globals.h 44.1 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6 7
#ifndef V8_GLOBALS_H_
#define V8_GLOBALS_H_

8 9
#include <stddef.h>
#include <stdint.h>
10

11
#include <limits>
12 13
#include <ostream>

14
#include "src/base/build_config.h"
15
#include "src/base/flags.h"
16
#include "src/base/logging.h"
17
#include "src/base/macros.h"
18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#ifdef V8_OS_WIN

// Setup for Windows shared library export.
#ifdef BUILDING_V8_SHARED
#define V8_EXPORT_PRIVATE __declspec(dllexport)
#elif USING_V8_SHARED
#define V8_EXPORT_PRIVATE __declspec(dllimport)
#else
#define V8_EXPORT_PRIVATE
#endif  // BUILDING_V8_SHARED

#else  // V8_OS_WIN

// Setup for Linux shared library export.
#if V8_HAS_ATTRIBUTE_VISIBILITY
#ifdef BUILDING_V8_SHARED
#define V8_EXPORT_PRIVATE __attribute__((visibility("default")))
#else
#define V8_EXPORT_PRIVATE
#endif
#else
#define V8_EXPORT_PRIVATE
#endif

#endif  // V8_OS_WIN

45
#define V8_INFINITY std::numeric_limits<double>::infinity()
46

47
namespace v8 {
48 49 50 51 52 53 54

namespace base {
class Mutex;
class RecursiveMutex;
class VirtualMemory;
}

55
namespace internal {
56

57
// Determine whether we are running in a simulated environment.
58 59 60
// Setting USE_SIMULATOR explicitly from the build script will force
// the use of a simulated environment.
#if !defined(USE_SIMULATOR)
61
#if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
62 63
#define USE_SIMULATOR 1
#endif
64 65 66
#if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
#define USE_SIMULATOR 1
#endif
67 68 69
#if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
#define USE_SIMULATOR 1
#endif
70 71
#if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
#define USE_SIMULATOR 1
72
#endif
73 74 75
#if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
#define USE_SIMULATOR 1
#endif
76 77 78
#if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
#define USE_SIMULATOR 1
#endif
79 80
#endif

81 82 83 84 85 86 87
// Determine whether the architecture uses an embedded constant pool
// (contiguous constant pool embedded in code object).
#if V8_TARGET_ARCH_PPC
#define V8_EMBEDDED_CONSTANT_POOL 1
#else
#define V8_EMBEDDED_CONSTANT_POOL 0
#endif
88

89 90 91 92 93 94 95 96 97 98 99
#ifdef V8_TARGET_ARCH_ARM
// Set stack limit lower for ARM than for other architectures because
// stack allocating MacroAssembler takes 120K bytes.
// See issue crbug.com/405338
#define V8_DEFAULT_STACK_SIZE_KB 864
#else
// Slightly less than 1MB, since Windows' default stack size for
// the main execution thread is 1MB for both 32 and 64-bit.
#define V8_DEFAULT_STACK_SIZE_KB 984
#endif

100 101
// Minimum stack size in KB required by compilers.
const int kStackSpaceRequiredForCompilation = 40;
102

103
// Determine whether double field unboxing feature is enabled.
104
#if V8_TARGET_ARCH_64_BIT
105
#define V8_DOUBLE_FIELDS_UNBOXING 1
106 107 108 109
#else
#define V8_DOUBLE_FIELDS_UNBOXING 0
#endif

110 111 112 113 114
// Some types of tracing require the SFI to store a unique ID.
#if defined(V8_TRACE_MAPS) || defined(V8_TRACE_IGNITION)
#define V8_SFI_HAS_UNIQUE_ID 1
#endif

115 116 117 118 119 120 121 122 123 124 125 126 127
// Superclass for classes only using static method functions.
// The subclass of AllStatic cannot be instantiated at all.
class AllStatic {
#ifdef DEBUG
 public:
  AllStatic() = delete;
#endif
};

// DEPRECATED
// TODO(leszeks): Delete this during a quiet period
#define BASE_EMBEDDED

128 129 130
typedef uint8_t byte;
typedef byte* Address;

131 132 133 134 135 136 137 138
// -----------------------------------------------------------------------------
// Constants

const int KB = 1024;
const int MB = KB * KB;
const int GB = KB * KB * KB;
const int kMaxInt = 0x7FFFFFFF;
const int kMinInt = -kMaxInt - 1;
139 140 141 142 143 144 145 146
const int kMaxInt8 = (1 << 7) - 1;
const int kMinInt8 = -(1 << 7);
const int kMaxUInt8 = (1 << 8) - 1;
const int kMinUInt8 = 0;
const int kMaxInt16 = (1 << 15) - 1;
const int kMinInt16 = -(1 << 15);
const int kMaxUInt16 = (1 << 16) - 1;
const int kMinUInt16 = 0;
147

148
const uint32_t kMaxUInt32 = 0xFFFFFFFFu;
149
const int kMinUInt32 = 0;
150

151 152 153 154 155
const int kCharSize = sizeof(char);
const int kShortSize = sizeof(short);  // NOLINT
const int kIntSize = sizeof(int);
const int kInt32Size = sizeof(int32_t);
const int kInt64Size = sizeof(int64_t);
156
const int kUInt32Size = sizeof(uint32_t);
157 158 159 160
const int kSizetSize = sizeof(size_t);
const int kFloatSize = sizeof(float);
const int kDoubleSize = sizeof(double);
const int kIntptrSize = sizeof(intptr_t);
161
const int kUIntptrSize = sizeof(uintptr_t);
162
const int kPointerSize = sizeof(void*);
163
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
164
const int kRegisterSize = kPointerSize + kPointerSize;
165
#else
166
const int kRegisterSize = kPointerSize;
167
#endif
168 169
const int kPCOnStackSize = kRegisterSize;
const int kFPOnStackSize = kRegisterSize;
170

Jakob Kummerow's avatar
Jakob Kummerow committed
171
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
172 173 174 175 176
const int kElidedFrameSlots = kPCOnStackSize / kPointerSize;
#else
const int kElidedFrameSlots = 0;
#endif

177 178
const int kDoubleSizeLog2 = 3;

179
#if V8_HOST_ARCH_64_BIT
180
const int kPointerSizeLog2 = 3;
181
const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
182
const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
183
const bool kRequiresCodeRange = true;
184 185 186 187 188
#if V8_TARGET_ARCH_MIPS64
// To use pseudo-relative jumps such as j/jal instructions which have 28-bit
// encoded immediate, the addresses have to be in range of 256MB aligned
// region. Used only for large object space.
const size_t kMaximalCodeRangeSize = 256 * MB;
189
const size_t kCodeRangeAreaAlignment = 256 * MB;
190 191 192
#elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
const size_t kMaximalCodeRangeSize = 512 * MB;
const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
193
#else
194
const size_t kMaximalCodeRangeSize = 512 * MB;
195
const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
196
#endif
197
#if V8_OS_WIN
198
const size_t kMinimumCodeRangeSize = 4 * MB;
199 200
const size_t kReservedCodeRangePages = 1;
#else
201
const size_t kMinimumCodeRangeSize = 3 * MB;
202 203
const size_t kReservedCodeRangePages = 0;
#endif
204
#else
205
const int kPointerSizeLog2 = 2;
206
const intptr_t kIntptrSignBit = 0x80000000;
207
const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
208 209 210 211
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
// x32 port also requires code range.
const bool kRequiresCodeRange = true;
const size_t kMaximalCodeRangeSize = 256 * MB;
212
const size_t kMinimumCodeRangeSize = 3 * MB;
213
const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
214 215 216 217 218
#elif V8_HOST_ARCH_PPC && V8_TARGET_ARCH_PPC && V8_OS_LINUX
const bool kRequiresCodeRange = false;
const size_t kMaximalCodeRangeSize = 0 * MB;
const size_t kMinimumCodeRangeSize = 0 * MB;
const size_t kCodeRangeAreaAlignment = 64 * KB;  // OS page on PPC Linux
219
#else
220 221
const bool kRequiresCodeRange = false;
const size_t kMaximalCodeRangeSize = 0 * MB;
222
const size_t kMinimumCodeRangeSize = 0 * MB;
223
const size_t kCodeRangeAreaAlignment = 4 * KB;  // OS page.
224
#endif
225
const size_t kReservedCodeRangePages = 0;
226
#endif
227

228 229
// Trigger an incremental GCs once the external memory reaches this limit.
const int kExternalAllocationSoftLimit = 64 * MB;
230

231 232 233 234 235
// Maximum object size that gets allocated into regular pages. Objects larger
// than that size are allocated in large object space and are never moved in
// memory. This also applies to new space allocation, since objects are never
// migrated from new space to large object space. Takes double alignment into
// account.
236 237 238
//
// Current value: Page::kAllocatableMemory (on 32-bit arch) - 512 (slack).
const int kMaxRegularHeapObjectSize = 507136;
239

240 241
STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));

242 243 244 245 246
const int kBitsPerByte = 8;
const int kBitsPerByteLog2 = 3;
const int kBitsPerPointer = kPointerSize * kBitsPerByte;
const int kBitsPerInt = kIntSize * kBitsPerByte;

247 248 249 250 251 252 253 254 255
// IEEE 754 single precision floating point number bit layout.
const uint32_t kBinary32SignMask = 0x80000000u;
const uint32_t kBinary32ExponentMask = 0x7f800000u;
const uint32_t kBinary32MantissaMask = 0x007fffffu;
const int kBinary32ExponentBias = 127;
const int kBinary32MaxExponent  = 0xFE;
const int kBinary32MinExponent  = 0x01;
const int kBinary32MantissaBits = 23;
const int kBinary32ExponentShift = 23;
256

257 258 259 260
// Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
// other bits set.
const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;

261
// Latin1/UTF-16 constants
262
// Code-point values in Unicode 4.0 are 21 bits wide.
263
// Code units in UTF-16 are 16 bits wide.
264 265
typedef uint16_t uc16;
typedef int32_t uc32;
266
const int kOneByteSize    = kCharSize;
267 268
const int kUC16Size     = sizeof(uc16);      // NOLINT

269 270
// 128 bit SIMD value size.
const int kSimd128Size = 16;
271

272 273 274 275
// Round up n to be a multiple of sz, where sz is a power of 2.
#define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))


276 277 278 279 280 281 282 283 284 285 286 287 288
// FUNCTION_ADDR(f) gets the address of a C function f.
#define FUNCTION_ADDR(f)                                        \
  (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))


// FUNCTION_CAST<F>(addr) casts an address into a function
// of type F. Used to invoke generated code from within C.
template <typename F>
F FUNCTION_CAST(Address addr) {
  return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
}


289 290 291 292 293 294 295 296 297 298 299 300 301 302
// Determine whether the architecture uses function descriptors
// which provide a level of indirection between the function pointer
// and the function entrypoint.
#if V8_HOST_ARCH_PPC && \
    (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
#define USES_FUNCTION_DESCRIPTORS 1
#define FUNCTION_ENTRYPOINT_ADDRESS(f)       \
  (reinterpret_cast<v8::internal::Address*>( \
      &(reinterpret_cast<intptr_t*>(f)[0])))
#else
#define USES_FUNCTION_DESCRIPTORS 0
#endif


303 304 305
// -----------------------------------------------------------------------------
// Forward declarations for frequently used classes
// (sorted alphabetically)
306

307 308
class FreeStoreAllocationPolicy;
template <typename T, class P = FreeStoreAllocationPolicy> class List;
309

310 311 312 313
// -----------------------------------------------------------------------------
// Declarations for use in both the preparser and the rest of V8.

// The Strict Mode (ECMA-262 5th edition, 4.2.2).
314

315 316 317 318 319 320
enum class LanguageMode : bool { kSloppy, kStrict };
static const size_t LanguageModeSize = 2;

inline size_t hash_value(LanguageMode mode) {
  return static_cast<size_t>(mode);
}
marja's avatar
marja committed
321

322
inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
323
  switch (mode) {
324 325 326 327
    case LanguageMode::kSloppy:
      return os << "sloppy";
    case LanguageMode::kStrict:
      return os << "strict";
328
  }
329
  UNREACHABLE();
330 331
}

marja's avatar
marja committed
332
inline bool is_sloppy(LanguageMode language_mode) {
333
  return language_mode == LanguageMode::kSloppy;
marja's avatar
marja committed
334 335
}

336
inline bool is_strict(LanguageMode language_mode) {
337
  return language_mode != LanguageMode::kSloppy;
338 339 340
}

inline bool is_valid_language_mode(int language_mode) {
341 342
  return language_mode == static_cast<int>(LanguageMode::kSloppy) ||
         language_mode == static_cast<int>(LanguageMode::kStrict);
marja's avatar
marja committed
343 344
}

345 346
inline LanguageMode construct_language_mode(bool strict_bit) {
  return static_cast<LanguageMode>(strict_bit);
347
}
348

349 350 351 352 353 354 355 356 357
// Return kStrict if either of the language modes is kStrict, or kSloppy
// otherwise.
inline LanguageMode stricter_language_mode(LanguageMode mode1,
                                           LanguageMode mode2) {
  STATIC_ASSERT(LanguageModeSize == 2);
  return static_cast<LanguageMode>(static_cast<int>(mode1) |
                                   static_cast<int>(mode2));
}

358 359
enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };

yangguo's avatar
yangguo committed
360 361
// This constant is used as an undefined value when passing source positions.
const int kNoSourcePosition = -1;
marja's avatar
marja committed
362

363 364 365
// This constant is used to indicate missing deoptimization information.
const int kNoDeoptimizationId = -1;

366
// Deoptimize bailout kind.
367
enum class DeoptimizeKind : uint8_t { kEager, kSoft, kLazy };
368 369 370 371 372 373 374 375 376
inline size_t hash_value(DeoptimizeKind kind) {
  return static_cast<size_t>(kind);
}
inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) {
  switch (kind) {
    case DeoptimizeKind::kEager:
      return os << "Eager";
    case DeoptimizeKind::kSoft:
      return os << "Soft";
377 378
    case DeoptimizeKind::kLazy:
      return os << "Lazy";
379 380 381 382
  }
  UNREACHABLE();
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
// Indicates whether the lookup is related to sloppy-mode block-scoped
// function hoisting, and is a synthetic assignment for that.
enum class LookupHoistingMode { kNormal, kLegacySloppy };

inline std::ostream& operator<<(std::ostream& os,
                                const LookupHoistingMode& mode) {
  switch (mode) {
    case LookupHoistingMode::kNormal:
      return os << "normal hoisting";
    case LookupHoistingMode::kLegacySloppy:
      return os << "legacy sloppy hoisting";
  }
  UNREACHABLE();
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
// Mask for the sign bit in a smi.
const intptr_t kSmiSignMask = kIntptrSignBit;

const int kObjectAlignmentBits = kPointerSizeLog2;
const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;

// Desired alignment for pointers.
const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;

// Desired alignment for double values.
const intptr_t kDoubleAlignment = 8;
const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;

// Desired alignment for generated code is 32 bytes (to improve cache line
// utilization).
const int kCodeAlignmentBits = 5;
const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;

419 420 421 422 423 424 425 426 427
// The owner field of a page is tagged with the page header tag. We need that
// to find out if a slot is part of a large object. If we mask out the lower
// 0xfffff bits (1M pages), go to the owner offset, and see that this field
// is tagged with the page header tag, we can just look up the owner.
// Otherwise, we know that we are somewhere (not within the first 1M) in a
// large object.
const int kPageHeaderTag = 3;
const int kPageHeaderTagSize = 2;
const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

// Zap-value: The value used for zapping dead objects.
// Should be a recognizable hex value tagged as a failure.
#ifdef V8_HOST_ARCH_64_BIT
const Address kZapValue =
    reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
const Address kHandleZapValue =
    reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
const Address kGlobalHandleZapValue =
    reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
const Address kFromSpaceZapValue =
    reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
#else
const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
const uint32_t kSlotsZapValue = 0xbeefdeef;
const uint32_t kDebugZapValue = 0xbadbaddb;
const uint32_t kFreeListZapValue = 0xfeed1eaf;
#endif

const int kCodeZapValue = 0xbadc0de;
455
const uint32_t kPhantomReferenceZap = 0xca11bac;
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

// On Intel architecture, cache line size is 64 bytes.
// On ARM it may be less (32 bytes), but as far this constant is
// used for aligning data, it doesn't hurt to align on a greater value.
#define PROCESSOR_CACHE_LINE_SIZE 64

// Constants relevant to double precision floating point numbers.
// If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);


// -----------------------------------------------------------------------------
// Forward declarations for frequently used classes

class AccessorInfo;
class Allocation;
class Arguments;
class Assembler;
class Code;
class CodeGenerator;
class CodeStub;
class Context;
class Debug;
class DebugInfo;
class Descriptor;
class DescriptorArray;
class TransitionArray;
class ExternalReference;
class FixedArray;
class FunctionTemplateInfo;
class MemoryChunk;
class SeededNumberDictionary;
class UnseededNumberDictionary;
class NameDictionary;
490
class GlobalDictionary;
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
template <typename T> class MaybeHandle;
template <typename T> class Handle;
class Heap;
class HeapObject;
class IC;
class InterceptorInfo;
class Isolate;
class JSReceiver;
class JSArray;
class JSFunction;
class JSObject;
class LargeObjectSpace;
class MacroAssembler;
class Map;
class MapSpace;
class MarkCompactCollector;
class NewSpace;
class Object;
class OldSpace;
510
class ParameterCount;
511 512
class Foreign;
class Scope;
513
class DeclarationScope;
514
class ModuleScope;
515 516 517 518
class ScopeInfo;
class Script;
class Smi;
template <typename Config, class Allocator = FreeStoreAllocationPolicy>
519
class SplayTree;
520
class String;
521
class Symbol;
522 523
class Name;
class Struct;
524
class FeedbackVector;
525 526 527 528 529 530 531 532 533 534 535 536 537
class Variable;
class RelocInfo;
class MessageLocation;

typedef bool (*WeakSlotCallback)(Object** pointer);

typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);

// -----------------------------------------------------------------------------
// Miscellaneous

// NOTE: SpaceIterator depends on AllocationSpace enumeration values being
// consecutive.
538
// Keep this enum in sync with the ObjectSpace enum in v8.h
539
enum AllocationSpace {
540 541 542 543 544
  NEW_SPACE,   // Semispaces collected with copying collector.
  OLD_SPACE,   // May contain pointers to new space.
  CODE_SPACE,  // No pointers to new space, marked executable.
  MAP_SPACE,   // Only and all map objects.
  LO_SPACE,    // Promoted large objects.
545 546 547

  FIRST_SPACE = NEW_SPACE,
  LAST_SPACE = LO_SPACE,
548
  FIRST_PAGED_SPACE = OLD_SPACE,
549
  LAST_PAGED_SPACE = MAP_SPACE
550 551 552 553
};
const int kSpaceTagSize = 3;
const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;

554
enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned };
555

556 557
enum class AccessMode { ATOMIC, NON_ATOMIC };

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
// Possible outcomes for decisions.
enum class Decision : uint8_t { kUnknown, kTrue, kFalse };

inline size_t hash_value(Decision decision) {
  return static_cast<uint8_t>(decision);
}

inline std::ostream& operator<<(std::ostream& os, Decision decision) {
  switch (decision) {
    case Decision::kUnknown:
      return os << "Unknown";
    case Decision::kTrue:
      return os << "True";
    case Decision::kFalse:
      return os << "False";
  }
  UNREACHABLE();
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
// Supported write barrier modes.
enum WriteBarrierKind : uint8_t {
  kNoWriteBarrier,
  kMapWriteBarrier,
  kPointerWriteBarrier,
  kFullWriteBarrier
};

inline size_t hash_value(WriteBarrierKind kind) {
  return static_cast<uint8_t>(kind);
}

inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
  switch (kind) {
    case kNoWriteBarrier:
      return os << "NoWriteBarrier";
    case kMapWriteBarrier:
      return os << "MapWriteBarrier";
    case kPointerWriteBarrier:
      return os << "PointerWriteBarrier";
    case kFullWriteBarrier:
      return os << "FullWriteBarrier";
  }
  UNREACHABLE();
}

603 604 605 606 607 608
// A flag that indicates whether objects should be pretenured when
// allocated (allocated directly into the old generation) or not
// (allocated in the young generation if the object size and type
// allows).
enum PretenureFlag { NOT_TENURED, TENURED };

609 610 611 612 613 614 615 616 617 618
inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
  switch (flag) {
    case NOT_TENURED:
      return os << "NotTenured";
    case TENURED:
      return os << "Tenured";
  }
  UNREACHABLE();
}

619 620 621 622 623
enum MinimumCapacity {
  USE_DEFAULT_MINIMUM_CAPACITY,
  USE_CUSTOM_MINIMUM_CAPACITY
};

624
enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR };
625 626 627 628 629

enum Executability { NOT_EXECUTABLE, EXECUTABLE };

enum VisitMode {
  VISIT_ALL,
630
  VISIT_ALL_IN_MINOR_MC_MARK,
631
  VISIT_ALL_IN_MINOR_MC_UPDATE,
632 633
  VISIT_ALL_IN_SCAVENGE,
  VISIT_ALL_IN_SWEEP_NEWSPACE,
634
  VISIT_ONLY_STRONG,
635 636
  VISIT_ONLY_STRONG_FOR_SERIALIZATION,
  VISIT_ONLY_STRONG_ROOT_LIST,
637 638 639
};

// Flag indicating whether code is built into the VM (one of the natives files).
640 641 642 643 644 645
enum NativesFlag {
  NOT_NATIVES_CODE,
  EXTENSION_CODE,
  NATIVES_CODE,
  INSPECTOR_CODE
};
646

647 648
// JavaScript defines two kinds of 'nil'.
enum NilValue { kNullValue, kUndefinedValue };
649

650 651 652 653 654 655 656
// ParseRestriction is used to restrict the set of valid statements in a
// unit of compilation.  Restriction violations cause a syntax error.
enum ParseRestriction {
  NO_PARSE_RESTRICTION,         // All expressions are allowed.
  ONLY_SINGLE_FUNCTION_LITERAL  // Only a single FunctionLiteral expression.
};

657 658 659
// A CodeDesc describes a buffer holding instructions and relocation
// information. The instructions start at the beginning of the buffer
// and grow forward, the relocation information starts at the end of
660 661
// the buffer and grows backward.  A constant pool may exist at the
// end of the instructions.
662
//
663 664 665 666 667 668
//  |<--------------- buffer_size ----------------------------------->|
//  |<------------- instr_size ---------->|        |<-- reloc_size -->|
//  |               |<- const_pool_size ->|                           |
//  +=====================================+========+==================+
//  |  instructions |        data         |  free  |    reloc info    |
//  +=====================================+========+==================+
669 670 671 672 673 674 675 676 677
//  ^
//  |
//  buffer

struct CodeDesc {
  byte* buffer;
  int buffer_size;
  int instr_size;
  int reloc_size;
678
  int constant_pool_size;
679 680
  byte* unwinding_info;
  int unwinding_info_size;
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
  Assembler* origin;
};


// Callback function used for checking constraints when copying/relocating
// objects. Returns true if an object can be copied/relocated from its
// old_addr to a new_addr.
typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);


// Callback function on inline caches, used for iterating over inline caches
// in compiled code.
typedef void (*InlineCacheCallback)(Code* code, Address ic);


// State for inline cache call sites. Aliased as IC::State.
enum InlineCacheState {
  // Has never been executed.
  UNINITIALIZED,
  // Has been executed but monomorhic state has been delayed.
  PREMONOMORPHIC,
  // Has been executed and only one receiver type has been seen.
  MONOMORPHIC,
704
  // Check failed due to prototype (or map deprecation).
705
  RECOMPUTE_HANDLER,
706 707 708 709 710 711 712 713
  // Multiple receiver types have been seen.
  POLYMORPHIC,
  // Many receiver types have been seen.
  MEGAMORPHIC,
  // A generic handler is installed and no extra typefeedback is recorded.
  GENERIC,
};

714
enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
715

716 717
enum ResultSentinel { kNotFound = -1, kUnsupported = -2 };

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
// The Store Buffer (GC).
typedef enum {
  kStoreBufferFullEvent,
  kStoreBufferStartScanningPagesEvent,
  kStoreBufferScanningPageEvent
} StoreBufferEvent;


typedef void (*StoreBufferCallback)(Heap* heap,
                                    MemoryChunk* page,
                                    StoreBufferEvent event);

// Union used for customized checking of the IEEE double types
// inlined within v8 runtime, rather than going to the underlying
// platform headers and libraries
union IeeeDoubleLittleEndianArchType {
  double d;
  struct {
    unsigned int man_low  :32;
    unsigned int man_high :20;
    unsigned int exp      :11;
    unsigned int sign     :1;
  } bits;
};


union IeeeDoubleBigEndianArchType {
  double d;
  struct {
    unsigned int sign     :1;
    unsigned int exp      :11;
    unsigned int man_high :20;
    unsigned int man_low  :32;
  } bits;
};

754 755 756 757 758 759 760 761 762
#if V8_TARGET_LITTLE_ENDIAN
typedef IeeeDoubleLittleEndianArchType IeeeDoubleArchType;
const int kIeeeDoubleMantissaWordOffset = 0;
const int kIeeeDoubleExponentWordOffset = 4;
#else
typedef IeeeDoubleBigEndianArchType IeeeDoubleArchType;
const int kIeeeDoubleMantissaWordOffset = 4;
const int kIeeeDoubleExponentWordOffset = 0;
#endif
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

// AccessorCallback
struct AccessorDescriptor {
  Object* (*getter)(Isolate* isolate, Object* object, void* data);
  Object* (*setter)(
      Isolate* isolate, JSObject* object, Object* value, void* data);
  void* data;
};


// -----------------------------------------------------------------------------
// Macros

// Testers for test.

#define HAS_SMI_TAG(value) \
779 780 781 782 783
  ((reinterpret_cast<intptr_t>(value) & ::i::kSmiTagMask) == ::i::kSmiTag)

#define HAS_HEAP_OBJECT_TAG(value)                                   \
  (((reinterpret_cast<intptr_t>(value) & ::i::kHeapObjectTagMask) == \
    ::i::kHeapObjectTag))
784 785 786 787 788 789 790 791 792 793 794 795 796

// OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
#define OBJECT_POINTER_ALIGN(value)                             \
  (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)

// POINTER_SIZE_ALIGN returns the value aligned as a pointer.
#define POINTER_SIZE_ALIGN(value)                               \
  (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)

// CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
#define CODE_POINTER_ALIGN(value)                               \
  (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)

797 798 799 800
// DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
#define DOUBLE_POINTER_ALIGN(value) \
  (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)

801 802 803

// CPU feature flags.
enum CpuFeature {
804 805
  // x86
  SSE4_1,
806
  SSSE3,
807 808
  SSE3,
  SAHF,
809 810
  AVX,
  FMA3,
811 812 813 814
  BMI1,
  BMI2,
  LZCNT,
  POPCNT,
815
  ATOM,
816
  // ARM
817 818 819 820
  // - Standard configurations. The baseline is ARMv6+VFPv2.
  ARMv7,        // ARMv7-A + VFPv3-D32 + NEON
  ARMv7_SUDIV,  // ARMv7-A + VFPv4-D32 + NEON + SUDIV
  ARMv8,        // ARMv8-A (+ all of the above)
821 822 823 824 825 826
  // MIPS, MIPS64
  FPU,
  FP64FPU,
  MIPSr1,
  MIPSr2,
  MIPSr6,
827
  MIPS_SIMD,  // MSA instructions
828 829
  // ARM64
  ALWAYS_ALIGN_CSP,
830 831 832 833
  // PPC
  FPR_GPR_MOV,
  LWSYNC,
  ISELECT,
834
  VSX,
835
  MODULO,
836 837 838 839
  // S390
  DISTINCT_OPS,
  GENERAL_INSTR_EXT,
  FLOATING_POINT_EXT,
840
  VECTOR_FACILITY,
jyan's avatar
jyan committed
841
  MISC_INSTR_EXT2,
842

843 844 845
  NUMBER_OF_CPU_FEATURES,

  // ARM feature aliases (based on the standard configurations above).
846
  VFPv3 = ARMv7,
847 848 849
  NEON = ARMv7,
  VFP32DREGS = ARMv7,
  SUDIV = ARMv7_SUDIV
850 851
};

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
// Defines hints about receiver values based on structural knowledge.
enum class ConvertReceiverMode : unsigned {
  kNullOrUndefined,     // Guaranteed to be null or undefined.
  kNotNullOrUndefined,  // Guaranteed to never be null or undefined.
  kAny                  // No specific knowledge about receiver.
};

inline size_t hash_value(ConvertReceiverMode mode) {
  return bit_cast<unsigned>(mode);
}

inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
  switch (mode) {
    case ConvertReceiverMode::kNullOrUndefined:
      return os << "NULL_OR_UNDEFINED";
    case ConvertReceiverMode::kNotNullOrUndefined:
      return os << "NOT_NULL_OR_UNDEFINED";
    case ConvertReceiverMode::kAny:
      return os << "ANY";
  }
  UNREACHABLE();
}

875 876 877 878 879 880 881 882
// Valid hints for the abstract operation OrdinaryToPrimitive,
// implemented according to ES6, section 7.1.1.
enum class OrdinaryToPrimitiveHint { kNumber, kString };

// Valid hints for the abstract operation ToPrimitive,
// implemented according to ES6, section 7.1.1.
enum class ToPrimitiveHint { kDefault, kNumber, kString };

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
// Defines specifics about arguments object or rest parameter creation.
enum class CreateArgumentsType : uint8_t {
  kMappedArguments,
  kUnmappedArguments,
  kRestParameter
};

inline size_t hash_value(CreateArgumentsType type) {
  return bit_cast<uint8_t>(type);
}

inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
  switch (type) {
    case CreateArgumentsType::kMappedArguments:
      return os << "MAPPED_ARGUMENTS";
    case CreateArgumentsType::kUnmappedArguments:
      return os << "UNMAPPED_ARGUMENTS";
    case CreateArgumentsType::kRestParameter:
      return os << "REST_PARAMETER";
  }
  UNREACHABLE();
}

906 907 908 909 910 911 912
// Used to specify if a macro instruction must perform a smi check on tagged
// values.
enum SmiCheckType {
  DONT_DO_SMI_CHECK,
  DO_SMI_CHECK
};

913
enum ScopeType : uint8_t {
914 915 916
  EVAL_SCOPE,      // The top-level scope for an eval source.
  FUNCTION_SCOPE,  // The top-level scope for a function.
  MODULE_SCOPE,    // The scope introduced by a module literal
917
  SCRIPT_SCOPE,    // The top-level scope for a script or a top-level eval.
918 919
  CATCH_SCOPE,     // The scope introduced by catch.
  BLOCK_SCOPE,     // The scope introduced by a new block.
920
  WITH_SCOPE       // The scope introduced by with.
921 922
};

923 924 925 926 927 928 929 930
// AllocationSiteMode controls whether allocations are tracked by an allocation
// site.
enum AllocationSiteMode {
  DONT_TRACK_ALLOCATION_SITE,
  TRACK_ALLOCATION_SITE,
  LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
};

931
// The mips architecture prior to revision 5 has inverted encoding for sNaN.
932 933 934
#if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) &&           \
     (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
    (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) &&         \
Jakob Kummerow's avatar
Jakob Kummerow committed
935
     (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR)))
936 937 938
const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
#else
939 940
const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
941
#endif
942 943 944 945 946

const uint64_t kHoleNanInt64 =
    (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;


947 948 949 950
// ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
const double kMaxSafeInteger = 9007199254740991.0;  // 2^53-1


951
// The order of this enum has to be kept in sync with the predicates below.
952
enum VariableMode : uint8_t {
953
  // User declared variables:
954
  LET,  // declared via 'let' declarations (first lexical)
955

956
  CONST,  // declared via 'const' declarations (last lexical)
957

958 959
  VAR,  // declared via 'var', and 'function' declarations

960
  // Variables introduced by the compiler:
961 962
  TEMPORARY,  // temporary variables (not user-visible), stack-allocated
              // unless the scope as a whole has forced context allocation
963

964 965
  DYNAMIC,  // always require dynamic lookup (we don't know
            // the declaration)
966 967 968 969 970

  DYNAMIC_GLOBAL,  // requires dynamic lookup, but we know that the
                   // variable is global unless it has been shadowed
                   // by an eval-introduced variable

971 972 973 974
  DYNAMIC_LOCAL  // requires dynamic lookup, but we know that the
                 // variable is local and where it is unless it
                 // has been shadowed by an eval-introduced
                 // variable
975 976
};

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
// Printing support
#ifdef DEBUG
inline const char* VariableMode2String(VariableMode mode) {
  switch (mode) {
    case VAR:
      return "VAR";
    case LET:
      return "LET";
    case CONST:
      return "CONST";
    case DYNAMIC:
      return "DYNAMIC";
    case DYNAMIC_GLOBAL:
      return "DYNAMIC_GLOBAL";
    case DYNAMIC_LOCAL:
      return "DYNAMIC_LOCAL";
    case TEMPORARY:
      return "TEMPORARY";
  }
  UNREACHABLE();
}
#endif

enum VariableKind : uint8_t {
  NORMAL_VARIABLE,
  FUNCTION_VARIABLE,
  THIS_VARIABLE,
1004
  SLOPPY_FUNCTION_NAME_VARIABLE
1005 1006
};

1007 1008 1009 1010 1011 1012
inline bool IsDynamicVariableMode(VariableMode mode) {
  return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
}


inline bool IsDeclaredVariableMode(VariableMode mode) {
1013 1014
  STATIC_ASSERT(LET == 0);  // Implies that mode >= LET.
  return mode <= VAR;
1015 1016 1017 1018
}


inline bool IsLexicalVariableMode(VariableMode mode) {
1019 1020
  STATIC_ASSERT(LET == 0);  // Implies that mode >= LET.
  return mode <= CONST;
1021 1022
}

1023
enum VariableLocation : uint8_t {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
  // Before and during variable allocation, a variable whose location is
  // not yet determined.  After allocation, a variable looked up as a
  // property on the global object (and possibly absent).  name() is the
  // variable name, index() is invalid.
  UNALLOCATED,

  // A slot in the parameter section on the stack.  index() is the
  // parameter index, counting left-to-right.  The receiver is index -1;
  // the first parameter is index 0.
  PARAMETER,

  // A slot in the local section on the stack.  index() is the variable
  // index in the stack frame, starting at 0.
  LOCAL,

  // An indexed slot in a heap context.  index() is the variable index in
  // the context object on the heap, starting at 0.  scope() is the
  // corresponding scope.
  CONTEXT,

  // A named slot in a heap context.  name() is the variable name in the
  // context object on the heap, with lookup starting at the current
  // context.  index() is invalid.
1047
  LOOKUP,
1048

1049
  // A named slot in a module's export table.
1050 1051 1052
  MODULE,

  kLastVariableLocation = MODULE
1053
};
1054

1055 1056 1057 1058 1059 1060
// ES6 specifies declarative environment records with mutable and immutable
// bindings that can be in two states: initialized and uninitialized.
// When accessing a binding, it needs to be checked for initialization.
// However in the following cases the binding is initialized immediately
// after creation so the initialization check can always be skipped:
//
1061 1062 1063 1064 1065 1066 1067 1068
// 1. Var declared local variables.
//      var foo;
// 2. A local variable introduced by a function declaration.
//      function foo() {}
// 3. Parameters
//      function x(foo) {}
// 4. Catch bound variables.
//      try {} catch (foo) {}
1069
// 6. Function name variables of named function expressions.
1070 1071 1072 1073 1074 1075 1076
//      var x = function foo() {}
// 7. Implicit binding of 'this'.
// 8. Implicit binding of 'arguments' in functions.
//
// The following enum specifies a flag that indicates if the binding needs a
// distinct initialization step (kNeedsInitialization) or if the binding is
// immediately initialized upon creation (kCreatedInitialized).
1077
enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized };
1078

1079 1080
enum class HoleCheckMode { kRequired, kElided };

1081
enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned };
1082

1083
// Serialized in PreparseData, so numeric values should not be changed.
1084 1085
enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };

1086

1087 1088 1089 1090 1091
enum MinusZeroMode {
  TREAT_MINUS_ZERO_AS_ZERO,
  FAIL_ON_MINUS_ZERO
};

1092

1093 1094
enum Signedness { kSigned, kUnsigned };

1095
enum FunctionKind : uint16_t {
1096
  kNormalFunction = 0,
1097 1098 1099
  kArrowFunction = 1 << 0,
  kGeneratorFunction = 1 << 1,
  kConciseMethod = 1 << 2,
1100
  kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
1101
  kDefaultConstructor = 1 << 3,
1102
  kDerivedConstructor = 1 << 4,
1103 1104 1105
  kBaseConstructor = 1 << 5,
  kGetterFunction = 1 << 6,
  kSetterFunction = 1 << 7,
1106
  kAsyncFunction = 1 << 8,
1107
  kModule = 1 << 9,
1108
  kAccessorFunction = kGetterFunction | kSetterFunction,
1109
  kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
1110
  kDefaultDerivedConstructor = kDefaultConstructor | kDerivedConstructor,
1111
  kClassConstructor =
1112
      kBaseConstructor | kDerivedConstructor | kDefaultConstructor,
1113
  kAsyncArrowFunction = kArrowFunction | kAsyncFunction,
1114 1115 1116 1117 1118
  kAsyncConciseMethod = kAsyncFunction | kConciseMethod,

  // https://tc39.github.io/proposal-async-iteration/
  kAsyncConciseGeneratorMethod = kAsyncFunction | kConciseGeneratorMethod,
  kAsyncGeneratorFunction = kAsyncFunction | kGeneratorFunction
1119 1120 1121 1122 1123 1124
};

inline bool IsValidFunctionKind(FunctionKind kind) {
  return kind == FunctionKind::kNormalFunction ||
         kind == FunctionKind::kArrowFunction ||
         kind == FunctionKind::kGeneratorFunction ||
1125
         kind == FunctionKind::kModule ||
1126
         kind == FunctionKind::kConciseMethod ||
1127
         kind == FunctionKind::kConciseGeneratorMethod ||
1128 1129
         kind == FunctionKind::kGetterFunction ||
         kind == FunctionKind::kSetterFunction ||
1130
         kind == FunctionKind::kAccessorFunction ||
1131
         kind == FunctionKind::kDefaultBaseConstructor ||
1132
         kind == FunctionKind::kDefaultDerivedConstructor ||
1133
         kind == FunctionKind::kBaseConstructor ||
1134
         kind == FunctionKind::kDerivedConstructor ||
1135 1136
         kind == FunctionKind::kAsyncFunction ||
         kind == FunctionKind::kAsyncArrowFunction ||
1137 1138 1139
         kind == FunctionKind::kAsyncConciseMethod ||
         kind == FunctionKind::kAsyncConciseGeneratorMethod ||
         kind == FunctionKind::kAsyncGeneratorFunction;
1140 1141 1142 1143 1144
}


inline bool IsArrowFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1145
  return (kind & FunctionKind::kArrowFunction) != 0;
1146 1147 1148 1149 1150
}


inline bool IsGeneratorFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1151
  return (kind & FunctionKind::kGeneratorFunction) != 0;
1152 1153
}

1154 1155
inline bool IsModule(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1156
  return (kind & FunctionKind::kModule) != 0;
1157 1158
}

1159 1160
inline bool IsAsyncFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1161
  return (kind & FunctionKind::kAsyncFunction) != 0;
1162
}
1163

1164 1165 1166 1167 1168 1169
inline bool IsAsyncGeneratorFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  const FunctionKind kMask = FunctionKind::kAsyncGeneratorFunction;
  return (kind & kMask) == kMask;
}

1170
inline bool IsResumableFunction(FunctionKind kind) {
1171
  return IsGeneratorFunction(kind) || IsAsyncFunction(kind) || IsModule(kind);
1172 1173
}

1174 1175
inline bool IsConciseMethod(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1176
  return (kind & FunctionKind::kConciseMethod) != 0;
1177
}
1178

1179 1180
inline bool IsGetterFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1181
  return (kind & FunctionKind::kGetterFunction) != 0;
1182 1183 1184 1185
}

inline bool IsSetterFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1186
  return (kind & FunctionKind::kSetterFunction) != 0;
1187
}
1188

1189 1190
inline bool IsAccessorFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1191
  return (kind & FunctionKind::kAccessorFunction) != 0;
1192 1193 1194
}


1195 1196
inline bool IsDefaultConstructor(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1197
  return (kind & FunctionKind::kDefaultConstructor) != 0;
1198 1199
}

1200

1201 1202
inline bool IsBaseConstructor(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
1203
  return (kind & FunctionKind::kBaseConstructor) != 0;
1204 1205
}

1206
inline bool IsDerivedConstructor(FunctionKind kind) {
1207
  DCHECK(IsValidFunctionKind(kind));
1208
  return (kind & FunctionKind::kDerivedConstructor) != 0;
1209
}
1210 1211


1212
inline bool IsClassConstructor(FunctionKind kind) {
1213
  DCHECK(IsValidFunctionKind(kind));
1214
  return (kind & FunctionKind::kClassConstructor) != 0;
1215
}
1216

1217
inline bool IsConstructable(FunctionKind kind) {
1218
  if (IsAccessorFunction(kind)) return false;
1219
  if (IsConciseMethod(kind)) return false;
1220
  if (IsArrowFunction(kind)) return false;
1221
  if (IsGeneratorFunction(kind)) return false;
1222
  if (IsAsyncFunction(kind)) return false;
1223 1224 1225
  return true;
}

1226
enum class InterpreterPushArgsMode : unsigned {
1227 1228 1229 1230 1231
  kJSFunction,
  kWithFinalSpread,
  kOther
};

1232
inline size_t hash_value(InterpreterPushArgsMode mode) {
1233 1234 1235
  return bit_cast<unsigned>(mode);
}

1236 1237
inline std::ostream& operator<<(std::ostream& os,
                                InterpreterPushArgsMode mode) {
1238
  switch (mode) {
1239
    case InterpreterPushArgsMode::kJSFunction:
1240
      return os << "JSFunction";
1241
    case InterpreterPushArgsMode::kWithFinalSpread:
1242
      return os << "WithFinalSpread";
1243
    case InterpreterPushArgsMode::kOther:
1244 1245 1246 1247 1248
      return os << "Other";
  }
  UNREACHABLE();
}

1249 1250 1251 1252 1253 1254 1255
inline uint32_t ObjectHash(Address address) {
  // All objects are at least pointer aligned, so we can remove the trailing
  // zeros.
  return static_cast<uint32_t>(bit_cast<uintptr_t>(address) >>
                               kPointerSizeLog2);
}

1256
// Type feedback is encoded in such a way that, we can combine the feedback
1257 1258
// at different points by performing an 'OR' operation. Type feedback moves
// to a more generic type when we combine feedback.
1259 1260
// kSignedSmall -> kSignedSmallInputs -> kNumber  -> kNumberOrOddball -> kAny
//                                                   kString          -> kAny
1261
// kBigInt -> kAny
1262 1263 1264 1265 1266
// TODO(mythria): Remove kNumber type when crankshaft can handle Oddballs
// similar to Numbers. We don't need kNumber feedback for Turbofan. Extra
// information about Number might reduce few instructions but causes more
// deopts. We collect Number only because crankshaft does not handle all
// cases of oddballs.
1267 1268
class BinaryOperationFeedback {
 public:
1269 1270 1271
  enum {
    kNone = 0x0,
    kSignedSmall = 0x1,
1272
    kSignedSmallInputs = 0x3,
1273 1274 1275
    kNumber = 0x7,
    kNumberOrOddball = 0xF,
    kString = 0x10,
1276 1277
    kBigInt = 0x20,
    kAny = 0x7F
1278
  };
1279 1280
};

1281 1282 1283
// Type feedback is encoded in such a way that, we can combine the feedback
// at different points by performing an 'OR' operation. Type feedback moves
// to a more generic type when we combine feedback.
1284 1285
// kSignedSmall        -> kNumber   -> kAny
// kInternalizedString -> kString   -> kAny
1286
//                        kSymbol   -> kAny
1287
//                        kReceiver -> kAny
1288
// TODO(epertoso): consider unifying this with BinaryOperationFeedback.
1289 1290
class CompareOperationFeedback {
 public:
1291 1292 1293 1294
  enum {
    kNone = 0x00,
    kSignedSmall = 0x01,
    kNumber = 0x3,
1295
    kNumberOrOddball = 0x7,
1296 1297
    kInternalizedString = 0x8,
    kString = 0x18,
1298 1299 1300
    kSymbol = 0x20,
    kReceiver = 0x40,
    kAny = 0xff
1301
  };
1302 1303
};

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
// Type feedback is encoded in such a way that, we can combine the feedback
// at different points by performing an 'OR' operation. Type feedback moves
// to a more generic type when we combine feedback.
// kNone -> kEnumCacheKeysAndIndices -> kEnumCacheKeys -> kAny
class ForInFeedback {
 public:
  enum {
    kNone = 0x0,
    kEnumCacheKeysAndIndices = 0x1,
    kEnumCacheKeys = 0x3,
    kAny = 0x7
  };
};
STATIC_ASSERT((ForInFeedback::kNone |
               ForInFeedback::kEnumCacheKeysAndIndices) ==
              ForInFeedback::kEnumCacheKeysAndIndices);
STATIC_ASSERT((ForInFeedback::kEnumCacheKeysAndIndices |
               ForInFeedback::kEnumCacheKeys) == ForInFeedback::kEnumCacheKeys);
STATIC_ASSERT((ForInFeedback::kEnumCacheKeys | ForInFeedback::kAny) ==
              ForInFeedback::kAny);

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
enum class UnicodeEncoding : uint8_t {
  // Different unicode encodings in a |word32|:
  UTF16,  // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate
  UTF32,  // full UTF32 code unit / Unicode codepoint
};

inline size_t hash_value(UnicodeEncoding encoding) {
  return static_cast<uint8_t>(encoding);
}

inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) {
  switch (encoding) {
    case UnicodeEncoding::UTF16:
      return os << "UTF16";
    case UnicodeEncoding::UTF32:
      return os << "UTF32";
  }
  UNREACHABLE();
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
enum class IterationKind { kKeys, kValues, kEntries };

inline std::ostream& operator<<(std::ostream& os, IterationKind kind) {
  switch (kind) {
    case IterationKind::kKeys:
      return os << "IterationKind::kKeys";
    case IterationKind::kValues:
      return os << "IterationKind::kValues";
    case IterationKind::kEntries:
      return os << "IterationKind::kEntries";
  }
  UNREACHABLE();
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
// Flags for the runtime function kDefineDataPropertyInLiteral. A property can
// be enumerable or not, and, in case of functions, the function name
// can be set or not.
enum class DataPropertyInLiteralFlag {
  kNoFlags = 0,
  kDontEnum = 1 << 0,
  kSetFunctionName = 1 << 1
};
typedef base::Flags<DataPropertyInLiteralFlag> DataPropertyInLiteralFlags;
DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags)

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
enum ExternalArrayType {
  kExternalInt8Array = 1,
  kExternalUint8Array,
  kExternalInt16Array,
  kExternalUint16Array,
  kExternalInt32Array,
  kExternalUint32Array,
  kExternalFloat32Array,
  kExternalFloat64Array,
  kExternalUint8ClampedArray,
};

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
struct AssemblerDebugInfo {
  AssemblerDebugInfo(const char* name, const char* file, int line)
      : name(name), file(file), line(line) {}
  const char* name;
  const char* file;
  int line;
};

inline std::ostream& operator<<(std::ostream& os,
                                const AssemblerDebugInfo& info) {
  os << "(" << info.name << ":" << info.file << ":" << info.line << ")";
  return os;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
enum class OptimizationMarker {
  kNone,
  kCompileOptimized,
  kCompileOptimizedConcurrent,
  kInOptimizationQueue
};

inline std::ostream& operator<<(std::ostream& os,
                                const OptimizationMarker& marker) {
  switch (marker) {
    case OptimizationMarker::kNone:
      return os << "OptimizationMarker::kNone";
    case OptimizationMarker::kCompileOptimized:
      return os << "OptimizationMarker::kCompileOptimized";
    case OptimizationMarker::kCompileOptimizedConcurrent:
      return os << "OptimizationMarker::kCompileOptimizedConcurrent";
    case OptimizationMarker::kInOptimizationQueue:
      return os << "OptimizationMarker::kInOptimizationQueue";
  }
  UNREACHABLE();
  return os;
}

enum class ConcurrencyMode { kNotConcurrent, kConcurrent };

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
#define FOR_EACH_ISOLATE_ADDRESS_NAME(C)                \
  C(Handler, handler)                                   \
  C(CEntryFP, c_entry_fp)                               \
  C(CFunction, c_function)                              \
  C(Context, context)                                   \
  C(PendingException, pending_exception)                \
  C(PendingHandlerContext, pending_handler_context)     \
  C(PendingHandlerCode, pending_handler_code)           \
  C(PendingHandlerOffset, pending_handler_offset)       \
  C(PendingHandlerFP, pending_handler_fp)               \
  C(PendingHandlerSP, pending_handler_sp)               \
  C(ExternalCaughtException, external_caught_exception) \
  C(JSEntrySP, js_entry_sp)

enum IsolateAddressId {
#define DECLARE_ENUM(CamelName, hacker_name) k##CamelName##Address,
  FOR_EACH_ISOLATE_ADDRESS_NAME(DECLARE_ENUM)
#undef DECLARE_ENUM
      kIsolateAddressCount
};

1442 1443
}  // namespace internal
}  // namespace v8
1444

1445 1446
namespace i = v8::internal;

1447
#endif  // V8_GLOBALS_H_