OR Immediate
  ORIS = 25 << 26,     // OR Immediate Shifted
  XORI = 26 << 26,     // XOR Immediate
  XORIS = 27 << 26,    // XOR Immediate Shifted
  ANDIx = 28 << 26,    // AND Immediate
  ANDISx = 29 << 26,   // AND Immediate Shifted
  EXT5 = 30 << 26,     // Extended code set 5 - 64bit only
  EXT2 = 31 << 26,     // Extended code set 2
  LWZ = 32 << 26,      // Load Word and Zero
  LWZU = 33 << 26,     // Load Word with Zero Update
  LBZ = 34 << 26,      // Load Byte and Zero
  LBZU = 35 << 26,     // Load Byte and Zero with Update
  STW = 36 << 26,      // Store
  STWU = 37 << 26,     // Store Word with Update
  STB = 38 << 26,      // Store Byte
  STBU = 39 << 26,     // Store Byte with Update
  LHZ = 40 << 26,      // Load Half and Zero
  LHZU = 41 << 26,     // Load Half and Zero with Update
  LHA = 42 << 26,      // Load Half Algebraic
  LHAU = 43 << 26,     // Load Half Algebraic with Update
  STH = 44 << 26,      // Store Half
  STHU = 45 << 26,     // Store Half with Update
  LMW = 46 << 26,      // Load Multiple Word
  STMW = 47 << 26,     // Store Multiple Word
  LFS = 48 << 26,      // Load Floating-Point Single
  LFSU = 49 << 26,     // Load Floating-Point Single with Update
  LFD = 50 << 26,      // Load Floating-Point Double
  LFDU = 51 << 26,     // Load Floating-Point Double with Update
  STFS = 52 << 26,     // Store Floating-Point Single
  STFSU = 53 << 26,    // Store Floating-Point Single with Update
  STFD = 54 << 26,     // Store Floating-Point Double
  STFDU = 55 << 26,    // Store Floating-Point Double with Update
  LD = 58 << 26,       // Load Double Word
  EXT3 = 59 << 26,     // Extended code set 3
  STD = 62 << 26,      // Store Double Word (optionally with Update)
  EXT4 = 63 << 26      // Extended code set 4
};

// Bits 10-1
enum OpcodeExt1 {
  MCRF = 0 << 1,      // Move Condition Register Field
  BCLRX = 16 << 1,    // Branch Conditional Link Register
  CRNOR = 33 << 1,    // Condition Register NOR)
  RFI = 50 << 1,      // Return from Interrupt
  CRANDC = 129 << 1,  // Condition Register AND with Complement
  ISYNC = 150 << 1,   // Instruction Synchronize
  CRXOR = 193 << 1,   // Condition Register XOR
  CRNAND = 225 << 1,  // Condition Register NAND
  CRAND = 257 << 1,   // Condition Register AND
  CREQV = 289 << 1,   // Condition Register Equivalent
  CRORC = 417 << 1,   // Condition Register OR with Complement
  CROR = 449 << 1,    // Condition Register OR
  BCCTRX = 528 << 1   // Branch Conditional to Count Register
};

// Bits 9-1 or 10-1
enum OpcodeExt2 {
  CMP = 0 << 1,
  TW = 4 << 1,
  SUBFCX = 8 << 1,
  ADDCX = 10 << 1,
  MULHWUX = 11 << 1,
171
  ISEL = 15 << 1,
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  MFCR = 19 << 1,
  LWARX = 20 << 1,
  LDX = 21 << 1,
  LWZX = 23 << 1,  // load word zero w/ x-form
  SLWX = 24 << 1,
  CNTLZWX = 26 << 1,
  SLDX = 27 << 1,
  ANDX = 28 << 1,
  CMPL = 32 << 1,
  SUBFX = 40 << 1,
  MFVSRD = 51 << 1,  // Move From VSR Doubleword
  LDUX = 53 << 1,
  DCBST = 54 << 1,
  LWZUX = 55 << 1,  // load word zero w/ update x-form
  CNTLZDX = 58 << 1,
  ANDCX = 60 << 1,
  MULHWX = 75 << 1,
  DCBF = 86 << 1,
  LBZX = 87 << 1,  // load byte zero w/ x-form
  NEGX = 104 << 1,
  MFVSRWZ = 115 << 1,  // Move From VSR Word And Zero
  LBZUX = 119 << 1,    // load byte zero w/ update x-form
  NORX = 124 << 1,
  SUBFEX = 136 << 1,
  ADDEX = 138 << 1,
  STDX = 149 << 1,
  STWX = 151 << 1,    // store word w/ x-form
  MTVSRD = 179 << 1,  // Move To VSR Doubleword
  STDUX = 181 << 1,
201 202 203 204 205 206 207 208 209 210 211
  STWUX = 183 << 1,    // store word w/ update x-form
                       /*
      MTCRF
      MTMSR
      STWCXx
      SUBFZEX
    */
  ADDZEX = 202 << 1,   // Add to Zero Extended
                       /*
     MTSR
   */
212 213 214 215 216 217 218 219 220
  MTVSRWA = 211 << 1,  // Move To VSR Word Algebraic
  STBX = 215 << 1,     // store byte w/ x-form
  MULLD = 233 << 1,    // Multiply Low Double Word
  MULLW = 235 << 1,    // Multiply Low Word
  MTVSRWZ = 243 << 1,  // Move To VSR Word And Zero
  STBUX = 247 << 1,    // store byte w/ update x-form
  ADDX = 266 << 1,     // Add
  LHZX = 279 << 1,     // load half-word zero w/ x-form
  LHZUX = 311 << 1,    // load half-word zero w/ update x-form
221
  LWAX = 341 << 1,     // load word algebraic w/ x-form
222 223 224 225 226
  LHAX = 343 << 1,     // load half-word algebraic w/ x-form
  LHAUX = 375 << 1,    // load half-word algebraic w/ update x-form
  XORX = 316 << 1,     // Exclusive OR
  MFSPR = 339 << 1,    // Move from Special-Purpose-Register
  STHX = 407 << 1,     // store half-word w/ x-form
227
  ORC = 412 << 1,      // Or with Complement
228 229
  STHUX = 439 << 1,    // store half-word w/ update x-form
  ORX = 444 << 1,      // Or
230 231
  DIVDU = 457 << 1,    // Divide Double Word Unsigned
  DIVWU = 459 << 1,    // Divide Word Unsigned
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  MTSPR = 467 << 1,    // Move to Special-Purpose-Register
  DIVD = 489 << 1,     // Divide Double Word
  DIVW = 491 << 1,     // Divide Word

  // Below represent bits 10-1  (any value >= 512)
  LFSX = 535 << 1,    // load float-single w/ x-form
  SRWX = 536 << 1,    // Shift Right Word
  SRDX = 539 << 1,    // Shift Right Double Word
  LFSUX = 567 << 1,   // load float-single w/ update x-form
  SYNC = 598 << 1,    // Synchronize
  LFDX = 599 << 1,    // load float-double w/ x-form
  LFDUX = 631 << 1,   // load float-double w/ update X-form
  STFSX = 663 << 1,   // store float-single w/ x-form
  STFSUX = 695 << 1,  // store float-single w/ update x-form
  STFDX = 727 << 1,   // store float-double w/ x-form
  STFDUX = 759 << 1,  // store float-double w/ update x-form
  SRAW = 792 << 1,    // Shift Right Algebraic Word
  SRAD = 794 << 1,    // Shift Right Algebraic Double Word
  SRAWIX = 824 << 1,  // Shift Right Algebraic Word Immediate
  SRADIX = 413 << 2,  // Shift Right Algebraic Double Word Immediate
  EXTSH = 922 << 1,   // Extend Sign Halfword
  EXTSB = 954 << 1,   // Extend Sign Byte
  ICBI = 982 << 1,    // Instruction Cache Block Invalidate
  EXTSW = 986 << 1    // Extend Sign Word
};

// Some use Bits 10-1 and other only 5-1 for the opcode
enum OpcodeExt4 {
  // Bits 5-1
  FDIV = 18 << 1,   // Floating Divide
  FSUB = 20 << 1,   // Floating Subtract
  FADD = 21 << 1,   // Floating Add
  FSQRT = 22 << 1,  // Floating Square Root
  FSEL = 23 << 1,   // Floating Select
  FMUL = 25 << 1,   // Floating Multiply
  FMSUB = 28 << 1,  // Floating Multiply-Subtract
  FMADD = 29 << 1,  // Floating Multiply-Add

  // Bits 10-1
  FCMPU = 0 << 1,     // Floating Compare Unordered
  FRSP = 12 << 1,     // Floating-Point Rounding
  FCTIW = 14 << 1,    // Floating Convert to Integer Word X-form
  FCTIWZ = 15 << 1,   // Floating Convert to Integer Word with Round to Zero
  FNEG = 40 << 1,     // Floating Negate
  MCRFS = 64 << 1,    // Move to Condition Register from FPSCR
  FMR = 72 << 1,      // Floating Move Register
  MTFSFI = 134 << 1,  // Move to FPSCR Field Immediate
  FABS = 264 << 1,    // Floating Absolute Value
280 281 282
  FRIN = 392 << 1,    // Floating Round to Integer Nearest
  FRIZ = 424 << 1,    // Floating Round to Integer Toward Zero
  FRIP = 456 << 1,    // Floating Round to Integer Plus
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  FRIM = 488 << 1,    // Floating Round to Integer Minus
  MFFS = 583 << 1,    // move from FPSCR x-form
  MTFSF = 711 << 1,   // move to FPSCR fields XFL-form
  FCFID = 846 << 1,   // Floating convert from integer doubleword
  FCTID = 814 << 1,   // Floating convert from integer doubleword
  FCTIDZ = 815 << 1   // Floating convert from integer doubleword
};

enum OpcodeExt5 {
  // Bits 4-2
  RLDICL = 0 << 1,  // Rotate Left Double Word Immediate then Clear Left
  RLDICR = 2 << 1,  // Rotate Left Double Word Immediate then Clear Right
  RLDIC = 4 << 1,   // Rotate Left Double Word Immediate then Clear
  RLDIMI = 6 << 1,  // Rotate Left Double Word Immediate then Mask Insert
  // Bits 4-1
  RLDCL = 8 << 1,  // Rotate Left Double Word then Clear Left
  RLDCR = 9 << 1   // Rotate Left Double Word then Clear Right
};

// Instruction encoding bits and masks.
enum {
  // Instruction encoding bit
  B1 = 1 << 1,
  B4 = 1 << 4,
  B5 = 1 << 5,
  B7 = 1 << 7,
  B8 = 1 << 8,
  B9 = 1 << 9,
  B12 = 1 << 12,
  B18 = 1 << 18,
  B19 = 1 << 19,
  B20 = 1 << 20,
  B22 = 1 << 22,
  B23 = 1 << 23,
  B24 = 1 << 24,
  B25 = 1 << 25,
  B26 = 1 << 26,
  B27 = 1 << 27,
  B28 = 1 << 28,
  B6 = 1 << 6,
  B10 = 1 << 10,
  B11 = 1 << 11,
  B16 = 1 << 16,
  B17 = 1 << 17,
  B21 = 1 << 21,

  // Instruction bit masks
  kCondMask = 0x1F << 21,
  kOff12Mask = (1 << 12) - 1,
  kImm24Mask = (1 << 24) - 1,
  kOff16Mask = (1 << 16) - 1,
  kImm16Mask = (1 << 16) - 1,
  kImm26Mask = (1 << 26) - 1,
  kBOfieldMask = 0x1f << 21,
  kOpcodeMask = 0x3f << 26,
  kExt1OpcodeMask = 0x3ff << 1,
339 340
  kExt2OpcodeMask = 0x3ff << 1,
  kExt2OpcodeVariant2Mask = 0x1ff << 2,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
  kExt5OpcodeMask = 0x3 << 2,
  kBOMask = 0x1f << 21,
  kBIMask = 0x1F << 16,
  kBDMask = 0x14 << 2,
  kAAMask = 0x01 << 1,
  kLKMask = 0x01,
  kRCMask = 0x01,
  kTOMask = 0x1f << 21
};

// -----------------------------------------------------------------------------
// Addressing modes and instruction variants.

// Overflow Exception
enum OEBit {
  SetOE = 1 << 10,   // Set overflow exception
  LeaveOE = 0 << 10  // No overflow exception
};

// Record bit
enum RCBit {   // Bit 0
  SetRC = 1,   // LT,GT,EQ,SO
  LeaveRC = 0  // None
};

// Link bit
enum LKBit {   // Bit 0
  SetLK = 1,   // Load effective address of next instruction
  LeaveLK = 0  // No action
};

enum BOfield {        // Bits 25-21
  DCBNZF = 0 << 21,   // Decrement CTR; branch if CTR != 0 and condition false
  DCBEZF = 2 << 21,   // Decrement CTR; branch if CTR == 0 and condition false
  BF = 4 << 21,       // Branch if condition false
  DCBNZT = 8 << 21,   // Decrement CTR; branch if CTR != 0 and condition true
  DCBEZT = 10 << 21,  // Decrement CTR; branch if CTR == 0 and condition true
  BT = 12 << 21,      // Branch if condition true
  DCBNZ = 16 << 21,   // Decrement CTR; branch if CTR != 0
  DCBEZ = 18 << 21,   // Decrement CTR; branch if CTR == 0
  BA = 20 << 21       // Branch always
};

#if V8_OS_AIX
#undef CR_LT
#undef CR_GT
#undef CR_EQ
#undef CR_SO
#endif

enum CRBit { CR_LT = 0, CR_GT = 1, CR_EQ = 2, CR_SO = 3, CR_FU = 3 };

#define CRWIDTH 4

// -----------------------------------------------------------------------------
// Supervisor Call (svc) specific support.

// Special Software Interrupt codes when used in the presence of the PPC
// simulator.
// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
enum SoftwareInterruptCodes {
  // transition to C code
  kCallRtRedirected = 0x10,
  // break point
  kBreakpoint = 0x821008,  // bits23-0 of 0x7d821008 = twge r2, r2
  // stop
408
  kStopCode = 1 << 23
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
};
const uint32_t kStopCodeMask = kStopCode - 1;
const uint32_t kMaxStopCode = kStopCode - 1;
const int32_t kDefaultStopCode = -1;

// FP rounding modes.
enum FPRoundingMode {
  RN = 0,  // Round to Nearest.
  RZ = 1,  // Round towards zero.
  RP = 2,  // Round towards Plus Infinity.
  RM = 3,  // Round towards Minus Infinity.

  // Aliases.
  kRoundToNearest = RN,
  kRoundToZero = RZ,
  kRoundToPlusInf = RP,
  kRoundToMinusInf = RM
};

const uint32_t kFPRoundingModeMask = 3;

enum CheckForInexactConversion {
  kCheckForInexactConversion,
  kDontCheckForInexactConversion
};

// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-arm.cc, as they use named registers
// and other constants.


// add(sp, sp, 4) instruction (aka Pop())
extern const Instr kPopInstruction;

// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
// register r is not encoded.
extern const Instr kPushRegPattern;

// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
// register r is not encoded.
extern const Instr kPopRegPattern;

// use TWI to indicate redirection call for simulation mode
const Instr rtCallRedirInstr = TWI;

// -----------------------------------------------------------------------------
// Instruction abstraction.

// The class Instruction enables access to individual fields defined in the PPC
// architecture instruction set encoding.
// Note that the Assembler uses typedef int32_t Instr.
//
// Example: Test whether the instruction at ptr does set the condition code
// bits.
//
// bool InstructionSetsConditionCodes(byte* ptr) {
//   Instruction* instr = Instruction::At(ptr);
//   int type = instr->TypeValue();
//   return ((type == 0) || (type == 1)) && instr->HasS();
// }
//
class Instruction {
 public:
  enum { kInstrSize = 4, kInstrSizeLog2 = 2, kPCReadOffset = 8 };

// Helper macro to define static accessors.
// We use the cast to char* trick to bypass the strict anti-aliasing rules.
#define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
  static inline return_type Name(Instr instr) {          \
    char* temp = reinterpret_cast<char*>(&instr);        \
    return reinterpret_cast<Instruction*>(temp)->Name(); \
  }

#define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)

  // Get the raw instruction bits.
  inline Instr InstructionBits() const {
    return *reinterpret_cast<const Instr*>(this);
  }

  // Set the raw instruction bits to value.
  inline void SetInstructionBits(Instr value) {
    *reinterpret_cast<Instr*>(this) = value;
  }

  // Read one particular bit out of the instruction bits.
  inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }

  // Read a bit field's value out of the instruction bits.
  inline int Bits(int hi, int lo) const {
    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
  }

  // Read a bit field out of the instruction bits.
  inline int BitField(int hi, int lo) const {
    return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
  }

  // Static support.

  // Read one particular bit out of the instruction bits.
  static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; }

  // Read the value of a bit field out of the instruction bits.
  static inline int Bits(Instr instr, int hi, int lo) {
    return (instr >> lo) & ((2 << (hi - lo)) - 1);
  }


  // Read a bit field out of the instruction bits.
  static inline int BitField(Instr instr, int hi, int lo) {
    return instr & (((2 << (hi - lo)) - 1) << lo);
  }

  inline int RSValue() const { return Bits(25, 21); }
  inline int RTValue() const { return Bits(25, 21); }
  inline int RAValue() const { return Bits(20, 16); }
  DECLARE_STATIC_ACCESSOR(RAValue);
  inline int RBValue() const { return Bits(15, 11); }
  DECLARE_STATIC_ACCESSOR(RBValue);
  inline int RCValue() const { return Bits(10, 6); }
  DECLARE_STATIC_ACCESSOR(RCValue);

  inline int OpcodeValue() const { return static_cast<Opcode>(Bits(31, 26)); }
  inline Opcode OpcodeField() const {
    return static_cast<Opcode>(BitField(24, 21));
  }

  // Fields used in Software interrupt instructions
  inline SoftwareInterruptCodes SvcValue() const {
    return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
  }

  // Instructions are read of out a code stream. The only way to get a
  // reference to an instruction is to convert a pointer. There is no way
  // to allocate or create instances of class Instruction.
  // Use the At(pc) function to create references to Instruction.
  static Instruction* At(byte* pc) {
    return reinterpret_cast<Instruction*>(pc);
  }


 private:
  // We need to prevent the creation of instances of class Instruction.
  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};


// Helper functions for converting between register numbers and names.
class Registers {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int reg;
    const char* name;
  };

 private:
  static const char* names_[kNumRegisters];
  static const RegisterAlias aliases_[];
};

// Helper functions for converting between FP register numbers and names.
class FPRegisters {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

 private:
  static const char* names_[kNumFPRegisters];
};
}
}  // namespace v8::internal

#endif  // V8_PPC_CONSTANTS_PPC_H_