profile-generator.cc 36.3 KB
Newer Older
1
// Copyright 2012 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5
#include "src/profiler/profile-generator.h"
6

7 8
#include <algorithm>

9 10
#include "include/v8-profiler.h"
#include "src/base/lazy-instance.h"
11
#include "src/codegen/source-position.h"
12
#include "src/objects/shared-function-info-inl.h"
13
#include "src/profiler/cpu-profiler.h"
14
#include "src/profiler/profile-generator-inl.h"
15
#include "src/profiler/profiler-stats.h"
16 17
#include "src/tracing/trace-event.h"
#include "src/tracing/traced-value.h"
18 19 20 21

namespace v8 {
namespace internal {

22 23
void SourcePositionTable::SetPosition(int pc_offset, int line,
                                      int inlining_id) {
24 25
  DCHECK_GE(pc_offset, 0);
  DCHECK_GT(line, 0);  // The 1-based number of the source line.
26 27 28 29 30 31 32 33
  // It's possible that we map multiple source positions to a pc_offset in
  // optimized code. Usually these map to the same line, so there is no
  // difference here as we only store line number and not line/col in the form
  // of a script offset. Ignore any subsequent sets to the same offset.
  if (!pc_offsets_to_lines_.empty() &&
      pc_offsets_to_lines_.back().pc_offset == pc_offset) {
    return;
  }
34 35 36 37 38
  // Check that we are inserting in ascending order, so that the vector remains
  // sorted.
  DCHECK(pc_offsets_to_lines_.empty() ||
         pc_offsets_to_lines_.back().pc_offset < pc_offset);
  if (pc_offsets_to_lines_.empty() ||
39 40 41
      pc_offsets_to_lines_.back().line_number != line ||
      pc_offsets_to_lines_.back().inlining_id != inlining_id) {
    pc_offsets_to_lines_.push_back({pc_offset, line, inlining_id});
42 43 44
  }
}

45
int SourcePositionTable::GetSourceLineNumber(int pc_offset) const {
46
  if (pc_offsets_to_lines_.empty()) {
47 48
    return v8::CpuProfileNode::kNoLineNumberInfo;
  }
49 50 51
  auto it = std::lower_bound(
      pc_offsets_to_lines_.begin(), pc_offsets_to_lines_.end(),
      SourcePositionTuple{pc_offset, 0, SourcePosition::kNotInlined});
52 53
  if (it != pc_offsets_to_lines_.begin()) --it;
  return it->line_number;
54 55
}

56 57 58 59 60 61 62 63 64 65 66
int SourcePositionTable::GetInliningId(int pc_offset) const {
  if (pc_offsets_to_lines_.empty()) {
    return SourcePosition::kNotInlined;
  }
  auto it = std::lower_bound(
      pc_offsets_to_lines_.begin(), pc_offsets_to_lines_.end(),
      SourcePositionTuple{pc_offset, 0, SourcePosition::kNotInlined});
  if (it != pc_offsets_to_lines_.begin()) --it;
  return it->inlining_id;
}

67 68 69 70 71
size_t SourcePositionTable::Size() const {
  return sizeof(*this) + pc_offsets_to_lines_.capacity() *
                             sizeof(decltype(pc_offsets_to_lines_)::value_type);
}

72 73 74 75 76 77 78 79 80
void SourcePositionTable::print() const {
  base::OS::Print(" - source position table at %p\n", this);
  for (const SourcePositionTuple& pos_info : pc_offsets_to_lines_) {
    base::OS::Print("    %d --> line_number: %d inlining_id: %d\n",
                    pos_info.pc_offset, pos_info.line_number,
                    pos_info.inlining_id);
  }
}

81
const char* const CodeEntry::kEmptyResourceName = "";
82
const char* const CodeEntry::kEmptyBailoutReason = "";
83
const char* const CodeEntry::kNoDeoptReason = "";
84

lpy's avatar
lpy committed
85 86 87 88
const char* const CodeEntry::kProgramEntryName = "(program)";
const char* const CodeEntry::kIdleEntryName = "(idle)";
const char* const CodeEntry::kGarbageCollectorEntryName = "(garbage collector)";
const char* const CodeEntry::kUnresolvedFunctionName = "(unresolved function)";
89
const char* const CodeEntry::kRootEntryName = "(root)";
lpy's avatar
lpy committed
90

91 92 93
// static
CodeEntry* CodeEntry::program_entry() {
  static base::LeakyObject<CodeEntry> kProgramEntry(
94 95 96 97
      CodeEventListener::FUNCTION_TAG, CodeEntry::kProgramEntryName,
      CodeEntry::kEmptyResourceName, v8::CpuProfileNode::kNoLineNumberInfo,
      v8::CpuProfileNode::kNoColumnNumberInfo, nullptr, false,
      CodeEntry::CodeType::OTHER);
98
  return kProgramEntry.get();
99 100
}

101 102 103 104 105 106 107 108
// static
CodeEntry* CodeEntry::idle_entry() {
  static base::LeakyObject<CodeEntry> kIdleEntry(
      CodeEventListener::FUNCTION_TAG, CodeEntry::kIdleEntryName,
      CodeEntry::kEmptyResourceName, v8::CpuProfileNode::kNoLineNumberInfo,
      v8::CpuProfileNode::kNoColumnNumberInfo, nullptr, false,
      CodeEntry::CodeType::OTHER);
  return kIdleEntry.get();
109 110
}

111 112 113
// static
CodeEntry* CodeEntry::gc_entry() {
  static base::LeakyObject<CodeEntry> kGcEntry(
114 115 116 117
      CodeEventListener::BUILTIN_TAG, CodeEntry::kGarbageCollectorEntryName,
      CodeEntry::kEmptyResourceName, v8::CpuProfileNode::kNoLineNumberInfo,
      v8::CpuProfileNode::kNoColumnNumberInfo, nullptr, false,
      CodeEntry::CodeType::OTHER);
118
  return kGcEntry.get();
119 120
}

121 122 123
// static
CodeEntry* CodeEntry::unresolved_entry() {
  static base::LeakyObject<CodeEntry> kUnresolvedEntry(
124 125 126 127
      CodeEventListener::FUNCTION_TAG, CodeEntry::kUnresolvedFunctionName,
      CodeEntry::kEmptyResourceName, v8::CpuProfileNode::kNoLineNumberInfo,
      v8::CpuProfileNode::kNoColumnNumberInfo, nullptr, false,
      CodeEntry::CodeType::OTHER);
128
  return kUnresolvedEntry.get();
129 130
}

131 132 133 134 135 136 137 138
// static
CodeEntry* CodeEntry::root_entry() {
  static base::LeakyObject<CodeEntry> kRootEntry(
      CodeEventListener::FUNCTION_TAG, CodeEntry::kRootEntryName,
      CodeEntry::kEmptyResourceName, v8::CpuProfileNode::kNoLineNumberInfo,
      v8::CpuProfileNode::kNoColumnNumberInfo, nullptr, false,
      CodeEntry::CodeType::OTHER);
  return kRootEntry.get();
139 140
}

141
uint32_t CodeEntry::GetHash() const {
142
  uint32_t hash = 0;
143
  if (script_id_ != v8::UnboundScript::kNoScriptId) {
144 145
    hash ^= ComputeUnseededHash(static_cast<uint32_t>(script_id_));
    hash ^= ComputeUnseededHash(static_cast<uint32_t>(position_));
146
  } else {
147
    hash ^= ComputeUnseededHash(
148
        static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)));
149
    hash ^= ComputeUnseededHash(
150
        static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)));
151
    hash ^= ComputeUnseededHash(line_number_);
152
  }
153 154 155
  return hash;
}

156
bool CodeEntry::IsSameFunctionAs(const CodeEntry* entry) const {
157 158 159 160
  if (this == entry) return true;
  if (script_id_ != v8::UnboundScript::kNoScriptId) {
    return script_id_ == entry->script_id_ && position_ == entry->position_;
  }
161
  return name_ == entry->name_ && resource_name_ == entry->resource_name_ &&
162
         line_number_ == entry->line_number_;
163 164
}

165
void CodeEntry::SetBuiltinId(Builtin id) {
166
  bit_field_ = TagField::update(bit_field_, CodeEventListener::BUILTIN_TAG);
167
  bit_field_ = BuiltinField::update(bit_field_, id);
168 169
}

170
int CodeEntry::GetSourceLine(int pc_offset) const {
171
  if (line_info_) return line_info_->GetSourceLineNumber(pc_offset);
172 173 174
  return v8::CpuProfileNode::kNoLineNumberInfo;
}

175
void CodeEntry::SetInlineStacks(
176
    std::unordered_set<CodeEntry*, Hasher, Equals> inline_entries,
177 178 179 180
    std::unordered_map<int, std::vector<CodeEntryAndLineNumber>>
        inline_stacks) {
  EnsureRareData()->inline_entries_ = std::move(inline_entries);
  rare_data_->inline_stacks_ = std::move(inline_stacks);
181 182
}

183 184
const std::vector<CodeEntryAndLineNumber>* CodeEntry::GetInlineStack(
    int pc_offset) const {
185 186 187 188 189 190
  if (!line_info_) return nullptr;

  int inlining_id = line_info_->GetInliningId(pc_offset);
  if (inlining_id == SourcePosition::kNotInlined) return nullptr;
  DCHECK(rare_data_);

191 192
  auto it = rare_data_->inline_stacks_.find(inlining_id);
  return it != rare_data_->inline_stacks_.end() ? &it->second : nullptr;
193
}
194

195 196 197 198 199 200 201
void CodeEntry::set_deopt_info(
    const char* deopt_reason, int deopt_id,
    std::vector<CpuProfileDeoptFrame> inlined_frames) {
  RareData* rare_data = EnsureRareData();
  rare_data->deopt_reason_ = deopt_reason;
  rare_data->deopt_id_ = deopt_id;
  rare_data->deopt_inlined_frames_ = std::move(inlined_frames);
202 203
}

204
void CodeEntry::FillFunctionInfo(SharedFunctionInfo shared) {
205 206 207 208 209
  if (!shared.script().IsScript()) return;
  Script script = Script::cast(shared.script());
  set_script_id(script.id());
  set_position(shared.StartPosition());
  if (shared.optimization_disabled()) {
210
    set_bailout_reason(GetBailoutReason(shared.disabled_optimization_reason()));
211
  }
212 213
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
size_t CodeEntry::EstimatedSize() const {
  size_t estimated_size = 0;
  if (rare_data_) {
    estimated_size += sizeof(rare_data_.get());

    for (const auto& inline_entry : rare_data_->inline_entries_) {
      estimated_size += inline_entry->EstimatedSize();
    }
    estimated_size += rare_data_->inline_entries_.size() *
                      sizeof(decltype(rare_data_->inline_entries_)::value_type);

    for (const auto& inline_stack_pair : rare_data_->inline_stacks_) {
      estimated_size += inline_stack_pair.second.size() *
                        sizeof(decltype(inline_stack_pair.second)::value_type);
    }
    estimated_size +=
        rare_data_->inline_stacks_.size() *
        (sizeof(decltype(rare_data_->inline_stacks_)::key_type) +
         sizeof(decltype(rare_data_->inline_stacks_)::value_type));

    estimated_size +=
        rare_data_->deopt_inlined_frames_.capacity() *
        sizeof(decltype(rare_data_->deopt_inlined_frames_)::value_type);
  }

  if (line_info_) {
    estimated_size += line_info_.get()->Size();
  }
  return sizeof(*this) + estimated_size;
}

245
CpuProfileDeoptInfo CodeEntry::GetDeoptInfo() {
246 247
  DCHECK(has_deopt_info());

248
  CpuProfileDeoptInfo info;
249 250
  info.deopt_reason = rare_data_->deopt_reason_;
  DCHECK_NE(kNoDeoptimizationId, rare_data_->deopt_id_);
251
  if (rare_data_->deopt_inlined_frames_.empty()) {
252 253
    info.stack.push_back(CpuProfileDeoptFrame(
        {script_id_, static_cast<size_t>(std::max(0, position()))}));
254
  } else {
255
    info.stack = rare_data_->deopt_inlined_frames_;
256 257 258 259
  }
  return info;
}

260 261 262 263 264 265
CodeEntry::RareData* CodeEntry::EnsureRareData() {
  if (!rare_data_) {
    rare_data_.reset(new RareData());
  }
  return rare_data_.get();
}
266

267
void CodeEntry::ReleaseStrings(StringsStorage& strings) {
268 269
  DCHECK_EQ(ref_count_, 0UL);

270 271 272 273 274 275 276 277 278 279
  if (name_) {
    strings.Release(name_);
    name_ = nullptr;
  }
  if (resource_name_) {
    strings.Release(resource_name_);
    resource_name_ = nullptr;
  }
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
void CodeEntry::print() const {
  base::OS::Print("CodeEntry: at %p\n", this);

  base::OS::Print(" - name: %s\n", name_);
  base::OS::Print(" - resource_name: %s\n", resource_name_);
  base::OS::Print(" - line_number: %d\n", line_number_);
  base::OS::Print(" - column_number: %d\n", column_number_);
  base::OS::Print(" - script_id: %d\n", script_id_);
  base::OS::Print(" - position: %d\n", position_);

  if (line_info_) {
    line_info_->print();
  }

  if (rare_data_) {
    base::OS::Print(" - deopt_reason: %s\n", rare_data_->deopt_reason_);
    base::OS::Print(" - bailout_reason: %s\n", rare_data_->bailout_reason_);
    base::OS::Print(" - deopt_id: %d\n", rare_data_->deopt_id_);

299
    if (!rare_data_->inline_stacks_.empty()) {
300
      base::OS::Print(" - inline stacks:\n");
301 302
      for (auto it = rare_data_->inline_stacks_.begin();
           it != rare_data_->inline_stacks_.end(); it++) {
303 304 305
        base::OS::Print("    inlining_id: [%d]\n", it->first);
        for (const auto& e : it->second) {
          base::OS::Print("     %s --> %d\n", e.code_entry->name(),
306
                          e.line_number);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        }
      }
    } else {
      base::OS::Print(" - inline stacks: (empty)\n");
    }

    if (!rare_data_->deopt_inlined_frames_.empty()) {
      base::OS::Print(" - deopt inlined frames:\n");
      for (const CpuProfileDeoptFrame& frame :
           rare_data_->deopt_inlined_frames_) {
        base::OS::Print("script_id: %d position: %zu\n", frame.script_id,
                        frame.position);
      }
    } else {
      base::OS::Print(" - deopt inlined frames: (empty)\n");
    }
  }
  base::OS::Print("\n");
}

327 328 329 330
ProfileNode::~ProfileNode() {
  if (tree_->code_entries()) tree_->code_entries()->DecRef(entry_);
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
CpuProfileNode::SourceType ProfileNode::source_type() const {
  // Handle metadata and VM state code entry types.
  if (entry_ == CodeEntry::program_entry() ||
      entry_ == CodeEntry::idle_entry() || entry_ == CodeEntry::gc_entry() ||
      entry_ == CodeEntry::root_entry()) {
    return CpuProfileNode::kInternal;
  }
  if (entry_ == CodeEntry::unresolved_entry())
    return CpuProfileNode::kUnresolved;

  // Otherwise, resolve based on logger tag.
  switch (entry_->tag()) {
    case CodeEventListener::EVAL_TAG:
    case CodeEventListener::SCRIPT_TAG:
    case CodeEventListener::LAZY_COMPILE_TAG:
    case CodeEventListener::FUNCTION_TAG:
      return CpuProfileNode::kScript;
    case CodeEventListener::BUILTIN_TAG:
    case CodeEventListener::HANDLER_TAG:
    case CodeEventListener::BYTECODE_HANDLER_TAG:
    case CodeEventListener::NATIVE_FUNCTION_TAG:
    case CodeEventListener::NATIVE_SCRIPT_TAG:
    case CodeEventListener::NATIVE_LAZY_COMPILE_TAG:
      return CpuProfileNode::kBuiltin;
    case CodeEventListener::CALLBACK_TAG:
      return CpuProfileNode::kCallback;
    case CodeEventListener::REG_EXP_TAG:
    case CodeEventListener::STUB_TAG:
    case CodeEventListener::CODE_CREATION_EVENT:
    case CodeEventListener::CODE_DISABLE_OPT_EVENT:
    case CodeEventListener::CODE_MOVE_EVENT:
    case CodeEventListener::CODE_DELETE_EVENT:
    case CodeEventListener::CODE_MOVING_GC:
    case CodeEventListener::SHARED_FUNC_MOVE_EVENT:
    case CodeEventListener::SNAPSHOT_CODE_NAME_EVENT:
    case CodeEventListener::TICK_EVENT:
    case CodeEventListener::NUMBER_OF_LOG_EVENTS:
      return CpuProfileNode::kInternal;
  }
}

372
void ProfileNode::CollectDeoptInfo(CodeEntry* entry) {
373
  deopt_infos_.push_back(entry->GetDeoptInfo());
374 375 376
  entry->clear_deopt_info();
}

377 378
ProfileNode* ProfileNode::FindChild(CodeEntry* entry, int line_number) {
  auto map_entry = children_.find({entry, line_number});
379
  return map_entry != children_.end() ? map_entry->second : nullptr;
380 381
}

382 383
ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry, int line_number) {
  auto map_entry = children_.find({entry, line_number});
384
  if (map_entry == children_.end()) {
385 386
    ProfileNode* node = new ProfileNode(tree_, entry, this, line_number);
    children_[{entry, line_number}] = node;
387
    children_list_.push_back(node);
388 389 390
    return node;
  } else {
    return map_entry->second;
391 392 393 394
  }
}


395 396 397 398
void ProfileNode::IncrementLineTicks(int src_line) {
  if (src_line == v8::CpuProfileNode::kNoLineNumberInfo) return;
  // Increment a hit counter of a certain source line.
  // Add a new source line if not found.
399 400 401 402 403 404
  auto map_entry = line_ticks_.find(src_line);
  if (map_entry == line_ticks_.end()) {
    line_ticks_[src_line] = 1;
  } else {
    line_ticks_[src_line]++;
  }
405 406 407 408 409
}


bool ProfileNode::GetLineTicks(v8::CpuProfileNode::LineTick* entries,
                               unsigned int length) const {
410
  if (entries == nullptr || length == 0) return false;
411

412
  unsigned line_count = static_cast<unsigned>(line_ticks_.size());
413 414 415 416 417 418

  if (line_count == 0) return true;
  if (length < line_count) return false;

  v8::CpuProfileNode::LineTick* entry = entries;

419 420 421
  for (auto p = line_ticks_.begin(); p != line_ticks_.end(); p++, entry++) {
    entry->line = p->first;
    entry->hit_count = p->second;
422 423 424 425 426
  }

  return true;
}

427
void ProfileNode::Print(int indent) const {
428
  int line_number = line_number_ != 0 ? line_number_ : entry_->line_number();
429 430 431
  base::OS::Print("%5u %*s %s:%d %d %d #%d", self_ticks_, indent, "",
                  entry_->name(), line_number, source_type(),
                  entry_->script_id(), id());
432
  if (entry_->resource_name()[0] != '\0')
433 434
    base::OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number());
  base::OS::Print("\n");
435
  for (const CpuProfileDeoptInfo& info : deopt_infos_) {
436 437 438 439
    base::OS::Print(
        "%*s;;; deopted at script_id: %d position: %zu with reason '%s'.\n",
        indent + 10, "", info.stack[0].script_id, info.stack[0].position,
        info.deopt_reason);
440
    for (size_t index = 1; index < info.stack.size(); ++index) {
441
      base::OS::Print("%*s;;;     Inline point: script_id %d position: %zu.\n",
442 443
                      indent + 10, "", info.stack[index].script_id,
                      info.stack[index].position);
444
    }
445 446 447 448 449 450 451
  }
  const char* bailout_reason = entry_->bailout_reason();
  if (bailout_reason != GetBailoutReason(BailoutReason::kNoReason) &&
      bailout_reason != CodeEntry::kEmptyBailoutReason) {
    base::OS::Print("%*s bailed out due to '%s'\n", indent + 10, "",
                    bailout_reason);
  }
452 453
  for (auto child : children_) {
    child.second->Print(indent + 2);
454 455 456 457 458
  }
}

class DeleteNodesCallback {
 public:
459 460
  void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }

461
  void AfterAllChildrenTraversed(ProfileNode* node) { delete node; }
462 463 464 465

  void AfterChildTraversed(ProfileNode*, ProfileNode*) { }
};

466
ProfileTree::ProfileTree(Isolate* isolate, CodeEntryStorage* storage)
467
    : next_node_id_(1),
468 469 470
      isolate_(isolate),
      code_entries_(storage),
      root_(new ProfileNode(this, CodeEntry::root_entry(), nullptr)) {}
471

472 473
ProfileTree::~ProfileTree() {
  DeleteNodesCallback cb;
474
  TraverseDepthFirst(&cb);
475 476
}

477
ProfileNode* ProfileTree::AddPathFromEnd(const std::vector<CodeEntry*>& path,
478
                                         int src_line, bool update_stats) {
479
  ProfileNode* node = root_;
480
  CodeEntry* last_entry = nullptr;
481
  for (auto it = path.rbegin(); it != path.rend(); ++it) {
482
    if (*it == nullptr) continue;
483
    last_entry = *it;
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    node = node->FindOrAddChild(*it, v8::CpuProfileNode::kNoLineNumberInfo);
  }
  if (last_entry && last_entry->has_deopt_info()) {
    node->CollectDeoptInfo(last_entry);
  }
  if (update_stats) {
    node->IncrementSelfTicks();
    if (src_line != v8::CpuProfileNode::kNoLineNumberInfo) {
      node->IncrementLineTicks(src_line);
    }
  }
  return node;
}

ProfileNode* ProfileTree::AddPathFromEnd(const ProfileStackTrace& path,
                                         int src_line, bool update_stats,
500
                                         ProfilingMode mode) {
501 502 503 504
  ProfileNode* node = root_;
  CodeEntry* last_entry = nullptr;
  int parent_line_number = v8::CpuProfileNode::kNoLineNumberInfo;
  for (auto it = path.rbegin(); it != path.rend(); ++it) {
505 506 507
    if (it->code_entry == nullptr) continue;
    last_entry = it->code_entry;
    node = node->FindOrAddChild(it->code_entry, parent_line_number);
508
    parent_line_number = mode == ProfilingMode::kCallerLineNumbers
509
                             ? it->line_number
510
                             : v8::CpuProfileNode::kNoLineNumberInfo;
511
  }
512 513 514
  if (last_entry && last_entry->has_deopt_info()) {
    node->CollectDeoptInfo(last_entry);
  }
515 516 517 518 519
  if (update_stats) {
    node->IncrementSelfTicks();
    if (src_line != v8::CpuProfileNode::kNoLineNumberInfo) {
      node->IncrementLineTicks(src_line);
    }
520
  }
521
  return node;
522 523
}

524 525 526 527
class Position {
 public:
  explicit Position(ProfileNode* node)
      : node(node), child_idx_(0) { }
528
  V8_INLINE ProfileNode* current_child() {
529
    return node->children()->at(child_idx_);
530
  }
531
  V8_INLINE bool has_current_child() {
532
    return child_idx_ < static_cast<int>(node->children()->size());
533
  }
534
  V8_INLINE void next_child() { ++child_idx_; }
535

536
  ProfileNode* node;
537 538
 private:
  int child_idx_;
539 540 541
};


542
// Non-recursive implementation of a depth-first post-order tree traversal.
543
template <typename Callback>
544
void ProfileTree::TraverseDepthFirst(Callback* callback) {
545 546 547 548
  std::vector<Position> stack;
  stack.emplace_back(root_);
  while (stack.size() > 0) {
    Position& current = stack.back();
549
    if (current.has_current_child()) {
550
      callback->BeforeTraversingChild(current.node, current.current_child());
551
      stack.emplace_back(current.current_child());
552 553
    } else {
      callback->AfterAllChildrenTraversed(current.node);
554 555
      if (stack.size() > 1) {
        Position& parent = stack[stack.size() - 2];
556
        callback->AfterChildTraversed(parent.node, current.node);
557
        parent.next_child();
558
      }
559
      // Remove child from the stack.
560
      stack.pop_back();
561
    }
562
  }
563 564
}

565 566 567 568 569 570
void ContextFilter::OnMoveEvent(Address from_address, Address to_address) {
  if (native_context_address() != from_address) return;

  set_native_context_address(to_address);
}

571 572
using v8::tracing::TracedValue;

573 574
std::atomic<uint32_t> CpuProfile::last_id_;

575
CpuProfile::CpuProfile(CpuProfiler* profiler, const char* title,
576 577
                       CpuProfilingOptions options,
                       std::unique_ptr<DiscardedSamplesDelegate> delegate)
578
    : title_(title),
579
      options_(options),
580
      delegate_(std::move(delegate)),
581
      start_time_(base::TimeTicks::Now()),
582
      top_down_(profiler->isolate(), profiler->code_entries()),
583
      profiler_(profiler),
584 585
      streaming_next_sample_(0),
      id_(++last_id_) {
586 587 588 589 590
  // The startTime timestamp is not converted to Perfetto's clock domain and
  // will get out of sync with other timestamps Perfetto knows about, including
  // the automatic trace event "ts" timestamp. startTime is included for
  // backward compatibility with the tracing protocol but the value of "ts"
  // should be used instead (it is recorded nearly immediately after).
591
  auto value = TracedValue::Create();
592
  value->SetDouble("startTime", start_time_.since_origin().InMicroseconds());
593
  TRACE_EVENT_SAMPLE_WITH_ID1(TRACE_DISABLED_BY_DEFAULT("v8.cpu_profiler"),
594
                              "Profile", id_, "data", std::move(value));
595 596 597 598 599 600 601

  DisallowHeapAllocation no_gc;
  if (options_.has_filter_context()) {
    i::Address raw_filter_context =
        reinterpret_cast<i::Address>(options_.raw_filter_context());
    context_filter_.set_native_context_address(raw_filter_context);
  }
602
}
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
bool CpuProfile::CheckSubsample(base::TimeDelta source_sampling_interval) {
  DCHECK_GE(source_sampling_interval, base::TimeDelta());

  // If the sampling source's sampling interval is 0, record as many samples
  // are possible irrespective of the profile's sampling interval. Manually
  // taken samples (via CollectSample) fall into this case as well.
  if (source_sampling_interval.IsZero()) return true;

  next_sample_delta_ -= source_sampling_interval;
  if (next_sample_delta_ <= base::TimeDelta()) {
    next_sample_delta_ =
        base::TimeDelta::FromMicroseconds(options_.sampling_interval_us());
    return true;
  }
  return false;
}

621
void CpuProfile::AddPath(base::TimeTicks timestamp,
622
                         const ProfileStackTrace& path, int src_line,
623 624 625
                         bool update_stats, base::TimeDelta sampling_interval,
                         StateTag state_tag,
                         EmbedderStateTag embedder_state_tag) {
626 627
  if (!CheckSubsample(sampling_interval)) return;

628 629
  ProfileNode* top_frame_node =
      top_down_.AddPathFromEnd(path, src_line, update_stats, options_.mode());
630

631
  bool should_record_sample =
632
      !timestamp.IsNull() && timestamp >= start_time_ &&
633 634
      (options_.max_samples() == CpuProfilingOptions::kNoSampleLimit ||
       samples_.size() < options_.max_samples());
635

636
  if (should_record_sample) {
637 638
    samples_.push_back(
        {top_frame_node, timestamp, src_line, state_tag, embedder_state_tag});
639 640 641 642 643 644 645 646 647 648 649
  }

  if (!should_record_sample && delegate_ != nullptr) {
    const auto task_runner = V8::GetCurrentPlatform()->GetForegroundTaskRunner(
        reinterpret_cast<v8::Isolate*>(profiler_->isolate()));

    task_runner->PostTask(std::make_unique<CpuProfileMaxSamplesCallbackTask>(
        std::move(delegate_)));
    // std::move ensures that the delegate_ will be null on the next sample,
    // so we don't post a task multiple times.
  }
650

651 652
  const int kSamplesFlushCount = 100;
  const int kNodesFlushCount = 10;
653
  if (samples_.size() - streaming_next_sample_ >= kSamplesFlushCount ||
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
      top_down_.pending_nodes_count() >= kNodesFlushCount) {
    StreamPendingTraceEvents();
  }
}

namespace {

void BuildNodeValue(const ProfileNode* node, TracedValue* value) {
  const CodeEntry* entry = node->entry();
  value->BeginDictionary("callFrame");
  value->SetString("functionName", entry->name());
  if (*entry->resource_name()) {
    value->SetString("url", entry->resource_name());
  }
  value->SetInteger("scriptId", entry->script_id());
  if (entry->line_number()) {
    value->SetInteger("lineNumber", entry->line_number() - 1);
  }
  if (entry->column_number()) {
    value->SetInteger("columnNumber", entry->column_number() - 1);
  }
675
  value->SetString("codeType", entry->code_type_string());
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  value->EndDictionary();
  value->SetInteger("id", node->id());
  if (node->parent()) {
    value->SetInteger("parent", node->parent()->id());
  }
  const char* deopt_reason = entry->bailout_reason();
  if (deopt_reason && deopt_reason[0] && strcmp(deopt_reason, "no reason")) {
    value->SetString("deoptReason", deopt_reason);
  }
}

}  // namespace

void CpuProfile::StreamPendingTraceEvents() {
  std::vector<const ProfileNode*> pending_nodes = top_down_.TakePendingNodes();
691
  if (pending_nodes.empty() && samples_.empty()) return;
692 693
  auto value = TracedValue::Create();

694
  if (!pending_nodes.empty() || streaming_next_sample_ != samples_.size()) {
695 696 697 698 699 700 701 702 703
    value->BeginDictionary("cpuProfile");
    if (!pending_nodes.empty()) {
      value->BeginArray("nodes");
      for (auto node : pending_nodes) {
        value->BeginDictionary();
        BuildNodeValue(node, value.get());
        value->EndDictionary();
      }
      value->EndArray();
704
    }
705
    if (streaming_next_sample_ != samples_.size()) {
706
      value->BeginArray("samples");
707
      for (size_t i = streaming_next_sample_; i < samples_.size(); ++i) {
708
        value->AppendInteger(samples_[i].node->id());
709 710 711 712
      }
      value->EndArray();
    }
    value->EndDictionary();
713
  }
714
  if (streaming_next_sample_ != samples_.size()) {
715 716 717 718 719 720 721 722 723 724
    // timeDeltas are computed within CLOCK_MONOTONIC. However, trace event
    // "ts" timestamps are converted to CLOCK_BOOTTIME by Perfetto. To get
    // absolute timestamps in CLOCK_BOOTTIME from timeDeltas, add them to
    // the "ts" timestamp from the initial "Profile" trace event sent by
    // CpuProfile::CpuProfile().
    //
    // Note that if the system is suspended and resumed while samples_ is
    // captured, timeDeltas derived after resume will not be convertible to
    // correct CLOCK_BOOTTIME time values (for instance, producing
    // CLOCK_BOOTTIME time values in the middle of the suspended period).
725 726
    value->BeginArray("timeDeltas");
    base::TimeTicks lastTimestamp =
727
        streaming_next_sample_ ? samples_[streaming_next_sample_ - 1].timestamp
728
                               : start_time();
729 730 731 732
    for (size_t i = streaming_next_sample_; i < samples_.size(); ++i) {
      value->AppendInteger(static_cast<int>(
          (samples_[i].timestamp - lastTimestamp).InMicroseconds()));
      lastTimestamp = samples_[i].timestamp;
733 734
    }
    value->EndArray();
735 736 737 738 739 740 741 742 743 744
    bool has_non_zero_lines =
        std::any_of(samples_.begin() + streaming_next_sample_, samples_.end(),
                    [](const SampleInfo& sample) { return sample.line != 0; });
    if (has_non_zero_lines) {
      value->BeginArray("lines");
      for (size_t i = streaming_next_sample_; i < samples_.size(); ++i) {
        value->AppendInteger(samples_[i].line);
      }
      value->EndArray();
    }
745
    streaming_next_sample_ = samples_.size();
746 747 748
  }

  TRACE_EVENT_SAMPLE_WITH_ID1(TRACE_DISABLED_BY_DEFAULT("v8.cpu_profiler"),
749
                              "ProfileChunk", id_, "data", std::move(value));
750 751
}

752
void CpuProfile::FinishProfile() {
753
  end_time_ = base::TimeTicks::Now();
754 755
  // Stop tracking context movements after profiling stops.
  context_filter_.set_native_context_address(kNullAddress);
756 757
  StreamPendingTraceEvents();
  auto value = TracedValue::Create();
758 759 760 761 762 763
  // The endTime timestamp is not converted to Perfetto's clock domain and will
  // get out of sync with other timestamps Perfetto knows about, including the
  // automatic trace event "ts" timestamp. endTime is included for backward
  // compatibility with the tracing protocol: its presence in "data" is used by
  // devtools to identify the last ProfileChunk but the value of "ts" should be
  // used instead (it is recorded nearly immediately after).
764
  value->SetDouble("endTime", end_time_.since_origin().InMicroseconds());
765
  TRACE_EVENT_SAMPLE_WITH_ID1(TRACE_DISABLED_BY_DEFAULT("v8.cpu_profiler"),
766
                              "ProfileChunk", id_, "data", std::move(value));
767 768
}

769
void CpuProfile::Print() const {
770
  base::OS::Print("[Top down]:\n");
771
  top_down_.Print();
772 773
  ProfilerStats::Instance()->Print();
  ProfilerStats::Instance()->Clear();
774 775
}

776 777 778 779 780 781
void CodeEntryStorage::AddRef(CodeEntry* entry) {
  if (entry->is_ref_counted()) entry->AddRef();
}

void CodeEntryStorage::DecRef(CodeEntry* entry) {
  if (entry->is_ref_counted() && entry->DecRef() == 0) {
782 783 784 785 786
    if (entry->rare_data_) {
      for (auto* inline_entry : entry->rare_data_->inline_entries_) {
        DecRef(inline_entry);
      }
    }
787 788 789 790 791 792
    entry->ReleaseStrings(function_and_resource_names_);
    delete entry;
  }
}

CodeMap::CodeMap(CodeEntryStorage& storage) : code_entries_(storage) {}
793

794 795 796
CodeMap::~CodeMap() { Clear(); }

void CodeMap::Clear() {
797 798
  for (auto& slot : code_map_) {
    if (CodeEntry* entry = slot.second.entry) {
799
      code_entries_.DecRef(entry);
800 801 802
    } else {
      // We expect all entries in the code mapping to contain a CodeEntry.
      UNREACHABLE();
803 804
    }
  }
805 806

  code_map_.clear();
807
}
808

809
void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) {
810
  code_map_.emplace(addr, CodeEntryMapInfo{entry, size});
811 812 813 814 815 816 817
  entry->set_instruction_start(addr);
}

bool CodeMap::RemoveCode(CodeEntry* entry) {
  auto range = code_map_.equal_range(entry->instruction_start());
  for (auto i = range.first; i != range.second; ++i) {
    if (i->second.entry == entry) {
818
      code_entries_.DecRef(entry);
819 820 821 822 823
      code_map_.erase(i);
      return true;
    }
  }
  return false;
824 825
}

826
void CodeMap::ClearCodesInRange(Address start, Address end) {
827 828 829 830
  auto left = code_map_.upper_bound(start);
  if (left != code_map_.begin()) {
    --left;
    if (left->first + left->second.size <= start) ++left;
831
  }
832
  auto right = left;
833
  for (; right != code_map_.end() && right->first < end; ++right) {
834
    code_entries_.DecRef(right->second.entry);
835
  }
836
  code_map_.erase(left, right);
837 838
}

839
CodeEntry* CodeMap::FindEntry(Address addr, Address* out_instruction_start) {
840 841 842
  // Note that an address may correspond to multiple CodeEntry objects. An
  // arbitrary selection is made (as per multimap spec) in the event of a
  // collision.
843 844 845
  auto it = code_map_.upper_bound(addr);
  if (it == code_map_.begin()) return nullptr;
  --it;
846 847
  Address start_address = it->first;
  Address end_address = start_address + it->second.size;
848
  CodeEntry* ret = addr < end_address ? it->second.entry : nullptr;
849 850
  DCHECK(!ret || (addr >= start_address && addr < end_address));
  if (ret && out_instruction_start) *out_instruction_start = start_address;
851
  return ret;
852 853
}

854 855
void CodeMap::MoveCode(Address from, Address to) {
  if (from == to) return;
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

  auto range = code_map_.equal_range(from);
  // Instead of iterating until |range.second|, iterate the number of elements.
  // This is because the |range.second| may no longer be the element past the
  // end of the equal elements range after insertions.
  size_t distance = std::distance(range.first, range.second);
  auto it = range.first;
  while (distance--) {
    CodeEntryMapInfo& info = it->second;
    DCHECK(info.entry);
    DCHECK_EQ(info.entry->instruction_start(), from);
    info.entry->set_instruction_start(to);

    DCHECK(from + info.size <= to || to + info.size <= from);
    code_map_.emplace(to, info);
    it++;
  }

  code_map_.erase(range.first, it);
875 876
}

877
void CodeMap::Print() {
878
  for (const auto& pair : code_map_) {
879
    base::OS::Print("%p %5d %s\n", reinterpret_cast<void*>(pair.first),
880
                    pair.second.size, pair.second.entry->name());
881
  }
882 883
}

884 885 886 887 888 889 890 891 892
size_t CodeMap::GetEstimatedMemoryUsage() const {
  size_t map_size = 0;
  for (const auto& pair : code_map_) {
    map_size += sizeof(pair.first) + sizeof(pair.second) +
                pair.second.entry->EstimatedSize();
  }
  return sizeof(*this) + map_size;
}

893
CpuProfilesCollection::CpuProfilesCollection(Isolate* isolate)
Yang Guo's avatar
Yang Guo committed
894
    : profiler_(nullptr), current_profiles_semaphore_(1) {}
895

896
CpuProfilingStatus CpuProfilesCollection::StartProfiling(
897 898
    const char* title, CpuProfilingOptions options,
    std::unique_ptr<DiscardedSamplesDelegate> delegate) {
899
  current_profiles_semaphore_.Wait();
900

901
  if (static_cast<int>(current_profiles_.size()) >= kMaxSimultaneousProfiles) {
902
    current_profiles_semaphore_.Signal();
903 904

    return CpuProfilingStatus::kErrorTooManyProfilers;
905
  }
906
  for (const std::unique_ptr<CpuProfile>& profile : current_profiles_) {
907
    if (strcmp(profile->title(), title) == 0) {
908
      // Ignore attempts to start profile with the same title...
909
      current_profiles_semaphore_.Signal();
910 911
      // ... though return kAlreadyStarted to force it collect a sample.
      return CpuProfilingStatus::kAlreadyStarted;
912 913
    }
  }
914 915 916

  current_profiles_.emplace_back(
      new CpuProfile(profiler_, title, options, std::move(delegate)));
917
  current_profiles_semaphore_.Signal();
918
  return CpuProfilingStatus::kStarted;
919 920
}

921
CpuProfile* CpuProfilesCollection::StopProfiling(const char* title) {
922
  const bool empty_title = (title[0] == '\0');
923
  CpuProfile* profile = nullptr;
924
  current_profiles_semaphore_.Wait();
925

926 927 928 929
  auto it = std::find_if(current_profiles_.rbegin(), current_profiles_.rend(),
                         [&](const std::unique_ptr<CpuProfile>& p) {
                           return empty_title || strcmp(p->title(), title) == 0;
                         });
930 931 932 933 934 935 936

  if (it != current_profiles_.rend()) {
    (*it)->FinishProfile();
    profile = it->get();
    finished_profiles_.push_back(std::move(*it));
    // Convert reverse iterator to matching forward iterator.
    current_profiles_.erase(--(it.base()));
937 938
  }

939
  current_profiles_semaphore_.Signal();
940
  return profile;
941 942
}

943 944 945
bool CpuProfilesCollection::IsLastProfile(const char* title) {
  // Called from VM thread, and only it can mutate the list,
  // so no locking is needed here.
946
  if (current_profiles_.size() != 1) return false;
947
  return title[0] == '\0' || strcmp(current_profiles_[0]->title(), title) == 0;
948 949 950
}


951 952
void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) {
  // Called from VM thread for a completed profile.
953
  auto pos =
954 955 956 957
      std::find_if(finished_profiles_.begin(), finished_profiles_.end(),
                   [&](const std::unique_ptr<CpuProfile>& finished_profile) {
                     return finished_profile.get() == profile;
                   });
958 959
  DCHECK(pos != finished_profiles_.end());
  finished_profiles_.erase(pos);
960 961
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
namespace {

int64_t GreatestCommonDivisor(int64_t a, int64_t b) {
  return b ? GreatestCommonDivisor(b, a % b) : a;
}

}  // namespace

base::TimeDelta CpuProfilesCollection::GetCommonSamplingInterval() const {
  DCHECK(profiler_);

  int64_t base_sampling_interval_us =
      profiler_->sampling_interval().InMicroseconds();
  if (base_sampling_interval_us == 0) return base::TimeDelta();

  int64_t interval_us = 0;
  for (const auto& profile : current_profiles_) {
    // Snap the profile's requested sampling interval to the next multiple of
    // the base sampling interval.
    int64_t profile_interval_us =
        std::max<int64_t>(
            (profile->sampling_interval_us() + base_sampling_interval_us - 1) /
                base_sampling_interval_us,
            1) *
        base_sampling_interval_us;
    interval_us = GreatestCommonDivisor(interval_us, profile_interval_us);
  }
  return base::TimeDelta::FromMicroseconds(interval_us);
}

992
void CpuProfilesCollection::AddPathToCurrentProfiles(
993
    base::TimeTicks timestamp, const ProfileStackTrace& path, int src_line,
994 995 996
    bool update_stats, base::TimeDelta sampling_interval, StateTag state,
    EmbedderStateTag embedder_state_tag, Address native_context_address,
    Address embedder_native_context_address) {
997 998 999
  // As starting / stopping profiles is rare relatively to this
  // method, we don't bother minimizing the duration of lock holding,
  // e.g. copying contents of the list to a local vector.
1000
  current_profiles_semaphore_.Wait();
1001
  const ProfileStackTrace empty_path;
1002
  for (const std::unique_ptr<CpuProfile>& profile : current_profiles_) {
1003
    ContextFilter& context_filter = profile->context_filter();
1004
    // If the context filter check failed, omit the contents of the stack.
1005 1006 1007
    bool accepts_context = context_filter.Accept(native_context_address);
    bool accepts_embedder_context =
        context_filter.Accept(embedder_native_context_address);
1008
    profile->AddPath(timestamp, accepts_context ? path : empty_path, src_line,
1009 1010 1011
                     update_stats, sampling_interval, state,
                     accepts_embedder_context ? embedder_state_tag
                                              : EmbedderStateTag::EMPTY);
1012 1013 1014 1015 1016 1017 1018 1019 1020
  }
  current_profiles_semaphore_.Signal();
}

void CpuProfilesCollection::UpdateNativeContextAddressForCurrentProfiles(
    Address from, Address to) {
  current_profiles_semaphore_.Wait();
  for (const std::unique_ptr<CpuProfile>& profile : current_profiles_) {
    profile->context_filter().OnMoveEvent(from, to);
1021
  }
1022
  current_profiles_semaphore_.Signal();
1023 1024
}

1025 1026
}  // namespace internal
}  // namespace v8