builtins-ppc.cc 120 KB
Newer Older
1 2 3 4 5 6
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_PPC

7
#include "src/api/api-arguments.h"
8
#include "src/codegen/code-factory.h"
9
#include "src/debug/debug.h"
10
#include "src/deoptimizer/deoptimizer.h"
11 12
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
13
#include "src/logging/counters.h"
14
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
15 16
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/register-configuration.h"
17
#include "src/heap/heap-inl.h"
18
#include "src/objects/cell.h"
19
#include "src/objects/foreign.h"
20
#include "src/objects/heap-number.h"
21
#include "src/objects/js-generator.h"
22
#include "src/objects/smi.h"
23
#include "src/runtime/runtime.h"
24
#include "src/wasm/wasm-objects.h"
25 26 27 28 29 30

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

31
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
32
  __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
33 34
  __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
          RelocInfo::CODE_TARGET);
35 36
}

37
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
38 39 40 41 42 43 44 45 46 47
  // ----------- S t a t e -------------
  //  -- r3     : number of arguments
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  if (FLAG_debug_code) {
    // Initial map for the builtin InternalArray functions should be maps.
    __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
    __ TestIfSmi(r5, r0);
48 49
    __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction,
              cr0);
50
    __ CompareObjectType(r5, r6, r7, MAP_TYPE);
51
    __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
52 53 54 55
  }

  // Run the native code for the InternalArray function called as a normal
  // function.
56 57
  __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
          RelocInfo::CODE_TARGET);
58 59
}

60 61 62 63 64 65 66 67 68 69
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
                                           Runtime::FunctionId function_id) {
  // ----------- S t a t e -------------
  //  -- r4 : target function (preserved for callee)
  //  -- r6 : new target (preserved for callee)
  // -----------------------------------
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    // Push a copy of the target function and the new target.
    // Push function as parameter to the runtime call.
70
    __ Push(r4, r6, r4);
71 72 73 74 75

    __ CallRuntime(function_id, 1);
    __ mr(r5, r3);

    // Restore target function and new target.
76
    __ Pop(r4, r6);
77
  }
78
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
79
  __ JumpCodeObject(r5);
80 81
}

82 83
namespace {

84 85 86 87 88 89 90 91 92 93 94 95
void LoadRealStackLimit(MacroAssembler* masm, Register destination) {
  DCHECK(masm->root_array_available());
  Isolate* isolate = masm->isolate();
  ExternalReference limit = ExternalReference::address_of_real_jslimit(isolate);
  DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit));

  intptr_t offset =
      TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit);
  CHECK(is_int32(offset));
  __ LoadP(destination, MemOperand(kRootRegister, offset));
}

96 97 98 99 100
void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
                                 Register scratch, Label* stack_overflow) {
  // Check the stack for overflow. We are not trying to catch
  // interruptions (e.g. debug break and preemption) here, so the "real stack
  // limit" is checked.
101
  LoadRealStackLimit(masm, scratch);
102 103 104 105 106 107 108 109 110
  // Make scratch the space we have left. The stack might already be overflowed
  // here which will cause scratch to become negative.
  __ sub(scratch, sp, scratch);
  // Check if the arguments will overflow the stack.
  __ ShiftLeftImm(r0, num_args, Operand(kPointerSizeLog2));
  __ cmp(scratch, r0);
  __ ble(stack_overflow);  // Signed comparison.
}

111
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
112 113 114
  // ----------- S t a t e -------------
  //  -- r3     : number of arguments
  //  -- r4     : constructor function
115
  //  -- r6     : new target
116
  //  -- cp     : context
117 118 119 120
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

121 122
  Register scratch = r5;

123 124 125
  Label stack_overflow;

  Generate_StackOverflowCheck(masm, r3, r8, &stack_overflow);
126 127
  // Enter a construct frame.
  {
128
    FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
129

130
    // Preserve the incoming parameters on the stack.
131

132 133 134 135
    __ SmiTag(r3);
    __ Push(cp, r3);
    __ SmiUntag(r3, SetRC);
    // The receiver for the builtin/api call.
136
    __ PushRoot(RootIndex::kTheHoleValue);
137
    // Set up pointer to last argument.
138
    __ addi(r7, fp, Operand(StandardFrameConstants::kCallerSPOffset));
139 140

    // Copy arguments and receiver to the expression stack.
141

142
    Label loop, no_args;
143 144 145 146 147 148 149 150 151 152
    // ----------- S t a t e -------------
    //  --                 r3: number of arguments (untagged)
    //  --                 r4: constructor function
    //  --                 r6: new target
    //  --                 r7: pointer to last argument
    //  --                 cr0: condition indicating whether r3 is zero
    //  -- sp[0*kPointerSize]: the hole (receiver)
    //  -- sp[1*kPointerSize]: number of arguments (tagged)
    //  -- sp[2*kPointerSize]: context
    // -----------------------------------
153
    __ beq(&no_args, cr0);
154 155
    __ ShiftLeftImm(scratch, r3, Operand(kPointerSizeLog2));
    __ sub(sp, sp, scratch);
156 157
    __ mtctr(r3);
    __ bind(&loop);
158 159 160
    __ subi(scratch, scratch, Operand(kPointerSize));
    __ LoadPX(r0, MemOperand(r7, scratch));
    __ StorePX(r0, MemOperand(sp, scratch));
161 162 163 164
    __ bdnz(&loop);
    __ bind(&no_args);

    // Call the function.
165
    // r3: number of arguments (untagged)
166
    // r4: constructor function
167
    // r6: new target
168 169 170
    {
      ConstantPoolUnavailableScope constant_pool_unavailable(masm);
      ParameterCount actual(r3);
171
      __ InvokeFunction(r4, r6, actual, CALL_FUNCTION);
172
    }
173 174

    // Restore context from the frame.
175
    __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
176 177
    // Restore smi-tagged arguments count from the frame.
    __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
178 179 180

    // Leave construct frame.
  }
181 182
  // Remove caller arguments from the stack and return.
  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
183

184 185 186 187
  __ SmiToPtrArrayOffset(r4, r4);
  __ add(sp, sp, r4);
  __ addi(sp, sp, Operand(kPointerSize));
  __ blr();
188

189 190 191 192 193 194
  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ bkpt(0);  // Unreachable code.
  }
195 196
}

197 198
}  // namespace

199
// The construct stub for ES5 constructor functions and ES6 class constructors.
200
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  // ----------- S t a t e -------------
  //  --      r3: number of arguments (untagged)
  //  --      r4: constructor function
  //  --      r6: new target
  //  --      cp: context
  //  --      lr: return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  // Enter a construct frame.
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
    Label post_instantiation_deopt_entry, not_create_implicit_receiver;

    // Preserve the incoming parameters on the stack.
    __ SmiTag(r3);
217
    __ Push(cp, r3, r4);
218
    __ PushRoot(RootIndex::kUndefinedValue);
219
    __ Push(r6);
220 221 222

    // ----------- S t a t e -------------
    //  --        sp[0*kPointerSize]: new target
223 224 225 226
    //  --        sp[1*kPointerSize]: padding
    //  -- r4 and sp[2*kPointerSize]: constructor function
    //  --        sp[3*kPointerSize]: number of arguments (tagged)
    //  --        sp[4*kPointerSize]: context
227 228 229
    // -----------------------------------

    __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
230
    __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset));
231 232 233
    __ DecodeField<SharedFunctionInfo::FunctionKindBits>(r7);
    __ JumpIfIsInRange(r7, kDefaultDerivedConstructor, kDerivedConstructor,
                       &not_create_implicit_receiver);
234 235 236 237

    // If not derived class constructor: Allocate the new receiver object.
    __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
                        r7, r8);
238
    __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
239
            RelocInfo::CODE_TARGET);
240 241 242 243
    __ b(&post_instantiation_deopt_entry);

    // Else: use TheHoleValue as receiver for constructor call
    __ bind(&not_create_implicit_receiver);
244
    __ LoadRoot(r3, RootIndex::kTheHoleValue);
245 246

    // ----------- S t a t e -------------
247
    //  --                          r3: receiver
248 249 250 251 252
    //  -- Slot 4 / sp[0*kPointerSize]: new target
    //  -- Slot 3 / sp[1*kPointerSize]: padding
    //  -- Slot 2 / sp[2*kPointerSize]: constructor function
    //  -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
    //  -- Slot 0 / sp[4*kPointerSize]: context
253
    // -----------------------------------
254 255 256 257
    // Deoptimizer enters here.
    masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
        masm->pc_offset());
    __ bind(&post_instantiation_deopt_entry);
258

259 260 261 262 263
    // Restore new target.
    __ Pop(r6);
    // Push the allocated receiver to the stack. We need two copies
    // because we may have to return the original one and the calling
    // conventions dictate that the called function pops the receiver.
264 265
    __ Push(r3, r3);

266 267 268 269
    // ----------- S t a t e -------------
    //  --                 r6: new target
    //  -- sp[0*kPointerSize]: implicit receiver
    //  -- sp[1*kPointerSize]: implicit receiver
270 271 272 273
    //  -- sp[2*kPointerSize]: padding
    //  -- sp[3*kPointerSize]: constructor function
    //  -- sp[4*kPointerSize]: number of arguments (tagged)
    //  -- sp[5*kPointerSize]: context
274 275 276 277
    // -----------------------------------

    // Restore constructor function and argument count.
    __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
278
    __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
279
    __ SmiUntag(r3);
280

281 282 283
    // Set up pointer to last argument.
    __ addi(r7, fp, Operand(StandardFrameConstants::kCallerSPOffset));

284 285 286 287 288 289 290 291 292 293 294 295 296
    Label enough_stack_space, stack_overflow;
    Generate_StackOverflowCheck(masm, r3, r8, &stack_overflow);
    __ b(&enough_stack_space);

    __ bind(&stack_overflow);
    // Restore the context from the frame.
    __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
    __ CallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable code.
    __ bkpt(0);

    __ bind(&enough_stack_space);

297 298 299 300 301 302 303 304 305
    // Copy arguments and receiver to the expression stack.
    Label loop, no_args;
    // ----------- S t a t e -------------
    //  --                        r3: number of arguments (untagged)
    //  --                        r6: new target
    //  --                        r7: pointer to last argument
    //  --                        cr0: condition indicating whether r3 is zero
    //  --        sp[0*kPointerSize]: implicit receiver
    //  --        sp[1*kPointerSize]: implicit receiver
306 307 308 309
    //  --        sp[2*kPointerSize]: padding
    //  -- r4 and sp[3*kPointerSize]: constructor function
    //  --        sp[4*kPointerSize]: number of arguments (tagged)
    //  --        sp[5*kPointerSize]: context
310
    // -----------------------------------
311 312
    __ cmpi(r3, Operand::Zero());
    __ beq(&no_args);
313 314
    __ ShiftLeftImm(r9, r3, Operand(kPointerSizeLog2));
    __ sub(sp, sp, r9);
315 316
    __ mtctr(r3);
    __ bind(&loop);
317 318 319
    __ subi(r9, r9, Operand(kPointerSize));
    __ LoadPX(r0, MemOperand(r7, r9));
    __ StorePX(r0, MemOperand(sp, r9));
320 321
    __ bdnz(&loop);
    __ bind(&no_args);
322

323 324 325 326
    // Call the function.
    {
      ConstantPoolUnavailableScope constant_pool_unavailable(masm);
      ParameterCount actual(r3);
327
      __ InvokeFunction(r4, r6, actual, CALL_FUNCTION);
328 329 330 331 332
    }

    // ----------- S t a t e -------------
    //  --                 r0: constructor result
    //  -- sp[0*kPointerSize]: implicit receiver
333 334 335 336
    //  -- sp[1*kPointerSize]: padding
    //  -- sp[2*kPointerSize]: constructor function
    //  -- sp[3*kPointerSize]: number of arguments
    //  -- sp[4*kPointerSize]: context
337 338 339 340 341 342 343 344 345 346 347 348
    // -----------------------------------

    // Store offset of return address for deoptimizer.
    masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
        masm->pc_offset());

    // Restore the context from the frame.
    __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));

    // If the result is an object (in the ECMA sense), we should get rid
    // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    // on page 74.
349
    Label use_receiver, do_throw, leave_frame;
350 351

    // If the result is undefined, we jump out to using the implicit receiver.
352
    __ JumpIfRoot(r3, RootIndex::kUndefinedValue, &use_receiver);
353 354 355 356 357

    // Otherwise we do a smi check and fall through to check if the return value
    // is a valid receiver.

    // If the result is a smi, it is *not* an object in the ECMA sense.
358
    __ JumpIfSmi(r3, &use_receiver);
359 360 361 362 363 364

    // If the type of the result (stored in its map) is less than
    // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
    STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
    __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE);
    __ bge(&leave_frame);
365
    __ b(&use_receiver);
366 367

    __ bind(&do_throw);
368
    __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
369 370 371 372 373

    // Throw away the result of the constructor invocation and use the
    // on-stack receiver as the result.
    __ bind(&use_receiver);
    __ LoadP(r3, MemOperand(sp));
374
    __ JumpIfRoot(r3, RootIndex::kTheHoleValue, &do_throw);
375 376 377 378 379

    __ bind(&leave_frame);
    // Restore smi-tagged arguments count from the frame.
    __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
    // Leave construct frame.
380
  }
381 382 383 384 385 386 387 388

  // Remove caller arguments from the stack and return.
  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);

  __ SmiToPtrArrayOffset(r4, r4);
  __ add(sp, sp, r4);
  __ addi(sp, sp, Operand(kPointerSize));
  __ blr();
389 390
}

391
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
392
  Generate_JSBuiltinsConstructStubHelper(masm);
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406
static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
                                          Register sfi_data,
                                          Register scratch1) {
  Label done;

  __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
  __ bne(&done);
  __ LoadP(sfi_data,
           FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
  __ bind(&done);
}

407 408 409 410 411 412 413
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the value to pass to the generator
  //  -- r4 : the JSGeneratorObject to resume
  //  -- lr : return address
  // -----------------------------------
414
  __ AssertGeneratorObject(r4);
415 416

  // Store input value into generator object.
417 418 419 420
  __ StoreP(r3, FieldMemOperand(r4, JSGeneratorObject::kInputOrDebugPosOffset),
            r0);
  __ RecordWriteField(r4, JSGeneratorObject::kInputOrDebugPosOffset, r3, r6,
                      kLRHasNotBeenSaved, kDontSaveFPRegs);
421 422 423

  // Load suspended function and context.
  __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
424
  __ LoadP(cp, FieldMemOperand(r7, JSFunction::kContextOffset));
425 426

  // Flood function if we are stepping.
427 428
  Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
  Label stepping_prepared;
429
  Register scratch = r8;
430 431
  ExternalReference debug_hook =
      ExternalReference::debug_hook_on_function_call_address(masm->isolate());
432 433 434 435
  __ Move(scratch, debug_hook);
  __ LoadByte(scratch, MemOperand(scratch), r0);
  __ extsb(scratch, scratch);
  __ CmpSmiLiteral(scratch, Smi::zero(), r0);
436
  __ bne(&prepare_step_in_if_stepping);
437 438 439 440 441 442

  // Flood function if we need to continue stepping in the suspended generator.

  ExternalReference debug_suspended_generator =
      ExternalReference::debug_suspended_generator_address(masm->isolate());

443 444 445
  __ Move(scratch, debug_suspended_generator);
  __ LoadP(scratch, MemOperand(scratch));
  __ cmp(scratch, r4);
446 447
  __ beq(&prepare_step_in_suspended_generator);
  __ bind(&stepping_prepared);
448

449 450 451
  // Check the stack for overflow. We are not trying to catch interruptions
  // (i.e. debug break and preemption) here, so check the "real stack limit".
  Label stack_overflow;
452 453
  LoadRealStackLimit(masm, scratch);
  __ cmpl(sp, scratch);
454 455
  __ blt(&stack_overflow);

456
  // Push receiver.
457 458
  __ LoadP(scratch, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset));
  __ Push(scratch);
459 460 461 462 463 464 465 466 467

  // ----------- S t a t e -------------
  //  -- r4    : the JSGeneratorObject to resume
  //  -- r7    : generator function
  //  -- cp    : generator context
  //  -- lr    : return address
  //  -- sp[0] : generator receiver
  // -----------------------------------

468
  // Copy the function arguments from the generator object's register file.
469
  __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
470
  __ LoadHalfWord(
471 472 473
      r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset));
  __ LoadP(r5, FieldMemOperand(
                   r4, JSGeneratorObject::kParametersAndRegistersOffset));
474 475
  {
    Label loop, done_loop;
476 477 478 479 480 481 482 483
    __ cmpi(r6, Operand::Zero());
    __ ble(&done_loop);

    // setup r9 to first element address - kPointerSize
    __ addi(r9, r5,
            Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));

    __ mtctr(r6);
484
    __ bind(&loop);
485 486
    __ LoadPU(scratch, MemOperand(r9, kPointerSize));
    __ push(scratch);
487
    __ bdnz(&loop);
488

489 490 491
    __ bind(&done_loop);
  }

492 493
  // Underlying function needs to have bytecode available.
  if (FLAG_debug_code) {
494
    __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
495
    __ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kFunctionDataOffset));
496
    GetSharedFunctionInfoBytecode(masm, r6, r3);
497
    __ CompareObjectType(r6, r6, r6, BYTECODE_ARRAY_TYPE);
498
    __ Assert(eq, AbortReason::kMissingBytecodeArray);
499
  }
500

501
  // Resume (Ignition/TurboFan) generator object.
502
  {
503 504 505 506 507
    // We abuse new.target both to indicate that this is a resume call and to
    // pass in the generator object.  In ordinary calls, new.target is always
    // undefined because generator functions are non-constructable.
    __ mr(r6, r4);
    __ mr(r4, r7);
508 509
    static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
    __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset));
510
    __ JumpCodeObject(r5);
511 512
  }

513 514 515
  __ bind(&prepare_step_in_if_stepping);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
516
    __ Push(r4, r7);
517
    // Push hole as receiver since we do not use it for stepping.
518
    __ PushRoot(RootIndex::kTheHoleValue);
519
    __ CallRuntime(Runtime::kDebugOnFunctionCall);
520
    __ Pop(r4);
521 522 523 524 525 526 527
    __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
  }
  __ b(&stepping_prepared);

  __ bind(&prepare_step_in_suspended_generator);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
528
    __ Push(r4);
529
    __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
530
    __ Pop(r4);
531 532 533
    __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
  }
  __ b(&stepping_prepared);
534 535 536 537 538 539 540

  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ bkpt(0);  // This should be unreachable.
  }
541
}
542

543 544 545
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
  FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
  __ push(r4);
546
  __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
547 548
}

549 550 551
namespace {

// Called with the native C calling convention. The corresponding function
552
// signature is either:
553
//
554 555 556 557 558 559
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, Address new_target, Address target,
//       Address receiver, intptr_t argc, Address** args)>;
// or
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, MicrotaskQueue* microtask_queue)>;
560 561
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
                             Builtins::Name entry_trampoline) {
562 563 564 565 566 567 568 569 570 571
  // The register state is either:
  //   r3: root_register_value
  //   r4: code entry
  //   r5: function
  //   r6: receiver
  //   r7: argc
  //   r8: argv
  // or
  //   r3: root_register_value
  //   r4: microtask_queue
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

  Label invoke, handler_entry, exit;

  {
    NoRootArrayScope no_root_array(masm);

    // PPC LINUX ABI:
    // preserve LR in pre-reserved slot in caller's frame
    __ mflr(r0);
    __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));

    // Save callee saved registers on the stack.
    __ MultiPush(kCalleeSaved);

    // Save callee-saved double registers.
    __ MultiPushDoubles(kCalleeSavedDoubles);
    // Set up the reserved register for 0.0.
    __ LoadDoubleLiteral(kDoubleRegZero, Double(0.0), r0);

    // Initialize the root register.
592 593
    // C calling convention. The first argument is passed in r3.
    __ mr(kRootRegister, r3);
594 595 596
  }

  // Push a frame with special values setup to mark it as an entry frame.
597 598 599 600 601
  // r4: code entry
  // r5: function
  // r6: receiver
  // r7: argc
  // r8: argv
602 603 604 605 606 607 608 609 610 611
  __ li(r0, Operand(-1));  // Push a bad frame pointer to fail if it is used.
  __ push(r0);
  if (FLAG_enable_embedded_constant_pool) {
    __ li(kConstantPoolRegister, Operand::Zero());
    __ push(kConstantPoolRegister);
  }
  __ mov(r0, Operand(StackFrame::TypeToMarker(type)));
  __ push(r0);
  __ push(r0);
  // Save copies of the top frame descriptor on the stack.
612 613 614
  __ Move(r3, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                        masm->isolate()));
  __ LoadP(r0, MemOperand(r3));
615 616
  __ push(r0);

617
  Register scratch = r9;
618 619 620 621 622 623 624 625
  // Set up frame pointer for the frame to be pushed.
  __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));

  // If this is the outermost JS call, set js_entry_sp value.
  Label non_outermost_js;
  ExternalReference js_entry_sp =
      ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress,
                                masm->isolate());
626
  __ Move(r3, js_entry_sp);
627 628
  __ LoadP(scratch, MemOperand(r3));
  __ cmpi(scratch, Operand::Zero());
629
  __ bne(&non_outermost_js);
630
  __ StoreP(fp, MemOperand(r3));
631
  __ mov(scratch, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
632 633 634
  Label cont;
  __ b(&cont);
  __ bind(&non_outermost_js);
635
  __ mov(scratch, Operand(StackFrame::INNER_JSENTRY_FRAME));
636
  __ bind(&cont);
637
  __ push(scratch);  // frame-type
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

  // Jump to a faked try block that does the invoke, with a faked catch
  // block that sets the pending exception.
  __ b(&invoke);

  // Block literal pool emission whilst taking the position of the handler
  // entry. This avoids making the assumption that literal pools are always
  // emitted after an instruction is emitted, rather than before.
  {
    ConstantPoolUnavailableScope constant_pool_unavailable(masm);
    __ bind(&handler_entry);

    // Store the current pc as the handler offset. It's used later to create the
    // handler table.
    masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());

    // Caught exception: Store result (exception) in the pending exception
    // field in the JSEnv and return a failure sentinel.  Coming in here the
    // fp will be invalid because the PushStackHandler below sets it to 0 to
    // signal the existence of the JSEntry frame.
658 659 660
    __ Move(scratch,
            ExternalReference::Create(
                IsolateAddressId::kPendingExceptionAddress, masm->isolate()));
661 662
  }

663
  __ StoreP(r3, MemOperand(scratch));
664 665 666 667 668
  __ LoadRoot(r3, RootIndex::kException);
  __ b(&exit);

  // Invoke: Link this frame into the handler chain.
  __ bind(&invoke);
669
  // Must preserve r4-r8.
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
  __ PushStackHandler();
  // If an exception not caught by another handler occurs, this handler
  // returns control to the code after the b(&invoke) above, which
  // restores all kCalleeSaved registers (including cp and fp) to their
  // saved values before returning a failure to C.

  // Invoke the function by calling through JS entry trampoline builtin.
  // Notice that we cannot store a reference to the trampoline code directly in
  // this stub, because runtime stubs are not traversed when doing GC.

  // Invoke the function by calling through JS entry trampoline builtin and
  // pop the faked function when we return.
  Handle<Code> trampoline_code =
      masm->isolate()->builtins()->builtin_handle(entry_trampoline);
  __ Call(trampoline_code, RelocInfo::CODE_TARGET);

  // Unlink this frame from the handler chain.
  __ PopStackHandler();

  __ bind(&exit);  // r3 holds result
  // Check if the current stack frame is marked as the outermost JS frame.
  Label non_outermost_js_2;
  __ pop(r8);
  __ cmpi(r8, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
  __ bne(&non_outermost_js_2);
695
  __ mov(scratch, Operand::Zero());
696
  __ Move(r8, js_entry_sp);
697
  __ StoreP(scratch, MemOperand(r8));
698 699 700 701
  __ bind(&non_outermost_js_2);

  // Restore the top frame descriptors from the stack.
  __ pop(r6);
702 703 704
  __ Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                             masm->isolate()));
  __ StoreP(r6, MemOperand(scratch));
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

  // Reset the stack to the callee saved registers.
  __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));

  // Restore callee-saved double registers.
  __ MultiPopDoubles(kCalleeSavedDoubles);

  // Restore callee-saved registers.
  __ MultiPop(kCalleeSaved);

  // Return
  __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
  __ mtlr(r0);
  __ blr();
}

}  // namespace

void Builtins::Generate_JSEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::ENTRY,
                          Builtins::kJSEntryTrampoline);
}

void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
                          Builtins::kJSConstructEntryTrampoline);
}

void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
734 735
  Generate_JSEntryVariant(masm, StackFrame::ENTRY,
                          Builtins::kRunMicrotasksTrampoline);
736 737
}

738 739 740
// Clobbers scratch1 and scratch2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
                                        Register scratch1, Register scratch2) {
741 742 743 744
  // Check the stack for overflow. We are not trying to catch
  // interruptions (e.g. debug break and preemption) here, so the "real stack
  // limit" is checked.
  Label okay;
745
  LoadRealStackLimit(masm, scratch1);
746 747 748
  // Make scratch1 the space we have left. The stack might already be overflowed
  // here which will cause scratch1 to become negative.
  __ sub(scratch1, sp, scratch1);
749
  // Check if the arguments will overflow the stack.
750 751
  __ ShiftLeftImm(scratch2, argc, Operand(kPointerSizeLog2));
  __ cmp(scratch1, scratch2);
752 753 754
  __ bgt(&okay);  // Signed comparison.

  // Out of stack space.
755
  __ CallRuntime(Runtime::kThrowStackOverflow);
756 757 758 759

  __ bind(&okay);
}

760 761 762
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  // Called from Generate_JS_Entry
763 764 765 766 767 768
  // r4: new.target
  // r5: function
  // r6: receiver
  // r7: argc
  // r8: argv
  // r0,r3,r9, cp may be clobbered
769 770 771 772 773

  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

774
    // Setup the context (we need to use the caller context from the isolate).
775 776
    ExternalReference context_address = ExternalReference::Create(
        IsolateAddressId::kContextAddress, masm->isolate());
777
    __ Move(cp, context_address);
778
    __ LoadP(cp, MemOperand(cp));
779 780

    // Push the function and the receiver onto the stack.
781
    __ Push(r5, r6);
782

783
    // Check if we have enough stack space to push all arguments.
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
    // Clobbers r3 and r6.
    Generate_CheckStackOverflow(masm, r7, r3, r6);

    // r4: new.target
    // r5: function
    // r7: argc
    // r8: argv
    // r0,r3,r6,r9, cp may be clobbered

    // Setup new.target, argc and function.
    __ mr(r3, r7);
    __ mr(r6, r4);
    __ mr(r4, r5);

    // r3: argc
    // r4: function
    // r6: new.target
    // r8: argv
802

803 804
    // Copy arguments to the stack in a loop.
    // r4: function
805 806
    // r3: argc
    // r8: argv, i.e. points to first arg
807
    Label loop, entry;
808 809
    __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
    __ add(r5, r8, r0);
810 811 812
    // r5 points past last arg.
    __ b(&entry);
    __ bind(&loop);
813 814 815
    __ LoadP(r9, MemOperand(r8));  // read next parameter
    __ addi(r8, r8, Operand(kPointerSize));
    __ LoadP(r0, MemOperand(r9));  // dereference handle
816 817
    __ push(r0);                   // push parameter
    __ bind(&entry);
818
    __ cmp(r8, r5);
819 820
    __ bne(&loop);

821 822 823
    // r3: argc
    // r4: function
    // r6: new.target
824

825 826
    // Initialize all JavaScript callee-saved registers, since they will be seen
    // by the garbage collector as part of handlers.
827
    __ LoadRoot(r7, RootIndex::kUndefinedValue);
828
    __ mr(r8, r7);
829 830 831 832 833
    __ mr(r14, r7);
    __ mr(r15, r7);
    __ mr(r16, r7);
    __ mr(r17, r7);

834 835
    // Invoke the code.
    Handle<Code> builtin = is_construct
836
                               ? BUILTIN_CODE(masm->isolate(), Construct)
837 838 839
                               : masm->isolate()->builtins()->Call();
    __ Call(builtin, RelocInfo::CODE_TARGET);

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
    // Exit the JS frame and remove the parameters (except function), and
    // return.
  }
  __ blr();

  // r3: result
}

void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
}

void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}

856
void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
857 858 859 860 861
  // This expects two C++ function parameters passed by Invoke() in
  // execution.cc.
  //   r3: root_register_value
  //   r4: microtask_queue

862 863 864 865
  __ mr(RunMicrotasksDescriptor::MicrotaskQueueRegister(), r4);
  __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}

866 867 868 869 870
static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
                                                Register optimized_code,
                                                Register closure,
                                                Register scratch1,
                                                Register scratch2) {
871
  // Store code entry in the closure.
872 873 874 875 876 877
  __ StoreP(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset),
            r0);
  __ mr(scratch1, optimized_code);  // Write barrier clobbers scratch1 below.
  __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
                      kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
878 879
}

880 881 882 883 884 885 886 887 888 889
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
  Register args_count = scratch;

  // Get the arguments + receiver count.
  __ LoadP(args_count,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ lwz(args_count,
         FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));

  // Leave the frame (also dropping the register file).
890
  __ LeaveFrame(StackFrame::INTERPRETED);
891 892 893

  __ add(sp, sp, args_count);
}
894

895 896 897 898 899 900 901 902 903 904 905 906
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
                                          Register smi_entry,
                                          OptimizationMarker marker,
                                          Runtime::FunctionId function_id) {
  Label no_match;
  __ CmpSmiLiteral(smi_entry, Smi::FromEnum(marker), r0);
  __ bne(&no_match);
  GenerateTailCallToReturnedCode(masm, function_id);
  __ bind(&no_match);
}

907 908 909
static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
                                      Register optimized_code_entry,
                                      Register scratch) {
910
  // ----------- S t a t e -------------
911 912
  //  -- r6 : new target (preserved for callee if needed, and caller)
  //  -- r4 : target function (preserved for callee if needed, and caller)
913
  // -----------------------------------
914
  DCHECK(!AreAliased(r4, r6, optimized_code_entry, scratch));
915 916 917

  Register closure = r4;

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
  // Check if the optimized code is marked for deopt. If it is, call the
  // runtime to clear it.
  Label found_deoptimized_code;
  __ LoadP(scratch, FieldMemOperand(optimized_code_entry,
                                    Code::kCodeDataContainerOffset));
  __ LoadWordArith(
      scratch,
      FieldMemOperand(scratch, CodeDataContainer::kKindSpecificFlagsOffset));
  __ TestBit(scratch, Code::kMarkedForDeoptimizationBit, r0);
  __ bne(&found_deoptimized_code, cr0);

  // Optimized code is good, get it into the closure and link the closure
  // into the optimized functions list, then tail call the optimized code.
  ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
                                      scratch, r8);
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
  __ LoadCodeObjectEntry(r5, optimized_code_entry);
  __ Jump(r5);
936

937 938 939 940 941
  // Optimized code slot contains deoptimized code, evict it and re-enter
  // the closure's code.
  __ bind(&found_deoptimized_code);
  GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector,
                              Register optimization_marker) {
  // ----------- S t a t e -------------
  //  -- r6 : new target (preserved for callee if needed, and caller)
  //  -- r4 : target function (preserved for callee if needed, and caller)
  //  -- feedback vector (preserved for caller if needed)
  //  -- optimization_marker : a Smi containing a non-zero optimization marker.
  // -----------------------------------
  DCHECK(!AreAliased(feedback_vector, r4, r6, optimization_marker));

  // TODO(v8:8394): The logging of first execution will break if
  // feedback vectors are not allocated. We need to find a different way of
  // logging these events if required.
  TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
                                OptimizationMarker::kLogFirstExecution,
                                Runtime::kFunctionFirstExecution);
  TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
                                OptimizationMarker::kCompileOptimized,
                                Runtime::kCompileOptimized_NotConcurrent);
  TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
                                OptimizationMarker::kCompileOptimizedConcurrent,
                                Runtime::kCompileOptimized_Concurrent);

  // Otherwise, the marker is InOptimizationQueue, so fall through hoping
  // that an interrupt will eventually update the slot with optimized code.
  if (FLAG_debug_code) {
    __ CmpSmiLiteral(optimization_marker,
                     Smi::FromEnum(OptimizationMarker::kInOptimizationQueue),
                     r0);
    __ Assert(eq, AbortReason::kExpectedOptimizationSentinel);
973 974 975
  }
}

976
// Advance the current bytecode offset. This simulates what all bytecode
977 978 979 980 981 982 983
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
                                          Register bytecode_array,
                                          Register bytecode_offset,
                                          Register bytecode, Register scratch1,
                                          Label* if_return) {
984
  Register bytecode_size_table = scratch1;
985
  Register scratch2 = bytecode;
986 987
  DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
                     bytecode));
988 989
  __ Move(bytecode_size_table,
          ExternalReference::bytecode_size_table_address());
990 991

  // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
992
  Label process_bytecode, extra_wide;
993 994
  STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
  STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
995 996 997 998
  STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
  STATIC_ASSERT(3 ==
                static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
  __ cmpi(bytecode, Operand(0x3));
999
  __ bgt(&process_bytecode);
1000 1001
  __ andi(r0, bytecode, Operand(0x1));
  __ bne(&extra_wide, cr0);
1002 1003 1004 1005 1006 1007

  // Load the next bytecode and update table to the wide scaled table.
  __ addi(bytecode_offset, bytecode_offset, Operand(1));
  __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset));
  __ addi(bytecode_size_table, bytecode_size_table,
          Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
1008
  __ b(&process_bytecode);
1009 1010 1011 1012 1013 1014 1015 1016 1017

  __ bind(&extra_wide);
  // Load the next bytecode and update table to the extra wide scaled table.
  __ addi(bytecode_offset, bytecode_offset, Operand(1));
  __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset));
  __ addi(bytecode_size_table, bytecode_size_table,
          Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));

  // Load the size of the current bytecode.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
  __ bind(&process_bytecode);

// Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME)                                           \
  __ cmpi(bytecode,                                                   \
          Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
  __ beq(if_return);
  RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL

  // Otherwise, load the size of the current bytecode and advance the offset.
1029 1030 1031 1032
  __ ShiftLeftImm(scratch2, bytecode, Operand(2));
  __ lwzx(scratch2, MemOperand(bytecode_size_table, scratch2));
  __ add(bytecode_offset, bytecode_offset, scratch2);
}
1033 1034 1035 1036 1037 1038 1039
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.  The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
//   o r4: the JS function object being called.
1040
//   o r6: the incoming new target or generator object
1041 1042 1043 1044 1045 1046
//   o cp: our context
//   o pp: the caller's constant pool pointer (if enabled)
//   o fp: the caller's frame pointer
//   o sp: stack pointer
//   o lr: return address
//
1047 1048
// The function builds an interpreter frame.  See InterpreterFrameConstants in
// frames.h for its layout.
1049
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
1050 1051 1052
  Register closure = r4;
  Register feedback_vector = r5;

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
  // Get the bytecode array from the function object and load it into
  // kInterpreterBytecodeArrayRegister.
  __ LoadP(r3, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
  // Load original bytecode array or the debug copy.
  __ LoadP(kInterpreterBytecodeArrayRegister,
           FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset));
  GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r7);

  // The bytecode array could have been flushed from the shared function info,
  // if so, call into CompileLazy.
  Label compile_lazy;
  __ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg,
                       BYTECODE_ARRAY_TYPE);
  __ bne(&compile_lazy);

1068 1069
  // Load the feedback vector from the closure.
  __ LoadP(feedback_vector,
1070
           FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
1071 1072
  __ LoadP(feedback_vector,
           FieldMemOperand(feedback_vector, Cell::kValueOffset));
1073 1074 1075 1076 1077 1078 1079 1080 1081

  Label push_stack_frame;
  // Check if feedback vector is valid. If valid, check for optimized code
  // and update invocation count. Otherwise, setup the stack frame.
  __ LoadP(r7, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
  __ LoadHalfWord(r7, FieldMemOperand(r7, Map::kInstanceTypeOffset));
  __ cmpi(r7, Operand(FEEDBACK_VECTOR_TYPE));
  __ bne(&push_stack_frame);

1082 1083 1084 1085 1086 1087
  Register optimized_code_entry = r7;

  // Read off the optimized code slot in the feedback vector.
  __ LoadP(optimized_code_entry,
           FieldMemOperand(feedback_vector,
                           FeedbackVector::kOptimizedCodeWeakOrSmiOffset));
1088 1089
  // Check if the optimized code slot is not empty.
  Label optimized_code_slot_not_empty;
1090 1091
  __ CmpSmiLiteral(optimized_code_entry,
                   Smi::FromEnum(OptimizationMarker::kNone), r0);
1092
  __ bne(&optimized_code_slot_not_empty);
1093 1094 1095

  Label not_optimized;
  __ bind(&not_optimized);
1096

1097
  // Increment invocation count for the function.
1098 1099 1100 1101
  __ LoadWord(
      r8,
      FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset),
      r0);
1102
  __ addi(r8, r8, Operand(1));
1103
  __ StoreWord(
1104
      r8,
1105
      FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset),
1106
      r0);
1107

1108 1109 1110
  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done below).
1111 1112 1113

  __ bind(&push_stack_frame);

1114 1115
  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ PushStandardFrame(closure);
1116

1117 1118 1119 1120
  // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
  // 8-bit fields next to each other, so we could just optimize by writing a
  // 16-bit. These static asserts guard our assumption is valid.
  STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
1121
                BytecodeArray::kOsrNestingLevelOffset + kCharSize);
1122 1123 1124 1125
  STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
  __ li(r8, Operand(0));
  __ StoreHalfWord(r8,
                   FieldMemOperand(kInterpreterBytecodeArrayRegister,
1126
                                   BytecodeArray::kOsrNestingLevelOffset),
1127
                   r0);
1128

1129 1130 1131 1132
  // Load initial bytecode offset.
  __ mov(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));

1133
  // Push bytecode array and Smi tagged bytecode array offset.
1134
  __ SmiTag(r3, kInterpreterBytecodeOffsetRegister);
1135
  __ Push(kInterpreterBytecodeArrayRegister, r3);
1136

1137
  // Allocate the local and temporary register file on the stack.
1138
  Label stack_overflow;
1139
  {
1140 1141 1142
    // Load frame size (word) from the BytecodeArray object.
    __ lwz(r5, FieldMemOperand(kInterpreterBytecodeArrayRegister,
                               BytecodeArray::kFrameSizeOffset));
1143 1144

    // Do a stack check to ensure we don't go over the limit.
1145
    __ sub(r8, sp, r5);
1146
    LoadRealStackLimit(masm, r0);
1147
    __ cmpl(r8, r0);
1148
    __ blt(&stack_overflow);
1149 1150 1151

    // If ok, push undefined as the initial value for all register file entries.
    // TODO(rmcilroy): Consider doing more than one push per loop iteration.
1152
    Label loop, no_args;
1153
    __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1154 1155
    __ ShiftRightImm(r5, r5, Operand(kPointerSizeLog2), SetRC);
    __ beq(&no_args, cr0);
1156
    __ mtctr(r5);
1157
    __ bind(&loop);
1158
    __ push(kInterpreterAccumulatorRegister);
1159 1160
    __ bdnz(&loop);
    __ bind(&no_args);
1161 1162
  }

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
  // If the bytecode array has a valid incoming new target or generator object
  // register, initialize it with incoming value which was passed in r6.
  Label no_incoming_new_target_or_generator_register;
  __ LoadWordArith(
      r8, FieldMemOperand(
              kInterpreterBytecodeArrayRegister,
              BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
  __ cmpi(r8, Operand::Zero());
  __ beq(&no_incoming_new_target_or_generator_register);
  __ ShiftLeftImm(r8, r8, Operand(kPointerSizeLog2));
  __ StorePX(r6, MemOperand(fp, r8));
  __ bind(&no_incoming_new_target_or_generator_register);

1176 1177
  // The accumulator is already loaded with undefined.

1178 1179 1180 1181
  // Load the dispatch table into a register and dispatch to the bytecode
  // handler at the current bytecode offset.
  Label do_dispatch;
  __ bind(&do_dispatch);
1182 1183 1184
  __ Move(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1185 1186 1187 1188 1189 1190
  __ lbzx(r6, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
  __ ShiftLeftImm(r6, r6, Operand(kPointerSizeLog2));
  __ LoadPX(kJavaScriptCallCodeStartRegister,
            MemOperand(kInterpreterDispatchTableRegister, r6));
  __ Call(kJavaScriptCallCodeStartRegister);
1191

1192 1193
  masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());

1194 1195 1196
  // Any returns to the entry trampoline are either due to the return bytecode
  // or the interpreter tail calling a builtin and then a dispatch.

1197 1198 1199 1200 1201 1202 1203
  // Get bytecode array and bytecode offset from the stack frame.
  __ LoadP(kInterpreterBytecodeArrayRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ LoadP(kInterpreterBytecodeOffsetRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

1204
  // Either return, or advance to the next bytecode and dispatch.
1205 1206 1207
  Label do_return;
  __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
1208 1209 1210
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, r4, r5,
                                &do_return);
1211
  __ b(&do_dispatch);
1212

1213 1214 1215 1216
  __ bind(&do_return);
  // The return value is in r3.
  LeaveInterpreterFrame(masm, r5);
  __ blr();
1217

1218 1219 1220 1221 1222
  __ bind(&optimized_code_slot_not_empty);
  Label maybe_has_optimized_code;
  // Check if optimized code marker is actually a weak reference to the
  // optimized code.
  __ JumpIfNotSmi(optimized_code_entry, &maybe_has_optimized_code);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
  MaybeOptimizeCode(masm, feedback_vector, optimized_code_entry);
  // Fall through if there's no runnable optimized code.
  __ jmp(&not_optimized);

  __ bind(&maybe_has_optimized_code);
  // Load code entry from the weak reference, if it was cleared, resume
  // execution of unoptimized code.
  __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &not_optimized);
  TailCallOptimizedCodeSlot(masm, optimized_code_entry, r9);

1233 1234
  __ bind(&compile_lazy);
  GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
1235 1236 1237 1238

  __ bind(&stack_overflow);
  __ CallRuntime(Runtime::kThrowStackOverflow);
  __ bkpt(0);  // Should not return.
1239 1240
}

1241 1242
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
                                         Register num_args, Register index,
1243
                                         Register count, Register scratch) {
1244 1245 1246
  Label loop, skip;
  __ cmpi(count, Operand::Zero());
  __ beq(&skip);
1247 1248 1249 1250 1251 1252
  __ addi(index, index, Operand(kPointerSize));  // Bias up for LoadPU
  __ mtctr(count);
  __ bind(&loop);
  __ LoadPU(scratch, MemOperand(index, -kPointerSize));
  __ push(scratch);
  __ bdnz(&loop);
1253
  __ bind(&skip);
1254 1255
}

1256
// static
1257
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
1258
    MacroAssembler* masm, ConvertReceiverMode receiver_mode,
1259
    InterpreterPushArgsMode mode) {
1260
  DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
1261 1262 1263 1264 1265 1266
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r5 : the address of the first argument to be pushed. Subsequent
  //          arguments should be consecutive above this, in the same order as
  //          they are to be pushed onto the stack.
  //  -- r4 : the target to call (can be any Object).
1267
  // -----------------------------------
1268
  Label stack_overflow;
1269 1270 1271 1272

  // Calculate number of arguments (add one for receiver).
  __ addi(r6, r3, Operand(1));

1273 1274 1275 1276
  Generate_StackOverflowCheck(masm, r6, ip, &stack_overflow);

  // Push "undefined" as the receiver arg if we need to.
  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
1277
    __ PushRoot(RootIndex::kUndefinedValue);
1278 1279 1280
    __ mr(r6, r3);  // Argument count is correct.
  }

1281
  // Push the arguments. r5, r6, r7 will be modified.
1282
  Generate_InterpreterPushArgs(masm, r6, r5, r6, r7);
1283

1284 1285 1286 1287 1288
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Pop(r5);                   // Pass the spread in a register
    __ subi(r3, r3, Operand(1));  // Subtract one for spread
  }

1289
  // Call the target.
1290
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1291
    __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
1292
            RelocInfo::CODE_TARGET);
1293
  } else {
1294
    __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
1295 1296
            RelocInfo::CODE_TARGET);
  }
1297 1298 1299 1300 1301 1302 1303

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable Code.
    __ bkpt(0);
  }
1304 1305
}

1306
// static
1307
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1308
    MacroAssembler* masm, InterpreterPushArgsMode mode) {
1309 1310
  // ----------- S t a t e -------------
  // -- r3 : argument count (not including receiver)
1311
  // -- r6 : new target
1312
  // -- r4 : constructor to call
1313 1314
  // -- r5 : allocation site feedback if available, undefined otherwise.
  // -- r7 : address of the first argument
1315
  // -----------------------------------
1316
  Label stack_overflow;
1317

1318
  // Push a slot for the receiver to be constructed.
1319 1320
  __ li(r0, Operand::Zero());
  __ push(r0);
1321

1322 1323 1324 1325
  // Push the arguments (skip if none).
  Label skip;
  __ cmpi(r3, Operand::Zero());
  __ beq(&skip);
1326
  Generate_StackOverflowCheck(masm, r3, ip, &stack_overflow);
1327
  // Push the arguments. r8, r7, r9 will be modified.
1328
  Generate_InterpreterPushArgs(masm, r3, r7, r3, r9);
1329
  __ bind(&skip);
1330 1331 1332 1333 1334 1335
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Pop(r5);                   // Pass the spread in a register
    __ subi(r3, r3, Operand(1));  // Subtract one for spread
  } else {
    __ AssertUndefinedOrAllocationSite(r5, r8);
  }
1336
  if (mode == InterpreterPushArgsMode::kArrayFunction) {
1337 1338
    __ AssertFunction(r4);

1339
    // Tail call to the array construct stub (still in the caller
1340
    // context at this point).
1341 1342
    Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
    __ Jump(code, RelocInfo::CODE_TARGET);
1343
  } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1344
    // Call the constructor with r3, r4, and r6 unmodified.
1345
    __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1346
            RelocInfo::CODE_TARGET);
1347
  } else {
1348
    DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1349
    // Call the constructor with r3, r4, and r6 unmodified.
1350
    __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1351
  }
1352 1353 1354 1355 1356 1357 1358

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable Code.
    __ bkpt(0);
  }
1359 1360
}

1361
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1362 1363
  // Set the return address to the correct point in the interpreter entry
  // trampoline.
1364
  Label builtin_trampoline, trampoline_loaded;
1365
  Smi interpreter_entry_return_pc_offset(
1366
      masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1367
  DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
1368

1369 1370 1371 1372
  // If the SFI function_data is an InterpreterData, the function will have a
  // custom copy of the interpreter entry trampoline for profiling. If so,
  // get the custom trampoline, otherwise grab the entry address of the global
  // trampoline.
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
  __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
  __ LoadP(r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset));
  __ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset));
  __ CompareObjectType(r5, kInterpreterDispatchTableRegister,
                       kInterpreterDispatchTableRegister,
                       INTERPRETER_DATA_TYPE);
  __ bne(&builtin_trampoline);

  __ LoadP(r5,
           FieldMemOperand(r5, InterpreterData::kInterpreterTrampolineOffset));
1383
  __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag));
1384 1385 1386
  __ b(&trampoline_loaded);

  __ bind(&builtin_trampoline);
1387 1388 1389 1390
  __ Move(r5, ExternalReference::
                  address_of_interpreter_entry_trampoline_instruction_start(
                      masm->isolate()));
  __ LoadP(r5, MemOperand(r5));
1391 1392

  __ bind(&trampoline_loaded);
1393
  __ addi(r0, r5, Operand(interpreter_entry_return_pc_offset.value()));
1394
  __ mtlr(r0);
1395

1396
  // Initialize the dispatch table register.
1397 1398 1399
  __ Move(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1400 1401

  // Get the bytecode array pointer from the frame.
1402
  __ LoadP(kInterpreterBytecodeArrayRegister,
1403
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1404 1405 1406 1407

  if (FLAG_debug_code) {
    // Check function data field is actually a BytecodeArray object.
    __ TestIfSmi(kInterpreterBytecodeArrayRegister, r0);
1408 1409 1410
    __ Assert(ne,
              AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
              cr0);
1411 1412
    __ CompareObjectType(kInterpreterBytecodeArrayRegister, r4, no_reg,
                         BYTECODE_ARRAY_TYPE);
1413 1414
    __ Assert(
        eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1415 1416 1417 1418
  }

  // Get the target bytecode offset from the frame.
  __ LoadP(kInterpreterBytecodeOffsetRegister,
1419
           MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1420 1421 1422
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

  // Dispatch to the target bytecode.
1423 1424
  UseScratchRegisterScope temps(masm);
  Register scratch = temps.Acquire();
1425 1426
  __ lbzx(ip, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
1427
  __ ShiftLeftImm(scratch, scratch, Operand(kPointerSizeLog2));
1428
  __ LoadPX(kJavaScriptCallCodeStartRegister,
1429
            MemOperand(kInterpreterDispatchTableRegister, scratch));
1430
  __ Jump(kJavaScriptCallCodeStartRegister);
1431 1432
}

1433
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1434 1435 1436 1437
  // Get bytecode array and bytecode offset from the stack frame.
  __ LoadP(kInterpreterBytecodeArrayRegister,
           MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ LoadP(kInterpreterBytecodeOffsetRegister,
1438
           MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1439 1440
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

1441 1442 1443 1444
  // Load the current bytecode.
  __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));

1445
  // Advance to the next bytecode.
1446 1447 1448 1449
  Label if_return;
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, r4, r5,
                                &if_return);
1450 1451 1452

  // Convert new bytecode offset to a Smi and save in the stackframe.
  __ SmiTag(r5, kInterpreterBytecodeOffsetRegister);
1453 1454 1455 1456
  __ StoreP(r5,
            MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  Generate_InterpreterEnterBytecode(masm);
1457 1458 1459 1460

  // We should never take the if_return path.
  __ bind(&if_return);
  __ Abort(AbortReason::kInvalidBytecodeAdvance);
1461 1462 1463 1464 1465 1466
}

void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
  Generate_InterpreterEnterBytecode(masm);
}

1467 1468 1469 1470 1471 1472 1473 1474 1475
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : argument count (preserved for callee)
  //  -- r4 : new target (preserved for callee)
  //  -- r6 : target function (preserved for callee)
  // -----------------------------------
  Label failed;
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
1476
    // Preserve argument count for later compare.
1477
    __ Move(r7, r3);
1478 1479 1480 1481 1482 1483
    // Push a copy of the target function and the new target.
    // Push function as parameter to the runtime call.
    __ SmiTag(r3);
    __ Push(r3, r4, r6, r4);

    // Copy arguments from caller (stdlib, foreign, heap).
1484 1485 1486 1487
    Label args_done;
    for (int j = 0; j < 4; ++j) {
      Label over;
      if (j < 3) {
1488
        __ cmpi(r7, Operand(j));
1489 1490 1491
        __ bne(&over);
      }
      for (int i = j - 1; i >= 0; --i) {
1492
        __ LoadP(r7, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
1493
                                        i * kPointerSize));
1494
        __ push(r7);
1495 1496
      }
      for (int i = 0; i < 3 - j; ++i) {
1497
        __ PushRoot(RootIndex::kUndefinedValue);
1498 1499 1500 1501 1502
      }
      if (j < 3) {
        __ jmp(&args_done);
        __ bind(&over);
      }
1503
    }
1504 1505
    __ bind(&args_done);

1506 1507 1508 1509
    // Call runtime, on success unwind frame, and parent frame.
    __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
    // A smi 0 is returned on failure, an object on success.
    __ JumpIfSmi(r3, &failed);
1510 1511

    __ Drop(2);
1512 1513
    __ pop(r7);
    __ SmiUntag(r7);
1514
    scope.GenerateLeaveFrame();
1515

1516 1517
    __ addi(r7, r7, Operand(1));
    __ Drop(r7);
1518 1519 1520 1521 1522 1523 1524
    __ Ret();

    __ bind(&failed);
    // Restore target function and new target.
    __ Pop(r3, r4, r6);
    __ SmiUntag(r3);
  }
1525 1526
  // On failure, tail call back to regular js by re-calling the function
  // which has be reset to the compile lazy builtin.
1527 1528
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
  __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset));
1529
  __ JumpCodeObject(r5);
1530
}
1531

1532 1533 1534 1535
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
                                      bool java_script_builtin,
                                      bool with_result) {
1536
  const RegisterConfiguration* config(RegisterConfiguration::Default());
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
  int allocatable_register_count = config->num_allocatable_general_registers();
  if (with_result) {
    // Overwrite the hole inserted by the deoptimizer with the return value from
    // the LAZY deopt point.
    __ StoreP(
        r3, MemOperand(
                sp, config->num_allocatable_general_registers() * kPointerSize +
                        BuiltinContinuationFrameConstants::kFixedFrameSize));
  }
  for (int i = allocatable_register_count - 1; i >= 0; --i) {
    int code = config->GetAllocatableGeneralCode(i);
    __ Pop(Register::from_code(code));
    if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
      __ SmiUntag(Register::from_code(code));
    }
  }
  __ LoadP(
      fp,
      MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1556 1557
  // Load builtin index (stored as a Smi) and use it to get the builtin start
  // address from the builtins table.
1558 1559 1560
  UseScratchRegisterScope temps(masm);
  Register builtin = temps.Acquire();
  __ Pop(builtin);
1561 1562 1563 1564
  __ addi(sp, sp,
          Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
  __ Pop(r0);
  __ mtlr(r0);
1565 1566
  __ LoadEntryFromBuiltinIndex(builtin);
  __ Jump(builtin);
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
}
}  // namespace

void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, false);
}

void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, true);
}

void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, false);
}

void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, true);
}

1588
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1589
  {
1590
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1591
    __ CallRuntime(Runtime::kNotifyDeoptimized);
1592 1593
  }

1594
  DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r3.code());
1595 1596
  __ LoadP(r3, MemOperand(sp, 0 * kPointerSize));
  __ addi(sp, sp, Operand(1 * kPointerSize));
1597 1598 1599
  __ Ret();
}

1600
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
1601
  {
1602
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1603
    __ CallRuntime(Runtime::kCompileForOnStackReplacement);
1604 1605
  }

1606
  // If the code object is null, just return to the caller.
1607
  Label skip;
1608
  __ CmpSmiLiteral(r3, Smi::zero(), r0);
1609 1610 1611 1612 1613
  __ bne(&skip);
  __ Ret();

  __ bind(&skip);

1614
  // Drop the handler frame that is be sitting on top of the actual
1615
  // JavaScript frame. This is the case then OSR is triggered from bytecode.
1616
  __ LeaveFrame(StackFrame::STUB);
1617

1618 1619 1620 1621 1622
  // Load deoptimization data from the code object.
  // <deopt_data> = <code>[#deoptimization_data_offset]
  __ LoadP(r4, FieldMemOperand(r3, Code::kDeoptimizationDataOffset));

  {
1623
    ConstantPoolUnavailableScope constant_pool_unavailable(masm);
1624
    __ addi(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start
1625

1626 1627 1628 1629
    if (FLAG_enable_embedded_constant_pool) {
      __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r3);
    }

1630 1631
    // Load the OSR entrypoint offset from the deoptimization data.
    // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1632 1633 1634
    __ LoadP(r4,
             FieldMemOperand(r4, FixedArray::OffsetOfElementAt(
                                     DeoptimizationData::kOsrPcOffsetIndex)));
1635 1636
    __ SmiUntag(r4);

1637 1638
    // Compute the target address = code start + osr_offset
    __ add(r0, r3, r4);
1639 1640

    // And "return" to the OSR entry point of the function.
1641 1642
    __ mtlr(r0);
    __ blr();
1643 1644 1645
  }
}

1646
// static
1647
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1648 1649 1650 1651 1652 1653
  // ----------- S t a t e -------------
  //  -- r3    : argc
  //  -- sp[0] : argArray
  //  -- sp[4] : thisArg
  //  -- sp[8] : receiver
  // -----------------------------------
1654

1655
  // 1. Load receiver into r4, argArray into r5 (if present), remove all
1656 1657 1658 1659
  // arguments from the stack (including the receiver), and push thisArg (if
  // present) instead.
  {
    Label skip;
1660
    Register arg_size = r8;
1661 1662 1663 1664
    Register new_sp = r6;
    Register scratch = r7;
    __ ShiftLeftImm(arg_size, r3, Operand(kPointerSizeLog2));
    __ add(new_sp, sp, arg_size);
1665
    __ LoadRoot(scratch, RootIndex::kUndefinedValue);
1666
    __ mr(r5, scratch);
1667 1668 1669 1670 1671
    __ LoadP(r4, MemOperand(new_sp, 0));  // receiver
    __ cmpi(arg_size, Operand(kPointerSize));
    __ blt(&skip);
    __ LoadP(scratch, MemOperand(new_sp, 1 * -kPointerSize));  // thisArg
    __ beq(&skip);
1672
    __ LoadP(r5, MemOperand(new_sp, 2 * -kPointerSize));  // argArray
1673 1674 1675 1676
    __ bind(&skip);
    __ mr(sp, new_sp);
    __ StoreP(scratch, MemOperand(sp, 0));
  }
1677

1678
  // ----------- S t a t e -------------
1679
  //  -- r5    : argArray
1680 1681 1682
  //  -- r4    : receiver
  //  -- sp[0] : thisArg
  // -----------------------------------
1683

1684 1685 1686
  // 2. We don't need to check explicitly for callable receiver here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.
1687

1688 1689
  // 3. Tail call with no arguments if argArray is null or undefined.
  Label no_arguments;
1690 1691
  __ JumpIfRoot(r5, RootIndex::kNullValue, &no_arguments);
  __ JumpIfRoot(r5, RootIndex::kUndefinedValue, &no_arguments);
1692

1693
  // 4a. Apply the receiver to the given argArray.
1694
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1695
          RelocInfo::CODE_TARGET);
1696

1697 1698 1699
  // 4b. The argArray is either null or undefined, so we tail call without any
  // arguments to the receiver.
  __ bind(&no_arguments);
1700
  {
1701 1702 1703
    __ li(r3, Operand::Zero());
    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
  }
1704 1705
}

1706 1707 1708 1709 1710 1711 1712 1713
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
  // 1. Make sure we have at least one argument.
  // r3: actual number of arguments
  {
    Label done;
    __ cmpi(r3, Operand::Zero());
    __ bne(&done);
1714
    __ PushRoot(RootIndex::kUndefinedValue);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
    __ addi(r3, r3, Operand(1));
    __ bind(&done);
  }

  // 2. Get the callable to call (passed as receiver) from the stack.
  // r3: actual number of arguments
  __ ShiftLeftImm(r5, r3, Operand(kPointerSizeLog2));
  __ LoadPX(r4, MemOperand(sp, r5));

  // 3. Shift arguments and return address one slot down on the stack
  //    (overwriting the original receiver).  Adjust argument count to make
  //    the original first argument the new receiver.
  // r3: actual number of arguments
  // r4: callable
  {
1730
    Register scratch = r6;
1731 1732 1733 1734 1735 1736
    Label loop;
    // Calculate the copy start address (destination). Copy end address is sp.
    __ add(r5, sp, r5);

    __ mtctr(r3);
    __ bind(&loop);
1737 1738
    __ LoadP(scratch, MemOperand(r5, -kPointerSize));
    __ StoreP(scratch, MemOperand(r5));
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
    __ subi(r5, r5, Operand(kPointerSize));
    __ bdnz(&loop);
    // Adjust the actual number of arguments and remove the top element
    // (which is a copy of the last argument).
    __ subi(r3, r3, Operand(1));
    __ pop();
  }

  // 4. Call the callable.
  __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}

1751 1752 1753 1754 1755 1756 1757 1758
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3     : argc
  //  -- sp[0]  : argumentsList
  //  -- sp[4]  : thisArgument
  //  -- sp[8]  : target
  //  -- sp[12] : receiver
  // -----------------------------------
1759

1760
  // 1. Load target into r4 (if present), argumentsList into r5 (if present),
1761 1762
  // remove all arguments from the stack (including the receiver), and push
  // thisArgument (if present) instead.
1763
  {
1764
    Label skip;
1765
    Register arg_size = r8;
1766 1767 1768 1769
    Register new_sp = r6;
    Register scratch = r7;
    __ ShiftLeftImm(arg_size, r3, Operand(kPointerSizeLog2));
    __ add(new_sp, sp, arg_size);
1770
    __ LoadRoot(r4, RootIndex::kUndefinedValue);
1771
    __ mr(scratch, r4);
1772
    __ mr(r5, r4);
1773 1774 1775 1776 1777 1778 1779
    __ cmpi(arg_size, Operand(kPointerSize));
    __ blt(&skip);
    __ LoadP(r4, MemOperand(new_sp, 1 * -kPointerSize));  // target
    __ beq(&skip);
    __ LoadP(scratch, MemOperand(new_sp, 2 * -kPointerSize));  // thisArgument
    __ cmpi(arg_size, Operand(2 * kPointerSize));
    __ beq(&skip);
1780
    __ LoadP(r5, MemOperand(new_sp, 3 * -kPointerSize));  // argumentsList
1781 1782 1783 1784
    __ bind(&skip);
    __ mr(sp, new_sp);
    __ StoreP(scratch, MemOperand(sp, 0));
  }
1785

1786
  // ----------- S t a t e -------------
1787
  //  -- r5    : argumentsList
1788 1789 1790
  //  -- r4    : target
  //  -- sp[0] : thisArgument
  // -----------------------------------
1791

1792 1793 1794
  // 2. We don't need to check explicitly for callable target here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.
1795

1796
  // 3. Apply the target to the given argumentsList.
1797
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1798
          RelocInfo::CODE_TARGET);
1799 1800
}

1801 1802 1803 1804 1805 1806 1807 1808
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3     : argc
  //  -- sp[0]  : new.target (optional)
  //  -- sp[4]  : argumentsList
  //  -- sp[8]  : target
  //  -- sp[12] : receiver
  // -----------------------------------
1809

1810
  // 1. Load target into r4 (if present), argumentsList into r5 (if present),
1811 1812 1813 1814 1815
  // new.target into r6 (if present, otherwise use target), remove all
  // arguments from the stack (including the receiver), and push thisArgument
  // (if present) instead.
  {
    Label skip;
1816
    Register arg_size = r8;
1817 1818 1819
    Register new_sp = r7;
    __ ShiftLeftImm(arg_size, r3, Operand(kPointerSizeLog2));
    __ add(new_sp, sp, arg_size);
1820
    __ LoadRoot(r4, RootIndex::kUndefinedValue);
1821
    __ mr(r5, r4);
1822 1823 1824 1825 1826 1827 1828
    __ mr(r6, r4);
    __ StoreP(r4, MemOperand(new_sp, 0));  // receiver (undefined)
    __ cmpi(arg_size, Operand(kPointerSize));
    __ blt(&skip);
    __ LoadP(r4, MemOperand(new_sp, 1 * -kPointerSize));  // target
    __ mr(r6, r4);  // new.target defaults to target
    __ beq(&skip);
1829
    __ LoadP(r5, MemOperand(new_sp, 2 * -kPointerSize));  // argumentsList
1830 1831 1832 1833 1834 1835
    __ cmpi(arg_size, Operand(2 * kPointerSize));
    __ beq(&skip);
    __ LoadP(r6, MemOperand(new_sp, 3 * -kPointerSize));  // new.target
    __ bind(&skip);
    __ mr(sp, new_sp);
  }
1836

1837
  // ----------- S t a t e -------------
1838
  //  -- r5    : argumentsList
1839 1840 1841 1842
  //  -- r6    : new.target
  //  -- r4    : target
  //  -- sp[0] : receiver (undefined)
  // -----------------------------------
1843

1844 1845 1846
  // 2. We don't need to check explicitly for constructor target here,
  // since that's the first thing the Construct/ConstructWithArrayLike
  // builtins will do.
1847

1848 1849 1850
  // 3. We don't need to check explicitly for constructor new.target here,
  // since that's the second thing the Construct/ConstructWithArrayLike
  // builtins will do.
1851

1852
  // 4. Construct the target with the given new.target and argumentsList.
1853
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
1854
          RelocInfo::CODE_TARGET);
1855 1856
}

1857 1858
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
  __ SmiTag(r3);
1859
  __ mov(r7, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1860 1861
  __ mflr(r0);
  __ push(r0);
1862 1863 1864 1865 1866
  if (FLAG_enable_embedded_constant_pool) {
    __ Push(fp, kConstantPoolRegister, r7, r4, r3);
  } else {
    __ Push(fp, r7, r4, r3);
  }
1867
  __ Push(Smi::zero());  // Padding.
1868 1869
  __ addi(fp, sp,
          Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
1870 1871 1872 1873 1874 1875 1876 1877
}

static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : result being passed through
  // -----------------------------------
  // Get the number of arguments passed (as a smi), tear down the frame and
  // then tear down the parameters.
1878
  __ LoadP(r4, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1879 1880 1881 1882 1883 1884
  int stack_adjustment = kPointerSize;  // adjust for receiver
  __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment);
  __ SmiToPtrArrayOffset(r0, r4);
  __ add(sp, sp, r0);
}

1885
// static
1886 1887
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
                                               Handle<Code> code) {
1888
  // ----------- S t a t e -------------
1889 1890 1891 1892 1893
  //  -- r4 : target
  //  -- r3 : number of parameters on the stack (not including the receiver)
  //  -- r5 : arguments list (a FixedArray)
  //  -- r7 : len (number of elements to push from args)
  //  -- r6 : new.target (for [[Construct]])
1894 1895
  // -----------------------------------

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
  Register scratch = ip;

  if (masm->emit_debug_code()) {
    // Allow r5 to be a FixedArray, or a FixedDoubleArray if r7 == 0.
    Label ok, fail;
    __ AssertNotSmi(r5);
    __ LoadP(scratch, FieldMemOperand(r5, HeapObject::kMapOffset));
    __ LoadHalfWord(scratch,
                    FieldMemOperand(scratch, Map::kInstanceTypeOffset));
    __ cmpi(scratch, Operand(FIXED_ARRAY_TYPE));
    __ beq(&ok);
    __ cmpi(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE));
    __ bne(&fail);
    __ cmpi(r7, Operand::Zero());
    __ beq(&ok);
    // Fall through.
    __ bind(&fail);
    __ Abort(AbortReason::kOperandIsNotAFixedArray);

    __ bind(&ok);
  }

1918
  // Check for stack overflow.
1919
  Label stack_overflow;
1920
  Generate_StackOverflowCheck(masm, r7, scratch, &stack_overflow);
1921 1922 1923

  // Push arguments onto the stack (thisArgument is already on the stack).
  {
1924
    Label loop, no_args, skip;
1925
    __ cmpi(r7, Operand::Zero());
1926
    __ beq(&no_args);
1927
    __ addi(r5, r5,
1928
            Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
1929
    __ mtctr(r7);
1930
    __ bind(&loop);
1931 1932
    __ LoadPU(scratch, MemOperand(r5, kPointerSize));
    __ CompareRoot(scratch, RootIndex::kTheHoleValue);
1933
    __ bne(&skip);
1934
    __ LoadRoot(scratch, RootIndex::kUndefinedValue);
1935
    __ bind(&skip);
1936
    __ push(scratch);
1937 1938
    __ bdnz(&loop);
    __ bind(&no_args);
1939
    __ add(r3, r3, r7);
1940 1941
  }

1942 1943
  // Tail-call to the actual Call or Construct builtin.
  __ Jump(code, RelocInfo::CODE_TARGET);
1944 1945 1946

  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
1947 1948
}

1949
// static
1950
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
1951
                                                      CallOrConstructMode mode,
1952
                                                      Handle<Code> code) {
1953
  // ----------- S t a t e -------------
1954 1955 1956 1957
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r6 : the new.target (for [[Construct]] calls)
  //  -- r4 : the target to call (can be any Object)
  //  -- r5 : start index (to support rest parameters)
1958 1959
  // -----------------------------------

1960 1961 1962 1963 1964 1965 1966
  Register scratch = r9;

  if (mode == CallOrConstructMode::kConstruct) {
    Label new_target_constructor, new_target_not_constructor;
    __ JumpIfSmi(r6, &new_target_not_constructor);
    __ LoadP(scratch, FieldMemOperand(r6, HeapObject::kMapOffset));
    __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
1967
    __ TestBit(scratch, Map::IsConstructorBit::kShift, r0);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
    __ bne(&new_target_constructor, cr0);
    __ bind(&new_target_not_constructor);
    {
      FrameScope scope(masm, StackFrame::MANUAL);
      __ EnterFrame(StackFrame::INTERNAL);
      __ Push(r6);
      __ CallRuntime(Runtime::kThrowNotConstructor);
    }
    __ bind(&new_target_constructor);
  }

1979 1980
  // Check if we have an arguments adaptor frame below the function frame.
  Label arguments_adaptor, arguments_done;
1981
  __ LoadP(r7, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1982 1983 1984 1985
  __ LoadP(scratch,
           MemOperand(r7, CommonFrameConstants::kContextOrFrameTypeOffset));
  __ cmpi(scratch,
          Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1986 1987
  __ beq(&arguments_adaptor);
  {
1988 1989
    __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
    __ LoadP(r8, FieldMemOperand(r8, JSFunction::kSharedFunctionInfoOffset));
1990
    __ LoadHalfWord(
1991 1992 1993
        r8,
        FieldMemOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset));
    __ mr(r7, fp);
1994 1995 1996 1997 1998
  }
  __ b(&arguments_done);
  __ bind(&arguments_adaptor);
  {
    // Load the length from the ArgumentsAdaptorFrame.
1999 2000
    __ LoadP(r8, MemOperand(r7, ArgumentsAdaptorFrameConstants::kLengthOffset));
    __ SmiUntag(r8);
2001 2002 2003
  }
  __ bind(&arguments_done);

2004 2005 2006 2007
  Label stack_done, stack_overflow;
  __ sub(r8, r8, r5);
  __ cmpi(r8, Operand::Zero());
  __ ble(&stack_done);
2008 2009
  {
    // Check for stack overflow.
2010
    Generate_StackOverflowCheck(masm, r8, r5, &stack_overflow);
2011 2012 2013 2014

    // Forward the arguments from the caller frame.
    {
      Label loop;
2015 2016
      __ addi(r7, r7, Operand(kPointerSize));
      __ add(r3, r3, r8);
2017 2018
      __ bind(&loop);
      {
2019 2020 2021
        __ ShiftLeftImm(scratch, r8, Operand(kPointerSizeLog2));
        __ LoadPX(scratch, MemOperand(r7, scratch));
        __ push(scratch);
2022 2023
        __ subi(r8, r8, Operand(1));
        __ cmpi(r8, Operand::Zero());
2024 2025 2026 2027 2028 2029 2030 2031 2032
        __ bne(&loop);
      }
    }
  }
  __ b(&stack_done);
  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
  __ bind(&stack_done);

2033
  // Tail-call to the {code} handler.
2034 2035 2036
  __ Jump(code, RelocInfo::CODE_TARGET);
}

2037
// static
2038
void Builtins::Generate_CallFunction(MacroAssembler* masm,
2039
                                     ConvertReceiverMode mode) {
2040 2041 2042 2043 2044
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSFunction)
  // -----------------------------------
  __ AssertFunction(r4);
2045 2046 2047 2048

  // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
  // Check that the function is not a "classConstructor".
  Label class_constructor;
2049
  __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2050
  __ lwz(r6, FieldMemOperand(r5, SharedFunctionInfo::kFlagsOffset));
2051
  __ TestBitMask(r6, SharedFunctionInfo::IsClassConstructorBit::kMask, r0);
2052
  __ bne(&class_constructor, cr0);
2053

2054 2055 2056 2057 2058
  // Enter the context of the function; ToObject has to run in the function
  // context, and we also need to take the global proxy from the function
  // context in case of conversion.
  __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
  // We need to convert the receiver for non-native sloppy mode functions.
2059
  Label done_convert;
2060 2061 2062
  __ andi(r0, r6,
          Operand(SharedFunctionInfo::IsStrictBit::kMask |
                  SharedFunctionInfo::IsNativeBit::kMask));
2063 2064 2065 2066 2067 2068 2069 2070 2071
  __ bne(&done_convert, cr0);
  {
    // ----------- S t a t e -------------
    //  -- r3 : the number of arguments (not including the receiver)
    //  -- r4 : the function to call (checked to be a JSFunction)
    //  -- r5 : the shared function info.
    //  -- cp : the function context.
    // -----------------------------------

2072
    if (mode == ConvertReceiverMode::kNullOrUndefined) {
2073 2074
      // Patch receiver to global proxy.
      __ LoadGlobalProxy(r6);
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
    } else {
      Label convert_to_object, convert_receiver;
      __ ShiftLeftImm(r6, r3, Operand(kPointerSizeLog2));
      __ LoadPX(r6, MemOperand(sp, r6));
      __ JumpIfSmi(r6, &convert_to_object);
      STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
      __ CompareObjectType(r6, r7, r7, FIRST_JS_RECEIVER_TYPE);
      __ bge(&done_convert);
      if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
        Label convert_global_proxy;
2085 2086
        __ JumpIfRoot(r6, RootIndex::kUndefinedValue, &convert_global_proxy);
        __ JumpIfNotRoot(r6, RootIndex::kNullValue, &convert_to_object);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
        __ bind(&convert_global_proxy);
        {
          // Patch receiver to global proxy.
          __ LoadGlobalProxy(r6);
        }
        __ b(&convert_receiver);
      }
      __ bind(&convert_to_object);
      {
        // Convert receiver using ToObject.
        // TODO(bmeurer): Inline the allocation here to avoid building the frame
        // in the fast case? (fall back to AllocateInNewSpace?)
        FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
        __ SmiTag(r3);
        __ Push(r3, r4);
        __ mr(r3, r6);
2103
        __ Push(cp);
2104
        __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
2105
                RelocInfo::CODE_TARGET);
2106
        __ Pop(cp);
2107 2108 2109 2110 2111 2112
        __ mr(r6, r3);
        __ Pop(r3, r4);
        __ SmiUntag(r3);
      }
      __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
      __ bind(&convert_receiver);
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
    }
    __ ShiftLeftImm(r7, r3, Operand(kPointerSizeLog2));
    __ StorePX(r6, MemOperand(sp, r7));
  }
  __ bind(&done_convert);

  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSFunction)
  //  -- r5 : the shared function info.
  //  -- cp : the function context.
  // -----------------------------------

2126
  __ LoadHalfWord(
2127 2128 2129
      r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
  ParameterCount actual(r3);
  ParameterCount expected(r5);
2130
  __ InvokeFunctionCode(r4, no_reg, expected, actual, JUMP_FUNCTION);
2131 2132 2133 2134 2135

  // The function is a "classConstructor", need to raise an exception.
  __ bind(&class_constructor);
  {
    FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL);
2136
    __ push(r4);
2137
    __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
2138
  }
2139 2140
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
namespace {

void Generate_PushBoundArguments(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : target (checked to be a JSBoundFunction)
  //  -- r6 : new.target (only in case of [[Construct]])
  // -----------------------------------

  // Load [[BoundArguments]] into r5 and length of that into r7.
  Label no_bound_arguments;
  __ LoadP(r5, FieldMemOperand(r4, JSBoundFunction::kBoundArgumentsOffset));
  __ LoadP(r7, FieldMemOperand(r5, FixedArray::kLengthOffset));
  __ SmiUntag(r7, SetRC);
  __ beq(&no_bound_arguments, cr0);
  {
    // ----------- S t a t e -------------
    //  -- r3 : the number of arguments (not including the receiver)
    //  -- r4 : target (checked to be a JSBoundFunction)
    //  -- r5 : the [[BoundArguments]] (implemented as FixedArray)
    //  -- r6 : new.target (only in case of [[Construct]])
    //  -- r7 : the number of [[BoundArguments]]
    // -----------------------------------

2165
    Register scratch = r9;
2166 2167 2168
    // Reserve stack space for the [[BoundArguments]].
    {
      Label done;
2169
      __ mr(scratch, sp);  // preserve previous stack pointer
2170 2171 2172 2173 2174
      __ ShiftLeftImm(r10, r7, Operand(kPointerSizeLog2));
      __ sub(sp, sp, r10);
      // Check the stack for overflow. We are not trying to catch interruptions
      // (i.e. debug break and preemption) here, so check the "real stack
      // limit".
2175 2176 2177 2178 2179 2180
      {
        UseScratchRegisterScope temps(masm);
        Register scratch = temps.Acquire();
        LoadRealStackLimit(masm, scratch);
        __ cmpl(sp, scratch);
      }
2181 2182
      __ bgt(&done);  // Signed comparison.
      // Restore the stack pointer.
2183
      __ mr(sp, scratch);
2184 2185 2186
      {
        FrameScope scope(masm, StackFrame::MANUAL);
        __ EnterFrame(StackFrame::INTERNAL);
2187
        __ CallRuntime(Runtime::kThrowStackOverflow);
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
      }
      __ bind(&done);
    }

    // Relocate arguments down the stack.
    //  -- r3 : the number of arguments (not including the receiver)
    //  -- r9 : the previous stack pointer
    //  -- r10: the size of the [[BoundArguments]]
    {
      Label skip, loop;
      __ li(r8, Operand::Zero());
      __ cmpi(r3, Operand::Zero());
      __ beq(&skip);
      __ mtctr(r3);
      __ bind(&loop);
2203
      __ LoadPX(r0, MemOperand(scratch, r8));
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
      __ StorePX(r0, MemOperand(sp, r8));
      __ addi(r8, r8, Operand(kPointerSize));
      __ bdnz(&loop);
      __ bind(&skip);
    }

    // Copy [[BoundArguments]] to the stack (below the arguments).
    {
      Label loop;
      __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
      __ add(r5, r5, r10);
      __ mtctr(r7);
      __ bind(&loop);
      __ LoadPU(r0, MemOperand(r5, -kPointerSize));
      __ StorePX(r0, MemOperand(sp, r8));
      __ addi(r8, r8, Operand(kPointerSize));
      __ bdnz(&loop);
      __ add(r3, r3, r7);
    }
  }
  __ bind(&no_bound_arguments);
}

}  // namespace

// static
2230
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
2231 2232 2233 2234 2235 2236 2237
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSBoundFunction)
  // -----------------------------------
  __ AssertBoundFunction(r4);

  // Patch the receiver to [[BoundThis]].
2238
  __ LoadP(r6, FieldMemOperand(r4, JSBoundFunction::kBoundThisOffset));
2239
  __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
2240
  __ StorePX(r6, MemOperand(sp, r0));
2241 2242 2243 2244 2245 2246 2247

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Call the [[BoundTargetFunction]] via the Call builtin.
  __ LoadP(r4,
           FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset));
2248 2249
  __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
          RelocInfo::CODE_TARGET);
2250 2251
}

2252
// static
2253
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2254 2255 2256 2257 2258
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the target to call (can be any Object).
  // -----------------------------------

2259
  Label non_callable, non_smi;
2260
  __ JumpIfSmi(r4, &non_callable);
2261
  __ bind(&non_smi);
2262
  __ CompareObjectType(r4, r7, r8, JS_FUNCTION_TYPE);
2263
  __ Jump(masm->isolate()->builtins()->CallFunction(mode),
2264
          RelocInfo::CODE_TARGET, eq);
2265
  __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE));
2266
  __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2267
          RelocInfo::CODE_TARGET, eq);
2268 2269 2270

  // Check if target has a [[Call]] internal method.
  __ lbz(r7, FieldMemOperand(r7, Map::kBitFieldOffset));
2271
  __ TestBit(r7, Map::IsCallableBit::kShift, r0);
2272 2273
  __ beq(&non_callable, cr0);

2274
  // Check if target is a proxy and call CallProxy external builtin
2275
  __ cmpi(r8, Operand(JS_PROXY_TYPE));
2276
  __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq);
2277 2278 2279

  // 2. Call to something else, which might have a [[Call]] internal method (if
  // not we raise an exception).
2280 2281 2282 2283
  // Overwrite the original receiver the (original) target.
  __ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2));
  __ StorePX(r4, MemOperand(sp, r8));
  // Let the "call_as_function_delegate" take care of the rest.
2284
  __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r4);
2285
  __ Jump(masm->isolate()->builtins()->CallFunction(
2286
              ConvertReceiverMode::kNotNullOrUndefined),
2287
          RelocInfo::CODE_TARGET);
2288 2289 2290

  // 3. Call to something that is not callable.
  __ bind(&non_callable);
2291 2292
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2293
    __ Push(r4);
2294
    __ CallRuntime(Runtime::kThrowCalledNonCallable);
2295 2296 2297
  }
}

2298 2299 2300 2301 2302
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the constructor to call (checked to be a JSFunction)
2303
  //  -- r6 : the new target (checked to be a constructor)
2304
  // -----------------------------------
2305
  __ AssertConstructor(r4);
2306 2307 2308 2309
  __ AssertFunction(r4);

  // Calling convention for function specific ConstructStubs require
  // r5 to contain either an AllocationSite or undefined.
2310
  __ LoadRoot(r5, RootIndex::kUndefinedValue);
2311

2312 2313 2314
  Label call_generic_stub;

  // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2315
  __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2316
  __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset));
2317 2318 2319 2320 2321 2322 2323 2324
  __ mov(ip, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
  __ and_(r7, r7, ip, SetRC);
  __ beq(&call_generic_stub, cr0);

  __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
          RelocInfo::CODE_TARGET);

  __ bind(&call_generic_stub);
2325
  __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2326
          RelocInfo::CODE_TARGET);
2327 2328
}

2329 2330 2331 2332 2333 2334 2335
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSBoundFunction)
  //  -- r6 : the new target (checked to be a constructor)
  // -----------------------------------
2336
  __ AssertConstructor(r4);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
  __ AssertBoundFunction(r4);

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
  Label skip;
  __ cmp(r4, r6);
  __ bne(&skip);
  __ LoadP(r6,
           FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset));
  __ bind(&skip);

  // Construct the [[BoundTargetFunction]] via the Construct builtin.
  __ LoadP(r4,
           FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset));
2353
  __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2354 2355
}

2356 2357 2358 2359 2360
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the constructor to call (can be any Object)
2361
  //  -- r6 : the new target (either the same as the constructor or
2362 2363 2364
  //          the JSFunction on which new was invoked initially)
  // -----------------------------------

2365
  // Check if target is a Smi.
2366
  Label non_constructor, non_proxy;
2367 2368
  __ JumpIfSmi(r4, &non_constructor);

2369
  // Check if target has a [[Construct]] internal method.
2370
  __ LoadP(r7, FieldMemOperand(r4, HeapObject::kMapOffset));
2371
  __ lbz(r5, FieldMemOperand(r7, Map::kBitFieldOffset));
2372
  __ TestBit(r5, Map::IsConstructorBit::kShift, r0);
2373 2374
  __ beq(&non_constructor, cr0);

2375 2376 2377 2378 2379
  // Dispatch based on instance type.
  __ CompareInstanceType(r7, r8, JS_FUNCTION_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
          RelocInfo::CODE_TARGET, eq);

2380 2381 2382
  // Only dispatch to bound functions after checking whether they are
  // constructors.
  __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE));
2383
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2384 2385
          RelocInfo::CODE_TARGET, eq);

2386 2387
  // Only dispatch to proxies after checking whether they are constructors.
  __ cmpi(r8, Operand(JS_PROXY_TYPE));
2388
  __ bne(&non_proxy);
2389 2390
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
          RelocInfo::CODE_TARGET);
2391

2392
  // Called Construct on an exotic Object with a [[Construct]] internal method.
2393
  __ bind(&non_proxy);
2394 2395 2396 2397 2398
  {
    // Overwrite the original receiver with the (original) target.
    __ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2));
    __ StorePX(r4, MemOperand(sp, r8));
    // Let the "call_as_constructor_delegate" take care of the rest.
2399
    __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r4);
2400 2401 2402
    __ Jump(masm->isolate()->builtins()->CallFunction(),
            RelocInfo::CODE_TARGET);
  }
2403

2404 2405 2406
  // Called Construct on an Object that doesn't have a [[Construct]] internal
  // method.
  __ bind(&non_constructor);
2407
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2408
          RelocInfo::CODE_TARGET);
2409 2410
}

2411 2412 2413 2414 2415
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : actual number of arguments
  //  -- r4 : function (passed through to callee)
  //  -- r5 : expected number of arguments
2416
  //  -- r6 : new target (passed through to callee)
2417 2418
  // -----------------------------------

2419
  Label dont_adapt_arguments, stack_overflow, skip_adapt_arguments;
2420 2421
  __ cmpli(r5, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
  __ beq(&dont_adapt_arguments);
2422
  __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2423
  __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset));
2424 2425 2426
  __ TestBitMask(r7, SharedFunctionInfo::IsSafeToSkipArgumentsAdaptorBit::kMask,
                 r0);
  __ bne(&skip_adapt_arguments, cr0);
2427

2428 2429 2430 2431 2432 2433 2434
  // -------------------------------------------
  // Adapt arguments.
  // -------------------------------------------
  {
    Label under_application, over_application, invoke;
    __ cmp(r3, r5);
    __ blt(&under_application);
2435

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
    // Enough parameters: actual >= expected
    __ bind(&over_application);
    {
      EnterArgumentsAdaptorFrame(masm);
      Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow);

      // Calculate copy start address into r3 and copy end address into r7.
      // r3: actual number of arguments as a smi
      // r4: function
      // r5: expected number of arguments
      // r6: new target (passed through to callee)
      __ SmiToPtrArrayOffset(r3, r3);
      __ add(r3, r3, fp);
      // adjust for return address and receiver
      __ addi(r3, r3, Operand(2 * kPointerSize));
      __ ShiftLeftImm(r7, r5, Operand(kPointerSizeLog2));
      __ sub(r7, r3, r7);

      // Copy the arguments (including the receiver) to the new stack frame.
      // r3: copy start address
      // r4: function
      // r5: expected number of arguments
      // r6: new target (passed through to callee)
      // r7: copy end address

      Label copy;
      __ bind(&copy);
      __ LoadP(r0, MemOperand(r3, 0));
      __ push(r0);
      __ cmp(r3, r7);  // Compare before moving to next argument.
      __ subi(r3, r3, Operand(kPointerSize));
      __ bne(&copy);

      __ b(&invoke);
    }
2471

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
    // Too few parameters: Actual < expected
    __ bind(&under_application);
    {
      EnterArgumentsAdaptorFrame(masm);
      Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow);

      // Calculate copy start address into r0 and copy end address is fp.
      // r3: actual number of arguments as a smi
      // r4: function
      // r5: expected number of arguments
      // r6: new target (passed through to callee)
      __ SmiToPtrArrayOffset(r3, r3);
      __ add(r3, r3, fp);

      // Copy the arguments (including the receiver) to the new stack frame.
      // r3: copy start address
      // r4: function
      // r5: expected number of arguments
      // r6: new target (passed through to callee)
      Label copy;
      __ bind(&copy);
      // Adjust load for return address and receiver.
      __ LoadP(r0, MemOperand(r3, 2 * kPointerSize));
      __ push(r0);
      __ cmp(r3, fp);  // Compare before moving to next argument.
      __ subi(r3, r3, Operand(kPointerSize));
      __ bne(&copy);

      // Fill the remaining expected arguments with undefined.
      // r4: function
      // r5: expected number of arguments
      // r6: new target (passed through to callee)
      __ LoadRoot(r0, RootIndex::kUndefinedValue);
      __ ShiftLeftImm(r7, r5, Operand(kPointerSizeLog2));
      __ sub(r7, fp, r7);
      // Adjust for frame.
      __ subi(r7, r7,
              Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
                      kPointerSize));

      Label fill;
      __ bind(&fill);
      __ push(r0);
      __ cmp(sp, r7);
      __ bne(&fill);
    }
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527
    // Call the entry point.
    __ bind(&invoke);
    __ mr(r3, r5);
    // r3 : expected number of arguments
    // r4 : function (passed through to callee)
    // r6 : new target (passed through to callee)
    static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
    __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset));
    __ CallCodeObject(r5);
2528

2529 2530 2531
    // Store offset of return address for deoptimizer.
    masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(
        masm->pc_offset());
2532

2533 2534 2535
    // Exit frame and return.
    LeaveArgumentsAdaptorFrame(masm);
    __ blr();
2536 2537
  }

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
  // -------------------------------------------
  // Skip adapt arguments.
  // -------------------------------------------
  __ bind(&skip_adapt_arguments);
  {
    // The callee cannot observe the actual arguments, so it's safe to just
    // pass the expected arguments by massaging the stack appropriately. See
    // http://bit.ly/v8-faster-calls-with-arguments-mismatch for details.
    Label under_application, over_application;
    __ cmp(r3, r5);
    __ blt(&under_application);

    __ bind(&over_application);
    {
      // Remove superfluous parameters from the stack.
      __ sub(r7, r3, r5);
      __ mr(r3, r5);
      __ ShiftLeftImm(r7, r7, Operand(kPointerSizeLog2));
      __ add(sp, sp, r7);
      __ b(&dont_adapt_arguments);
    }
2559

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
    __ bind(&under_application);
    {
      // Fill remaining expected arguments with undefined values.
      Label fill;
      __ LoadRoot(r7, RootIndex::kUndefinedValue);
      __ bind(&fill);
      __ addi(r3, r3, Operand(1));
      __ push(r7);
      __ cmp(r3, r5);
      __ blt(&fill);
      __ b(&dont_adapt_arguments);
    }
  }
2573 2574 2575 2576 2577

  // -------------------------------------------
  // Dont adapt arguments.
  // -------------------------------------------
  __ bind(&dont_adapt_arguments);
2578 2579
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
  __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset));
2580
  __ JumpCodeObject(r5);
2581 2582 2583 2584

  __ bind(&stack_overflow);
  {
    FrameScope frame(masm, StackFrame::MANUAL);
2585
    __ CallRuntime(Runtime::kThrowStackOverflow);
2586 2587 2588 2589
    __ bkpt(0);
  }
}

2590
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2591
  // The function index was put in a register by the jump table trampoline.
2592
  // Convert to Smi for the runtime call.
2593 2594
  __ SmiTag(kWasmCompileLazyFuncIndexRegister,
            kWasmCompileLazyFuncIndexRegister);
2595
  {
2596
    HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2597
    FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
2598 2599 2600 2601

    // Save all parameter registers (see wasm-linkage.cc). They might be
    // overwritten in the runtime call below. We don't have any callee-saved
    // registers in wasm, so no need to store anything else.
2602 2603
    constexpr RegList gp_regs =
        Register::ListOf<r3, r4, r5, r6, r7, r8, r9, r10>();
2604 2605
    constexpr RegList fp_regs =
        DoubleRegister::ListOf<d1, d2, d3, d4, d5, d6, d7, d8>();
2606 2607 2608
    __ MultiPush(gp_regs);
    __ MultiPushDoubles(fp_regs);

2609 2610
    // Pass instance and function index as explicit arguments to the runtime
    // function.
2611
    __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister);
2612 2613
    // Load the correct CEntry builtin from the instance object.
    __ LoadP(r5, FieldMemOperand(kWasmInstanceRegister,
2614 2615 2616 2617
                                 WasmInstanceObject::kIsolateRootOffset));
    auto centry_id =
        Builtins::kCEntry_Return1_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit;
    __ LoadP(r5, MemOperand(r5, IsolateData::builtin_slot_offset(centry_id)));
2618
    // Initialize the JavaScript context with 0. CEntry will use it to
2619
    // set the current context on the isolate.
2620
    __ LoadSmiLiteral(cp, Smi::zero());
2621
    __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, r5);
2622
    // The entrypoint address is the return value.
2623
    __ mr(r11, kReturnRegister0);
2624 2625 2626 2627 2628

    // Restore registers.
    __ MultiPopDoubles(fp_regs);
    __ MultiPop(gp_regs);
  }
2629
  // Finally, jump to the entrypoint.
2630
  __ Jump(r11);
2631 2632
}

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
                               SaveFPRegsMode save_doubles, ArgvMode argv_mode,
                               bool builtin_exit_frame) {
  // Called from JavaScript; parameters are on stack as if calling JS function.
  // r3: number of arguments including receiver
  // r4: pointer to builtin function
  // fp: frame pointer  (restored after C call)
  // sp: stack pointer  (restored as callee's sp after C call)
  // cp: current context  (C callee-saved)
  //
  // If argv_mode == kArgvInRegister:
  // r5: pointer to the first argument

  __ mr(r15, r4);

  if (argv_mode == kArgvInRegister) {
    // Move argv into the correct register.
    __ mr(r4, r5);
  } else {
    // Compute the argv pointer.
    __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
    __ add(r4, r4, sp);
    __ subi(r4, r4, Operand(kPointerSize));
  }

  // Enter the exit frame that transitions from JavaScript to C++.
  FrameScope scope(masm, StackFrame::MANUAL);

  // Need at least one extra slot for return address location.
  int arg_stack_space = 1;

  // Pass buffer for return value on stack if necessary
  bool needs_return_buffer =
      (result_size == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
  if (needs_return_buffer) {
    arg_stack_space += result_size;
  }

  __ EnterExitFrame(
      save_doubles, arg_stack_space,
      builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);

  // Store a copy of argc in callee-saved registers for later.
  __ mr(r14, r3);

  // r3, r14: number of arguments including receiver  (C callee-saved)
  // r4: pointer to the first argument
  // r15: pointer to builtin function  (C callee-saved)

  // Result returned in registers or stack, depending on result size and ABI.

  Register isolate_reg = r5;
  if (needs_return_buffer) {
    // The return value is a non-scalar value.
    // Use frame storage reserved by calling function to pass return
    // buffer as implicit first argument.
    __ mr(r5, r4);
    __ mr(r4, r3);
    __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
    isolate_reg = r6;
  }

  // Call C built-in.
  __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate()));

  Register target = r15;
2699
  __ StoreReturnAddressAndCall(target);
2700 2701 2702 2703 2704 2705 2706 2707 2708

  // If return value is on the stack, pop it to registers.
  if (needs_return_buffer) {
    __ LoadP(r4, MemOperand(r3, kPointerSize));
    __ LoadP(r3, MemOperand(r3));
  }

  // Check result for exception sentinel.
  Label exception_returned;
2709
  __ CompareRoot(r3, RootIndex::kException);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
  __ beq(&exception_returned);

  // Check that there is no pending exception, otherwise we
  // should have returned the exception sentinel.
  if (FLAG_debug_code) {
    Label okay;
    ExternalReference pending_exception_address = ExternalReference::Create(
        IsolateAddressId::kPendingExceptionAddress, masm->isolate());

    __ Move(r6, pending_exception_address);
    __ LoadP(r6, MemOperand(r6));
2721
    __ CompareRoot(r6, RootIndex::kTheHoleValue);
2722 2723
    // Cannot use check here as it attempts to generate call into runtime.
    __ beq(&okay);
2724
    __ stop();
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
    __ bind(&okay);
  }

  // Exit C frame and return.
  // r3:r4: result
  // sp: stack pointer
  // fp: frame pointer
  Register argc = argv_mode == kArgvInRegister
                      // We don't want to pop arguments so set argc to no_reg.
                      ? no_reg
                      // r14: still holds argc (callee-saved).
                      : r14;
  __ LeaveExitFrame(save_doubles, argc);
  __ blr();

  // Handling of exception.
  __ bind(&exception_returned);

  ExternalReference pending_handler_context_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
  ExternalReference pending_handler_entrypoint_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
  ExternalReference pending_handler_constant_pool_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerConstantPoolAddress,
          masm->isolate());
  ExternalReference pending_handler_fp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
  ExternalReference pending_handler_sp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());

  // Ask the runtime for help to determine the handler. This will set r3 to
  // contain the current pending exception, don't clobber it.
  ExternalReference find_handler =
      ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
  {
    FrameScope scope(masm, StackFrame::MANUAL);
    __ PrepareCallCFunction(3, 0, r3);
    __ li(r3, Operand::Zero());
    __ li(r4, Operand::Zero());
    __ Move(r5, ExternalReference::isolate_address(masm->isolate()));
    __ CallCFunction(find_handler, 3);
  }

  // Retrieve the handler context, SP and FP.
  __ Move(cp, pending_handler_context_address);
  __ LoadP(cp, MemOperand(cp));
  __ Move(sp, pending_handler_sp_address);
  __ LoadP(sp, MemOperand(sp));
  __ Move(fp, pending_handler_fp_address);
  __ LoadP(fp, MemOperand(fp));

  // If the handler is a JS frame, restore the context to the frame. Note that
  // the context will be set to (cp == 0) for non-JS frames.
  Label skip;
  __ cmpi(cp, Operand::Zero());
  __ beq(&skip);
  __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  __ bind(&skip);

2786 2787 2788 2789 2790
  // Reset the masking register. This is done independent of the underlying
  // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work
  // with both configurations. It is safe to always do this, because the
  // underlying register is caller-saved and can be arbitrarily clobbered.
  __ ResetSpeculationPoisonRegister();
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

  // Compute the handler entry address and jump to it.
  ConstantPoolUnavailableScope constant_pool_unavailable(masm);
  __ Move(ip, pending_handler_entrypoint_address);
  __ LoadP(ip, MemOperand(ip));
  if (FLAG_enable_embedded_constant_pool) {
    __ Move(kConstantPoolRegister, pending_handler_constant_pool_address);
    __ LoadP(kConstantPoolRegister, MemOperand(kConstantPoolRegister));
  }
  __ Jump(ip);
}

2803 2804 2805 2806
void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
  Label out_of_range, only_low, negate, done, fastpath_done;
  Register result_reg = r3;

2807
  HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
  // Immediate values for this stub fit in instructions, so it's safe to use ip.
  Register scratch = GetRegisterThatIsNotOneOf(result_reg);
  Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch);
  Register scratch_high =
      GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low);
  DoubleRegister double_scratch = kScratchDoubleReg;

  __ Push(result_reg, scratch);
  // Account for saved regs.
  int argument_offset = 2 * kPointerSize;

  // Load double input.
  __ lfd(double_scratch, MemOperand(sp, argument_offset));

  // Do fast-path convert from double to int.
  __ ConvertDoubleToInt64(double_scratch,
#if !V8_TARGET_ARCH_PPC64
                          scratch,
#endif
                          result_reg, d0);

// Test for overflow
#if V8_TARGET_ARCH_PPC64
  __ TestIfInt32(result_reg, r0);
#else
  __ TestIfInt32(scratch, result_reg, r0);
#endif
  __ beq(&fastpath_done);

  __ Push(scratch_high, scratch_low);
  // Account for saved regs.
  argument_offset += 2 * kPointerSize;

  __ lwz(scratch_high,
         MemOperand(sp, argument_offset + Register::kExponentOffset));
  __ lwz(scratch_low,
         MemOperand(sp, argument_offset + Register::kMantissaOffset));

  __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
  // Load scratch with exponent - 1. This is faster than loading
  // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
  STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
  __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
  // If exponent is greater than or equal to 84, the 32 less significant
  // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
  // the result is 0.
  // Compare exponent with 84 (compare exponent - 1 with 83).
  __ cmpi(scratch, Operand(83));
  __ bge(&out_of_range);

  // If we reach this code, 31 <= exponent <= 83.
  // So, we don't have to handle cases where 0 <= exponent <= 20 for
  // which we would need to shift right the high part of the mantissa.
  // Scratch contains exponent - 1.
  // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
  __ subfic(scratch, scratch, Operand(51));
  __ cmpi(scratch, Operand::Zero());
  __ ble(&only_low);
  // 21 <= exponent <= 51, shift scratch_low and scratch_high
  // to generate the result.
  __ srw(scratch_low, scratch_low, scratch);
  // Scratch contains: 52 - exponent.
  // We needs: exponent - 20.
  // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
  __ subfic(scratch, scratch, Operand(32));
  __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
  // Set the implicit 1 before the mantissa part in scratch_high.
  STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
  __ oris(result_reg, result_reg,
          Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
  __ slw(r0, result_reg, scratch);
  __ orx(result_reg, scratch_low, r0);
  __ b(&negate);

  __ bind(&out_of_range);
  __ mov(result_reg, Operand::Zero());
  __ b(&done);

  __ bind(&only_low);
  // 52 <= exponent <= 83, shift only scratch_low.
  // On entry, scratch contains: 52 - exponent.
  __ neg(scratch, scratch);
  __ slw(result_reg, scratch_low, scratch);

  __ bind(&negate);
  // If input was positive, scratch_high ASR 31 equals 0 and
  // scratch_high LSR 31 equals zero.
  // New result = (result eor 0) + 0 = result.
  // If the input was negative, we have to negate the result.
  // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1.
  // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
  __ srawi(r0, scratch_high, 31);
#if V8_TARGET_ARCH_PPC64
  __ srdi(r0, r0, Operand(32));
#endif
  __ xor_(result_reg, result_reg, r0);
  __ srwi(r0, scratch_high, Operand(31));
  __ add(result_reg, result_reg, r0);

  __ bind(&done);
  __ Pop(scratch_high, scratch_low);
  // Account for saved regs.
  argument_offset -= 2 * kPointerSize;

  __ bind(&fastpath_done);
  __ StoreP(result_reg, MemOperand(sp, argument_offset));
  __ Pop(result_reg, scratch);

  __ Ret();
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : argc
  //  -- r4 : constructor
  //  -- sp[0] : return address
  //  -- sp[4] : last argument
  // -----------------------------------

  if (FLAG_debug_code) {
    // The array construct code is only set for the global and natives
    // builtin Array functions which always have maps.

    // Initial map for the builtin Array function should be a map.
    __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a nullptr and a Smi.
    __ TestIfSmi(r6, r0);
    __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0);
    __ CompareObjectType(r6, r6, r7, MAP_TYPE);
    __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);

2940 2941 2942 2943 2944 2945
    // Figure out the right elements kind
    __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
    // Load the map's "bit field 2" into |result|.
    __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
    // Retrieve elements_kind from bit field 2.
    __ DecodeField<Map::ElementsKindBits>(r6);
2946

2947
    // Initial elements kind should be packed elements.
2948
    __ cmpi(r6, Operand(PACKED_ELEMENTS));
2949
    __ Assert(eq, AbortReason::kInvalidElementsKindForInternalPackedArray);
2950

2951 2952 2953 2954
    // No arguments should be passed.
    __ cmpi(r3, Operand(0));
    __ Assert(eq, AbortReason::kWrongNumberOfArgumentsForInternalPackedArray);
  }
2955

2956 2957 2958
  __ Jump(
      BUILTIN_CODE(masm->isolate(), InternalArrayNoArgumentConstructor_Packed),
      RelocInfo::CODE_TARGET);
2959 2960
}

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
namespace {

static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
  return ref0.address() - ref1.address();
}


// Calls an API function.  Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.  Restores context.  stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
                                     Register function_address,
                                     ExternalReference thunk_ref,
                                     int stack_space,
                                     MemOperand* stack_space_operand,
                                     MemOperand return_value_operand) {
  Isolate* isolate = masm->isolate();
  ExternalReference next_address =
      ExternalReference::handle_scope_next_address(isolate);
  const int kNextOffset = 0;
  const int kLimitOffset = AddressOffset(
      ExternalReference::handle_scope_limit_address(isolate), next_address);
  const int kLevelOffset = AddressOffset(
      ExternalReference::handle_scope_level_address(isolate), next_address);

  // Additional parameter is the address of the actual callback.
  DCHECK(function_address == r4 || function_address == r5);
  Register scratch = r6;

  __ Move(scratch, ExternalReference::is_profiling_address(isolate));
  __ lbz(scratch, MemOperand(scratch, 0));
  __ cmpi(scratch, Operand::Zero());

  if (CpuFeatures::IsSupported(ISELECT)) {
    __ Move(scratch, thunk_ref);
    __ isel(eq, scratch, function_address, scratch);
  } else {
2999 3000 3001
    Label profiler_enabled, end_profiler_check;
    __ bne(&profiler_enabled);
    __ Move(scratch, ExternalReference::address_of_runtime_stats_flag());
3002
    __ lwz(scratch, MemOperand(scratch, 0));
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
    __ cmpi(scratch, Operand::Zero());
    __ bne(&profiler_enabled);
    {
      // Call the api function directly.
      __ mr(scratch, function_address);
      __ b(&end_profiler_check);
    }
    __ bind(&profiler_enabled);
    {
      // Additional parameter is the address of the actual callback.
      __ Move(scratch, thunk_ref);
    }
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
    __ bind(&end_profiler_check);
  }

  // Allocate HandleScope in callee-save registers.
  // r17 - next_address
  // r14 - next_address->kNextOffset
  // r15 - next_address->kLimitOffset
  // r16 - next_address->kLevelOffset
  __ Move(r17, next_address);
  __ LoadP(r14, MemOperand(r17, kNextOffset));
  __ LoadP(r15, MemOperand(r17, kLimitOffset));
  __ lwz(r16, MemOperand(r17, kLevelOffset));
  __ addi(r16, r16, Operand(1));
  __ stw(r16, MemOperand(r17, kLevelOffset));

3030
  __ StoreReturnAddressAndCall(scratch);
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091

  Label promote_scheduled_exception;
  Label delete_allocated_handles;
  Label leave_exit_frame;
  Label return_value_loaded;

  // load value from ReturnValue
  __ LoadP(r3, return_value_operand);
  __ bind(&return_value_loaded);
  // No more valid handles (the result handle was the last one). Restore
  // previous handle scope.
  __ StoreP(r14, MemOperand(r17, kNextOffset));
  if (__ emit_debug_code()) {
    __ lwz(r4, MemOperand(r17, kLevelOffset));
    __ cmp(r4, r16);
    __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
  }
  __ subi(r16, r16, Operand(1));
  __ stw(r16, MemOperand(r17, kLevelOffset));
  __ LoadP(r0, MemOperand(r17, kLimitOffset));
  __ cmp(r15, r0);
  __ bne(&delete_allocated_handles);

  // Leave the API exit frame.
  __ bind(&leave_exit_frame);
  // LeaveExitFrame expects unwind space to be in a register.
  if (stack_space_operand != nullptr) {
    __ LoadP(r14, *stack_space_operand);
  } else {
    __ mov(r14, Operand(stack_space));
  }
  __ LeaveExitFrame(false, r14, stack_space_operand != nullptr);

  // Check if the function scheduled an exception.
  __ LoadRoot(r14, RootIndex::kTheHoleValue);
  __ Move(r15, ExternalReference::scheduled_exception_address(isolate));
  __ LoadP(r15, MemOperand(r15));
  __ cmp(r14, r15);
  __ bne(&promote_scheduled_exception);

  __ blr();

  // Re-throw by promoting a scheduled exception.
  __ bind(&promote_scheduled_exception);
  __ TailCallRuntime(Runtime::kPromoteScheduledException);

  // HandleScope limit has changed. Delete allocated extensions.
  __ bind(&delete_allocated_handles);
  __ StoreP(r15, MemOperand(r17, kLimitOffset));
  __ mr(r14, r3);
  __ PrepareCallCFunction(1, r15);
  __ Move(r3, ExternalReference::isolate_address(isolate));
  __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
  __ mr(r3, r14);
  __ b(&leave_exit_frame);
}

}  // namespace

void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
  // ----------- S t a t e -------------
3092 3093 3094 3095 3096
  //  -- cp                  : context
  //  -- r4                  : api function address
  //  -- r5                  : arguments count (not including the receiver)
  //  -- r6                  : call data
  //  -- r3                  : holder
3097 3098 3099 3100 3101 3102 3103 3104
  //  -- sp[0]               : last argument
  //  -- ...
  //  -- sp[(argc - 1)* 4]   : first argument
  //  -- sp[(argc + 0) * 4]  : receiver
  // -----------------------------------

  Register api_function_address = r4;
  Register argc = r5;
3105 3106
  Register call_data = r6;
  Register holder = r3;
3107
  Register scratch = r7;
3108
  DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch));
3109

3110
  using FCA = FunctionCallbackArguments;
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133

  STATIC_ASSERT(FCA::kArgsLength == 6);
  STATIC_ASSERT(FCA::kNewTargetIndex == 5);
  STATIC_ASSERT(FCA::kDataIndex == 4);
  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
  STATIC_ASSERT(FCA::kIsolateIndex == 1);
  STATIC_ASSERT(FCA::kHolderIndex == 0);

  // Set up FunctionCallbackInfo's implicit_args on the stack as follows:
  //
  // Target state:
  //   sp[0 * kPointerSize]: kHolder
  //   sp[1 * kPointerSize]: kIsolate
  //   sp[2 * kPointerSize]: undefined (kReturnValueDefaultValue)
  //   sp[3 * kPointerSize]: undefined (kReturnValue)
  //   sp[4 * kPointerSize]: kData
  //   sp[5 * kPointerSize]: undefined (kNewTarget)

  // Reserve space on the stack.
  __ subi(sp, sp, Operand(FCA::kArgsLength * kPointerSize));

  // kHolder.
3134
  __ StoreP(holder, MemOperand(sp, 0 * kPointerSize));
3135 3136 3137 3138 3139

  // kIsolate.
  __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
  __ StoreP(scratch, MemOperand(sp, 1 * kPointerSize));

3140
  // kReturnValueDefaultValue and kReturnValue.
3141 3142 3143 3144 3145
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ StoreP(scratch, MemOperand(sp, 2 * kPointerSize));
  __ StoreP(scratch, MemOperand(sp, 3 * kPointerSize));

  // kData.
3146 3147 3148 3149
  __ StoreP(call_data, MemOperand(sp, 4 * kPointerSize));

  // kNewTarget.
  __ StoreP(scratch, MemOperand(sp, 5 * kPointerSize));
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182

  // Keep a pointer to kHolder (= implicit_args) in a scratch register.
  // We use it below to set up the FunctionCallbackInfo object.
  __ mr(scratch, sp);

  // Allocate the v8::Arguments structure in the arguments' space since
  // it's not controlled by GC.
  // PPC LINUX ABI:
  //
  // Create 4 extra slots on stack:
  //    [0] space for DirectCEntryStub's LR save
  //    [1-3] FunctionCallbackInfo
  //    [4] number of bytes to drop from the stack after returning
  static constexpr int kApiStackSpace = 5;
  static constexpr bool kDontSaveDoubles = false;

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace);

  // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
  // Arguments are after the return address (pushed by EnterExitFrame()).
  __ StoreP(scratch,
            MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));

  // FunctionCallbackInfo::values_ (points at the first varargs argument passed
  // on the stack).
  __ addi(scratch, scratch, Operand((FCA::kArgsLength - 1) * kPointerSize));
  __ ShiftLeftImm(ip, argc, Operand(kPointerSizeLog2));
  __ add(scratch, scratch, ip);
  __ StoreP(scratch,
            MemOperand(sp, (kStackFrameExtraParamSlot + 2) * kPointerSize));

  // FunctionCallbackInfo::length_.
3183
  __ stw(argc, MemOperand(sp, (kStackFrameExtraParamSlot + 3) * kPointerSize));
3184 3185 3186 3187

  // We also store the number of bytes to drop from the stack after returning
  // from the API function here.
  __ mov(scratch,
3188
         Operand((FCA::kArgsLength + 1 /* receiver */) * kPointerSize));
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
  __ ShiftLeftImm(ip, argc, Operand(kPointerSizeLog2));
  __ add(scratch, scratch, ip);
  __ StoreP(scratch,
            MemOperand(sp, (kStackFrameExtraParamSlot + 4) * kPointerSize));

  // v8::InvocationCallback's argument.
  __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));

  ExternalReference thunk_ref = ExternalReference::invoke_function_callback();

  // There are two stack slots above the arguments we constructed on the stack.
  // TODO(jgruber): Document what these arguments are.
  static constexpr int kStackSlotsAboveFCA = 2;
  MemOperand return_value_operand(
      fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kPointerSize);

  static constexpr int kUseStackSpaceOperand = 0;
  MemOperand stack_space_operand(
      sp, (kStackFrameExtraParamSlot + 4) * kPointerSize);

  AllowExternalCallThatCantCauseGC scope(masm);
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kUseStackSpaceOperand, &stack_space_operand,
                           return_value_operand);
}


void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
  int arg0Slot = 0;
  int accessorInfoSlot = 0;
  int apiStackSpace = 0;
  // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
  // name below the exit frame to make GC aware of them.
  STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
  STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);

  Register receiver = ApiGetterDescriptor::ReceiverRegister();
  Register holder = ApiGetterDescriptor::HolderRegister();
  Register callback = ApiGetterDescriptor::CallbackRegister();
  Register scratch = r7;
  DCHECK(!AreAliased(receiver, holder, callback, scratch));

  Register api_function_address = r5;

  __ push(receiver);
  // Push data from AccessorInfo.
  __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
  __ push(scratch);
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ Push(scratch, scratch);
  __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
  __ Push(scratch, holder);
  __ Push(Smi::zero());  // should_throw_on_error -> false
  __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
  __ push(scratch);

  // v8::PropertyCallbackInfo::args_ array and name handle.
  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;

  // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
  __ mr(r3, sp);                               // r3 = Handle<Name>
  __ addi(r4, r3, Operand(1 * kPointerSize));  // r4 = v8::PCI::args_

// If ABI passes Handles (pointer-sized struct) in a register:
//
// Create 2 extra slots on stack:
//    [0] space for DirectCEntryStub's LR save
//    [1] AccessorInfo&
//
// Otherwise:
//
// Create 3 extra slots on stack:
//    [0] space for DirectCEntryStub's LR save
//    [1] copy of Handle (first arg)
//    [2] AccessorInfo&
  if (ABI_PASSES_HANDLES_IN_REGS) {
    accessorInfoSlot = kStackFrameExtraParamSlot + 1;
    apiStackSpace = 2;
  } else {
    arg0Slot = kStackFrameExtraParamSlot + 1;
    accessorInfoSlot = arg0Slot + 1;
    apiStackSpace = 3;
  }

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(false, apiStackSpace);

  if (!ABI_PASSES_HANDLES_IN_REGS) {
    // pass 1st arg by reference
    __ StoreP(r3, MemOperand(sp, arg0Slot * kPointerSize));
    __ addi(r3, sp, Operand(arg0Slot * kPointerSize));
  }

  // Create v8::PropertyCallbackInfo object on the stack and initialize
  // it's args_ field.
  __ StoreP(r4, MemOperand(sp, accessorInfoSlot * kPointerSize));
  __ addi(r4, sp, Operand(accessorInfoSlot * kPointerSize));
  // r4 = v8::PropertyCallbackInfo&

  ExternalReference thunk_ref =
      ExternalReference::invoke_accessor_getter_callback();

  __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
  __ LoadP(api_function_address,
        FieldMemOperand(scratch, Foreign::kForeignAddressOffset));

  // +3 is to skip prolog, return address and name handle.
  MemOperand return_value_operand(
      fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
  MemOperand* const kUseStackSpaceConstant = nullptr;
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kStackUnwindSpace, kUseStackSpaceConstant,
                           return_value_operand);
}

3310
void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
3311 3312
  UseScratchRegisterScope temps(masm);
  Register temp2 = temps.Acquire();
3313 3314 3315 3316 3317 3318 3319
  // Place the return address on the stack, making the call
  // GC safe. The RegExp backend also relies on this.
  __ mflr(r0);
  __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));

  if (ABI_USES_FUNCTION_DESCRIPTORS && FLAG_embedded_builtins) {
    // AIX/PPC64BE Linux use a function descriptor;
3320 3321
    __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(temp2, kPointerSize));
    __ LoadP(temp2, MemOperand(temp2, 0));  // Instruction address
3322 3323
  }

3324
  __ Call(temp2);  // Call the C++ function.
3325 3326 3327
  __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
  __ mtlr(r0);
  __ blr();
3328 3329
}

3330
#undef __
3331 3332
}  // namespace internal
}  // namespace v8
3333 3334

#endif  // V8_TARGET_ARCH_PPC