test-macro-assembler-mips.cc 44.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
29
#include <iostream>  // NOLINT(readability/streams)
30

31
#include "src/api/api-inl.h"
32
#include "src/base/utils/random-number-generator.h"
33
#include "src/codegen/macro-assembler.h"
34
#include "src/execution/simulator.h"
35
#include "src/init/v8.h"
36
#include "src/objects/heap-number.h"
37
#include "src/objects/js-array-inl.h"
38
#include "src/objects/objects-inl.h"
39
#include "src/utils/ostreams.h"
40
#include "test/cctest/cctest.h"
41

42 43
namespace v8 {
namespace internal {
44

45
// TODO(mips): Refine these signatures per test case.
46 47 48
using F1 = void*(int x, int p1, int p2, int p3, int p4);
using F3 = void*(void* p, int p1, int p2, int p3, int p4);
using F4 = void*(void* p0, void* p1, int p2, int p3, int p4);
49 50 51

#define __ masm->

52 53 54
TEST(BYTESWAP) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
55
  HandleScope scope(isolate);
56 57

  struct T {
58 59 60
    uint32_t s4;
    uint32_t s2;
    uint32_t u2;
61
  };
62

63
  T t;
64 65
  uint32_t test_values[] = {0x5612FFCD, 0x9D327ACC, 0x781A15C3, 0xFCDE,    0x9F,
                            0xC81A15C3, 0x80000000, 0xFFFFFFFF, 0x00008000};
66

67
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
68

69 70
  MacroAssembler* masm = &assembler;

71 72 73 74 75 76 77 78 79 80 81 82 83 84
  __ lw(a1, MemOperand(a0, offsetof(T, s4)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 4);
  __ sw(a1, MemOperand(a0, offsetof(T, s4)));

  __ lw(a1, MemOperand(a0, offsetof(T, s2)));
  __ nop();
  __ ByteSwapSigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, s2)));

  __ lw(a1, MemOperand(a0, offsetof(T, u2)));
  __ nop();
  __ ByteSwapUnsigned(a1, a1, 2);
  __ sw(a1, MemOperand(a0, offsetof(T, u2)));
85 86 87 88 89

  __ jr(ra);
  __ nop();

  CodeDesc desc;
90
  masm->GetCode(isolate, &desc);
91
  Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
92
  auto f = GeneratedCode<F3>::FromCode(*code);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

  for (size_t i = 0; i < arraysize(test_values); i++) {
    int16_t in_s2 = static_cast<int16_t>(test_values[i]);
    uint16_t in_u2 = static_cast<uint16_t>(test_values[i]);

    t.s4 = test_values[i];
    t.s2 = static_cast<uint64_t>(in_s2);
    t.u2 = static_cast<uint64_t>(in_u2);

    f.Call(&t, 0, 0, 0, 0);

    CHECK_EQ(ByteReverse(test_values[i]), t.s4);
    CHECK_EQ(ByteReverse<int16_t>(in_s2), static_cast<int16_t>(t.s2));
    CHECK_EQ(ByteReverse<uint16_t>(in_u2), static_cast<uint16_t>(t.u2));
  }
108
}
109

110 111 112 113 114
static void TestNaN(const char *code) {
  // NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
  // tests checks the case where a x86 NaN value is serialized into the
  // snapshot on the simulator during cross compilation.
  v8::HandleScope scope(CcTest::isolate());
115
  v8::Local<v8::Context> context = CcTest::NewContext({PRINT_EXTENSION_ID});
116 117
  v8::Context::Scope context_scope(context);

118 119 120 121
  v8::Local<v8::Script> script =
      v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
  v8::Local<v8::Object> result =
      v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
122
  i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
123
  i::Handle<i::JSArray> array1(i::JSArray::cast(*o), o->GetIsolate());
124
  i::FixedDoubleArray a = i::FixedDoubleArray::cast(array1->elements());
125
  double value = a.get_scalar(0);
126
  CHECK(std::isnan(value) &&
127
        bit_cast<uint64_t>(value) ==
128
            bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}


TEST(NaN0) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
          "}"
          "result;");
}


TEST(NaN1) {
  TestNaN(
          "var result;"
          "for (var i = 0; i < 2; i++) {"
          "  result = [NaN];"
          "}"
          "result;");
}

151

152 153 154 155 156 157 158 159
TEST(jump_tables4) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required before emission of the dd table (where trampolines are
  // blocked), and proper transition to long-branch mode.
  // Regression test for v8:4294.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
160
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
161 162 163 164 165 166
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
167
  Label near_start, end, done;
168

169
  __ Push(ra);
170 171 172 173 174 175 176 177 178 179 180
  __ mov(v0, zero_reg);

  __ Branch(&end);
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < 32768 - 256; ++i) {
    __ addiu(v0, v0, 1);
  }

181 182
  __ GenerateSwitchTable(a0, kNumCases,
                         [&labels](size_t i) { return labels + i; });
183 184 185

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
186
    __ li(v0, values[i]);
187 188 189 190
    __ Branch(&done);
  }

  __ bind(&done);
191
  __ Pop(ra);
192 193 194 195 196 197 198
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
199
  masm->GetCode(isolate, &desc);
200
  Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
201
#ifdef OBJECT_PRINT
202
  code->Print(std::cout);
203
#endif
204
  auto f = GeneratedCode<F1>::FromCode(*code);
205
  for (int i = 0; i < kNumCases; ++i) {
206
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
207 208 209 210 211 212
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}


213 214 215 216 217 218 219 220
TEST(jump_tables5) {
  if (!IsMipsArchVariant(kMips32r6)) return;

  // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
  // compact branch instruction before emission of the dd table.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
221
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
222 223 224 225 226 227 228 229
  MacroAssembler* masm = &assembler;

  const int kNumCases = 512;
  int values[kNumCases];
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
  Label labels[kNumCases];
  Label done;

230
  __ Push(ra);
231 232

  {
233 234 235
    __ BlockTrampolinePoolFor(kNumCases + 6 + 1);

    __ addiupc(at, 6 + 1);
236
    __ Lsa(at, at, a0, 2);
237
    __ lw(at, MemOperand(at));
238 239 240
    __ jalr(at);
    __ nop();  // Branch delay slot nop.
    __ bc(&done);
241 242
    // A nop instruction must be generated by the forbidden slot guard
    // (Assembler::dd(Label*)).
243 244 245 246 247 248 249
    for (int i = 0; i < kNumCases; ++i) {
      __ dd(&labels[i]);
    }
  }

  for (int i = 0; i < kNumCases; ++i) {
    __ bind(&labels[i]);
250
    __ li(v0, values[i]);
251 252 253 254 255
    __ jr(ra);
    __ nop();
  }

  __ bind(&done);
256
  __ Pop(ra);
257 258 259 260
  __ jr(ra);
  __ nop();

  CodeDesc desc;
261
  masm->GetCode(isolate, &desc);
262
  Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
263
#ifdef OBJECT_PRINT
264
  code->Print(std::cout);
265
#endif
266
  auto f = GeneratedCode<F1>::FromCode(*code);
267
  for (int i = 0; i < kNumCases; ++i) {
268
    int32_t res = reinterpret_cast<int32_t>(f.Call(i, 0, 0, 0, 0));
269
    ::printf("f(%d) = %d\n", i, res);
270 271 272 273
    CHECK_EQ(values[i], res);
  }
}

274 275 276 277 278 279 280 281 282 283
TEST(jump_tables6) {
  // Similar to test-assembler-mips jump_tables1, with extra test for branch
  // trampoline required after emission of the dd table (where trampolines are
  // blocked). This test checks if number of really generated instructions is
  // greater than number of counted instructions from code, as we are expecting
  // generation of trampoline in this case (when number of kFillInstr
  // instructions is close to 32K)
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
284
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
285 286
  MacroAssembler* masm = &assembler;

287 288 289 290 291 292
  const int kSwitchTableCases = 40;

  const int kMaxBranchOffset = Assembler::kMaxBranchOffset;
  const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize;
  const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize;

293 294
  const int kMaxOffsetForTrampolineStart =
      kMaxBranchOffset - 16 * kTrampolineSlotsSize;
295 296
  const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) -
                         (kSwitchTablePrologueSize + kSwitchTableCases) - 20;
297

298
  int values[kSwitchTableCases];
299
  isolate->random_number_generator()->NextBytes(values, sizeof(values));
300
  Label labels[kSwitchTableCases];
301 302 303 304 305 306 307 308 309
  Label near_start, end, done;

  __ Push(ra);
  __ mov(v0, zero_reg);

  int offs1 = masm->pc_offset();
  int gen_insn = 0;

  __ Branch(&end);
310
  gen_insn += Assembler::IsCompactBranchSupported() ? 1 : 2;
311 312 313 314 315 316 317 318 319
  __ bind(&near_start);

  // Generate slightly less than 32K instructions, which will soon require
  // trampoline for branch distance fixup.
  for (int i = 0; i < kFillInstr; ++i) {
    __ addiu(v0, v0, 1);
  }
  gen_insn += kFillInstr;

320
  __ GenerateSwitchTable(a0, kSwitchTableCases,
321
                         [&labels](size_t i) { return labels + i; });
322
  gen_insn += (kSwitchTablePrologueSize + kSwitchTableCases);
323

324
  for (int i = 0; i < kSwitchTableCases; ++i) {
325 326 327 328
    __ bind(&labels[i]);
    __ li(v0, values[i]);
    __ Branch(&done);
  }
329 330
  gen_insn +=
      ((Assembler::IsCompactBranchSupported() ? 3 : 4) * kSwitchTableCases);
331 332 333 334 335 336

  // If offset from here to first branch instr is greater than max allowed
  // offset for trampoline ...
  CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1);
  // ... number of generated instructions must be greater then "gen_insn",
  // as we are expecting trampoline generation
337
  CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize);
338 339 340 341 342 343 344 345 346 347

  __ bind(&done);
  __ Pop(ra);
  __ jr(ra);
  __ nop();

  __ bind(&end);
  __ Branch(&near_start);

  CodeDesc desc;
348
  masm->GetCode(isolate, &desc);
349
  Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
350
#ifdef OBJECT_PRINT
351
  code->Print(std::cout);
352
#endif
353
  auto f = GeneratedCode<F1>::FromCode(*code);
354
  for (int i = 0; i < kSwitchTableCases; ++i) {
355
    int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0));
356 357 358 359
    ::printf("f(%d) = %d\n", i, res);
    CHECK_EQ(values[i], res);
  }
}
360

361 362 363
static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
364
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
365 366 367 368 369 370 371
  MacroAssembler* masm = &assembler;

  __ Lsa(v0, a0, a1, sa);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
372
  assembler.GetCode(isolate, &desc);
373
  Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
374

375
  auto f = GeneratedCode<F1>::FromCode(*code);
376

377
  uint32_t res = reinterpret_cast<uint32_t>(f.Call(rt, rs, 0, 0, 0));
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

  return res;
}


TEST(Lsa) {
  CcTest::InitializeVM();
  struct TestCaseLsa {
    int32_t rt;
    int32_t rs;
    uint8_t sa;
    uint32_t expected_res;
  };

  struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
                             {0x4, 0x1, 1, 0x6},
                             {0x4, 0x1, 2, 0x8},
395
                             {0x4, 0x1, 3, 0xC},
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
                             {0x4, 0x1, 4, 0x14},
                             {0x4, 0x1, 5, 0x24},
                             {0x0, 0x1, 1, 0x2},
                             {0x0, 0x1, 2, 0x4},
                             {0x0, 0x1, 3, 0x8},
                             {0x0, 0x1, 4, 0x10},
                             {0x0, 0x1, 5, 0x20},
                             {0x4, 0x0, 1, 0x4},
                             {0x4, 0x0, 2, 0x4},
                             {0x4, 0x0, 3, 0x4},
                             {0x4, 0x0, 4, 0x4},
                             {0x4, 0x0, 5, 0x4},

                             // Shift overflow.
                             {0x4, INT32_MAX, 1, 0x2},
                             {0x4, INT32_MAX >> 1, 2, 0x0},
412 413 414
                             {0x4, INT32_MAX >> 2, 3, 0xFFFFFFFC},
                             {0x4, INT32_MAX >> 3, 4, 0xFFFFFFF4},
                             {0x4, INT32_MAX >> 4, 5, 0xFFFFFFE4},
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

                             // Signed addition overflow.
                             {INT32_MAX - 1, 0x1, 1, 0x80000000},
                             {INT32_MAX - 3, 0x1, 2, 0x80000000},
                             {INT32_MAX - 7, 0x1, 3, 0x80000000},
                             {INT32_MAX - 15, 0x1, 4, 0x80000000},
                             {INT32_MAX - 31, 0x1, 5, 0x80000000},

                             // Addition overflow.
                             {-2, 0x1, 1, 0x0},
                             {-4, 0x1, 2, 0x0},
                             {-8, 0x1, 3, 0x0},
                             {-16, 0x1, 4, 0x0},
                             {-32, 0x1, 5, 0x0}};

  size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
  for (size_t i = 0; i < nr_test_cases; ++i) {
    uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
    PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
           tc[i].rt, tc[i].rs, tc[i].sa);
    CHECK_EQ(tc[i].expected_res, res);
  }
}

439
static const std::vector<uint32_t> cvt_trunc_uint32_test_values() {
440 441 442
  static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00,
                                     0x7FFFFFFF, 0x80000000, 0x80000001,
                                     0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF};
443 444 445
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

446
static const std::vector<int32_t> cvt_trunc_int32_test_values() {
447 448
  static const int32_t kValues[] = {
      static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
449
      static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF),
450
      static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
451 452
      static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF),
      static_cast<int32_t>(0xFFFFFFFF)};
453 454 455 456
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
457 458
#define FOR_INPUTS(ctype, itype, var, test_vector)           \
  std::vector<ctype> var##_vec = test_vector();              \
459 460 461
  for (std::vector<ctype>::iterator var = var##_vec.begin(); \
       var != var##_vec.end(); ++var)

462 463 464 465 466 467 468
#define FOR_INPUTS2(ctype, itype, var, var2, test_vector)  \
  std::vector<ctype> var##_vec = test_vector();            \
  std::vector<ctype>::iterator var;                        \
  std::vector<ctype>::reverse_iterator var2;               \
  for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
       var != var##_vec.end(); ++var, ++var2)

469 470 471 472 473 474 475 476
#define FOR_ENUM_INPUTS(var, type, test_vector) \
  FOR_INPUTS(enum type, type, var, test_vector)
#define FOR_STRUCT_INPUTS(var, type, test_vector) \
  FOR_INPUTS(struct type, type, var, test_vector)
#define FOR_UINT32_INPUTS(var, test_vector) \
  FOR_INPUTS(uint32_t, uint32, var, test_vector)
#define FOR_INT32_INPUTS(var, test_vector) \
  FOR_INPUTS(int32_t, int32, var, test_vector)
477 478 479 480 481
#define FOR_INT32_INPUTS2(var, var2, test_vector) \
  FOR_INPUTS2(int32_t, int32, var, var2, test_vector)

#define FOR_UINT64_INPUTS(var, test_vector) \
  FOR_INPUTS(uint64_t, uint32, var, test_vector)
482 483 484

template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
485
  using F_CVT = RET_TYPE(IN_TYPE x0, int x1, int x2, int x3, int x4);
486 487 488

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
489
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
490 491 492 493 494 495 496 497 498
  MacroAssembler* masm = &assm;

  __ mtc1(a0, f4);
  GenerateConvertInstructionFunc(masm);
  __ mfc1(v0, f2);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
499
  assm.GetCode(isolate, &desc);
500
  Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
501

502
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
503

504
  return reinterpret_cast<RET_TYPE>(f.Call(x, 0, 0, 0, 0));
505 506 507 508
}

TEST(cvt_s_w_Trunc_uw_s) {
  CcTest::InitializeVM();
509
  FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) {
510
    uint32_t input = *i;
511 512
    auto fn = [](MacroAssembler* masm) {
      __ cvt_s_w(f0, f4);
513
      __ Trunc_uw_s(f2, f0, f6);
514 515
    };
    CHECK_EQ(static_cast<float>(input), run_Cvt<uint32_t>(input, fn));
516 517 518 519 520
  }
}

TEST(cvt_d_w_Trunc_w_d) {
  CcTest::InitializeVM();
521
  FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) {
522
    int32_t input = *i;
523 524 525 526 527
    auto fn = [](MacroAssembler* masm) {
      __ cvt_d_w(f0, f4);
      __ Trunc_w_d(f2, f0);
    };
    CHECK_EQ(static_cast<double>(input), run_Cvt<int32_t>(input, fn));
528 529 530
  }
}

531 532
static const std::vector<int32_t> overflow_int32_test_values() {
  static const int32_t kValues[] = {
533 534 535 536 537
      static_cast<int32_t>(0xF0000000), static_cast<int32_t>(0x00000001),
      static_cast<int32_t>(0xFF000000), static_cast<int32_t>(0x0000F000),
      static_cast<int32_t>(0x0F000000), static_cast<int32_t>(0x991234AB),
      static_cast<int32_t>(0xB0FFFF01), static_cast<int32_t>(0x00006FFF),
      static_cast<int32_t>(0xFFFFFFFF)};
538 539 540
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

541 542
TEST(OverflowInstructions) {
  CcTest::InitializeVM();
543
  Isolate* isolate = CcTest::i_isolate();
544
  HandleScope handles(isolate);
545

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
  struct T {
    int32_t lhs;
    int32_t rhs;
    int32_t output_add;
    int32_t output_add2;
    int32_t output_sub;
    int32_t output_sub2;
    int32_t output_mul;
    int32_t output_mul2;
    int32_t overflow_add;
    int32_t overflow_add2;
    int32_t overflow_sub;
    int32_t overflow_sub2;
    int32_t overflow_mul;
    int32_t overflow_mul2;
  };
  T t;
563 564 565

  FOR_INT32_INPUTS(i, overflow_int32_test_values) {
    FOR_INT32_INPUTS(j, overflow_int32_test_values) {
566 567 568 569
      int32_t ii = *i;
      int32_t jj = *j;
      int32_t expected_add, expected_sub, expected_mul;
      bool expected_add_ovf, expected_sub_ovf, expected_mul_ovf;
570
      MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
      MacroAssembler* masm = &assembler;

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ AddOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_add)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add)));
      __ mov(t3, zero_reg);
      __ AddOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_add2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_add2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ SubOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_sub)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub)));
      __ mov(t3, zero_reg);
      __ SubOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_sub2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub2)));

      __ lw(t0, MemOperand(a0, offsetof(T, lhs)));
      __ lw(t1, MemOperand(a0, offsetof(T, rhs)));

      __ MulOverflow(t2, t0, Operand(t1), t3);
      __ sw(t2, MemOperand(a0, offsetof(T, output_mul)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul)));
      __ mov(t3, zero_reg);
      __ MulOverflow(t0, t0, Operand(t1), t3);
      __ sw(t0, MemOperand(a0, offsetof(T, output_mul2)));
      __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul2)));

      __ jr(ra);
      __ nop();

      CodeDesc desc;
      masm->GetCode(isolate, &desc);
      Handle<Code> code =
612
          Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
      auto f = GeneratedCode<F3>::FromCode(*code);
      t.lhs = ii;
      t.rhs = jj;
      f.Call(&t, 0, 0, 0, 0);

      expected_add_ovf = base::bits::SignedAddOverflow32(ii, jj, &expected_add);
      expected_sub_ovf = base::bits::SignedSubOverflow32(ii, jj, &expected_sub);
      expected_mul_ovf = base::bits::SignedMulOverflow32(ii, jj, &expected_mul);

      CHECK_EQ(expected_add_ovf, t.overflow_add < 0);
      CHECK_EQ(expected_sub_ovf, t.overflow_sub < 0);
      CHECK_EQ(expected_mul_ovf, t.overflow_mul != 0);

      CHECK_EQ(t.overflow_add, t.overflow_add2);
      CHECK_EQ(t.overflow_sub, t.overflow_sub2);
      CHECK_EQ(t.overflow_mul, t.overflow_mul2);

      CHECK_EQ(expected_add, t.output_add);
      CHECK_EQ(expected_add, t.output_add2);
      CHECK_EQ(expected_sub, t.output_sub);
      CHECK_EQ(expected_sub, t.output_sub2);
      if (!expected_mul_ovf) {
        CHECK_EQ(expected_mul, t.output_mul);
        CHECK_EQ(expected_mul, t.output_mul2);
637 638 639 640 641 642
      }
    }
  }
}


643 644 645 646
TEST(min_max_nan) {
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
647
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  MacroAssembler* masm = &assembler;

  struct TestFloat {
    double a;
    double b;
    double c;
    double d;
    float e;
    float f;
    float g;
    float h;
  };

  TestFloat test;
  const double dnan = std::numeric_limits<double>::quiet_NaN();
  const double dinf = std::numeric_limits<double>::infinity();
  const double dminf = -std::numeric_limits<double>::infinity();
  const float fnan = std::numeric_limits<float>::quiet_NaN();
  const float finf = std::numeric_limits<float>::infinity();
  const float fminf = std::numeric_limits<float>::infinity();
  const int kTableLength = 13;

  double inputsa[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, dinf, dminf,
                                  dinf, dnan, 3.0,  dinf, dnan, dnan};
  double inputsb[kTableLength] = {3.0,   2.0, 0.0,  -0.0, dinf, 42.0, dinf,
                                  dminf, 3.0, dnan, dnan, dinf, dnan};
  double outputsdmin[kTableLength] = {2.0,  2.0,   -0.0,  -0.0, 42.0,
                                      42.0, dminf, dminf, dnan, dnan,
                                      dnan, dnan,  dnan};
  double outputsdmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  dinf, dinf, dinf,
                                      dinf, dnan, dnan, dnan, dnan, dnan};

  float inputse[kTableLength] = {2.0,  3.0,  -0.0, 0.0,  42.0, finf, fminf,
                                 finf, fnan, 3.0,  finf, fnan, fnan};
  float inputsf[kTableLength] = {3.0,   2.0, 0.0,  -0.0, finf, 42.0, finf,
                                 fminf, 3.0, fnan, fnan, finf, fnan};
  float outputsfmin[kTableLength] = {2.0,   2.0,  -0.0, -0.0, 42.0, 42.0, fminf,
                                     fminf, fnan, fnan, fnan, fnan, fnan};
  float outputsfmax[kTableLength] = {3.0,  3.0,  0.0,  0.0,  finf, finf, finf,
                                     finf, fnan, fnan, fnan, fnan, fnan};

  auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
691
    __ LoadRoot(t8, RootIndex::kNanValue);
692
    __ Ldc1(dst, FieldMemOperand(t8, HeapNumber::kValueOffset));
693 694 695 696 697 698 699 700 701 702 703 704 705 706
    __ Branch(back);
  };

  auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
    __ bind(nan);
    __ Move(dst, fnan);
    __ Branch(back);
  };

  Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
  Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;

  __ push(s6);
  __ InitializeRootRegister();
707 708
  __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
  __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
709 710
  __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
  __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
711
  __ Float64Min(f10, f4, f8, &handle_mind_nan);
712
  __ bind(&back_mind_nan);
713
  __ Float64Max(f12, f4, f8, &handle_maxd_nan);
714
  __ bind(&back_maxd_nan);
715
  __ Float32Min(f14, f2, f6, &handle_mins_nan);
716
  __ bind(&back_mins_nan);
717
  __ Float32Max(f16, f2, f6, &handle_maxs_nan);
718
  __ bind(&back_maxs_nan);
719 720
  __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
  __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
721 722 723 724 725 726 727 728 729 730 731 732
  __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
  __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
  __ pop(s6);
  __ jr(ra);
  __ nop();

  handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
  handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
  handle_snan(f14, &handle_mins_nan, &back_mins_nan);
  handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);

  CodeDesc desc;
733
  masm->GetCode(isolate, &desc);
734
  Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
735
  auto f = GeneratedCode<F3>::FromCode(*code);
736 737 738 739 740 741
  for (int i = 0; i < kTableLength; i++) {
    test.a = inputsa[i];
    test.b = inputsb[i];
    test.e = inputse[i];
    test.f = inputsf[i];

742
    f.Call(&test, 0, 0, 0, 0);
743 744 745 746 747 748 749 750

    CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
    CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
    CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
    CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
  }
}

751 752 753
template <typename IN_TYPE, typename Func>
bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
                   IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
754
  using F_CVT = int32_t(char* x0, int x1, int x2, int x3, int x4);
755 756 757

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
758
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
759 760 761 762 763 764 765 766
  MacroAssembler* masm = &assm;
  IN_TYPE res;

  GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
767
  assm.GetCode(isolate, &desc);
768
  Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
769

770
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
771 772

  MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
773
  f.Call(memory_buffer, 0, 0, 0, 0);
774 775 776 777 778 779 780
  MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));

  return res == value;
}

static const std::vector<uint64_t> unsigned_test_values() {
  static const uint64_t kValues[] = {
781 782
      0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0,
      0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF,
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
  };
  return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset() {
  static const int32_t kValues[] = {// value, offset
                                    -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

static const std::vector<int32_t> unsigned_test_offset_increment() {
  static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
  return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

TEST(Ulh) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulh(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulh(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), v0);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_2));

        auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulhu(a0, MemOperand(a0, in_offset));
          __ Ush(a0, MemOperand(t0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_3));

        auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulhu(v0, MemOperand(a0, in_offset));
          __ Ush(v0, MemOperand(a0, out_offset), t1);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_4));
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
      }
    }
  }
}

TEST(Ulh_bitextension) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          Label success, fail, end, different;
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ulhu(t1, MemOperand(a0, in_offset));
          __ Branch(&different, ne, t0, Operand(t1));

          // If signed and unsigned values are same, check
          // the upper bits to see if they are zero
          __ sra(t0, t0, 15);
          __ Branch(&success, eq, t0, Operand(zero_reg));
          __ Branch(&fail);

          // If signed and unsigned values are different,
          // check that the upper bits are complementary
          __ bind(&different);
          __ sra(t1, t1, 15);
          __ Branch(&fail, ne, t1, Operand(1));
          __ sra(t0, t0, 15);
          __ addiu(t0, t0, 1);
          __ Branch(&fail, ne, t0, Operand(zero_reg));
          // Fall through to success

          __ bind(&success);
          __ Ulh(t0, MemOperand(a0, in_offset));
          __ Ush(t0, MemOperand(a0, out_offset), v0);
          __ Branch(&end);
          __ bind(&fail);
          __ Ush(zero_reg, MemOperand(a0, out_offset), v0);
          __ bind(&end);
        };
        CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
                                               out_offset, value, fn));
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
      }
    }
  }
}

TEST(Ulw) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

916 917 918 919 920 921 922 923 924 925 926 927 928 929
        auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ Ulw(v0, MemOperand(a0, in_offset));
          __ Usw(v0, MemOperand(a0, out_offset));
        };
        CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
                                               out_offset, value, fn_1));

        auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
                       int32_t out_offset) {
          __ mov(t0, a0);
          __ Ulw(a0, MemOperand(a0, in_offset));
          __ Usw(a0, MemOperand(t0, out_offset));
        };
930
        CHECK_EQ(true,
931 932
                 run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
                                         (uint32_t)value, fn_2));
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
      }
    }
  }
}

TEST(Ulwc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        float value = static_cast<float>(*i & 0xFFFFFFFF);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

952 953 954 955 956 957 958
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Ulwc1(f0, MemOperand(a0, in_offset), t0);
          __ Uswc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<float>(buffer_middle, in_offset,
                                            out_offset, value, fn));
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
      }
    }
  }
}

TEST(Uldc1) {
  CcTest::InitializeVM();

  static const int kBufferSize = 300 * KB;
  char memory_buffer[kBufferSize];
  char* buffer_middle = memory_buffer + (kBufferSize / 2);

  FOR_UINT64_INPUTS(i, unsigned_test_values) {
    FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
      FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
        double value = static_cast<double>(*i);
        int32_t in_offset = *j1 + *k1;
        int32_t out_offset = *j2 + *k2;

978 979 980 981 982 983 984
        auto fn = [](MacroAssembler* masm, int32_t in_offset,
                     int32_t out_offset) {
          __ Uldc1(f0, MemOperand(a0, in_offset), t0);
          __ Usdc1(f0, MemOperand(a0, out_offset), t0);
        };
        CHECK_EQ(true, run_Unaligned<double>(buffer_middle, in_offset,
                                             out_offset, value, fn));
985 986 987 988 989
      }
    }
  }
}

990 991
static const std::vector<uint32_t> sltu_test_values() {
  static const uint32_t kValues[] = {
992 993 994
      0,          1,          0x7FFE,     0x7FFF,     0x8000,
      0x8001,     0xFFFE,     0xFFFF,     0xFFFF7FFE, 0xFFFF7FFF,
      0xFFFF8000, 0xFFFF8001, 0xFFFFFFFE, 0xFFFFFFFF,
995 996 997 998 999 1000
  };
  return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}

template <typename Func>
bool run_Sltu(uint32_t rs, uint32_t rd, Func GenerateSltuInstructionFunc) {
1001
  using F_CVT = int32_t(uint32_t x0, uint32_t x1, int x2, int x3, int x4);
1002 1003 1004

  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);
1005
  MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
1006 1007 1008 1009 1010 1011 1012
  MacroAssembler* masm = &assm;

  GenerateSltuInstructionFunc(masm, rd);
  __ jr(ra);
  __ nop();

  CodeDesc desc;
1013
  assm.GetCode(isolate, &desc);
1014
  Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
1015

1016 1017
  auto f = GeneratedCode<F_CVT>::FromCode(*code);
  int32_t res = reinterpret_cast<int32_t>(f.Call(rs, rd, 0, 0, 0));
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
  return res == 1;
}

TEST(Sltu) {
  CcTest::InitializeVM();

  FOR_UINT32_INPUTS(i, sltu_test_values) {
    FOR_UINT32_INPUTS(j, sltu_test_values) {
      uint32_t rs = *i;
      uint32_t rd = *j;

1029 1030 1031 1032 1033 1034 1035 1036 1037
      auto fn_1 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, Operand(imm));
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_1));

      auto fn_2 = [](MacroAssembler* masm, uint32_t imm) {
        __ Sltu(v0, a0, a1);
      };
      CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_2));
1038 1039 1040 1041
    }
  }
}

1042
template <typename T, typename Inputs, typename Results>
1043
static GeneratedCode<F4> GenerateMacroFloat32MinMax(MacroAssembler* masm) {
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
  __ lwc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ lwc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
  __ swc1(a, MemOperand(a1, offsetof(Results, res_field)))

  // a = min(b, c);
  FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float32MinOutOfLine(a, b, c);
1083
  __ Branch(&done_min_abc);
1084 1085 1086

  __ bind(&ool_min_aab);
  __ Float32MinOutOfLine(a, a, b);
1087
  __ Branch(&done_min_aab);
1088 1089 1090

  __ bind(&ool_min_aba);
  __ Float32MinOutOfLine(a, b, a);
1091
  __ Branch(&done_min_aba);
1092 1093 1094

  __ bind(&ool_max_abc);
  __ Float32MaxOutOfLine(a, b, c);
1095
  __ Branch(&done_max_abc);
1096 1097 1098

  __ bind(&ool_max_aab);
  __ Float32MaxOutOfLine(a, a, b);
1099
  __ Branch(&done_max_aab);
1100 1101 1102

  __ bind(&ool_max_aba);
  __ Float32MaxOutOfLine(a, b, a);
1103
  __ Branch(&done_max_aba);
1104 1105

  CodeDesc desc;
1106
  masm->GetCode(masm->isolate(), &desc);
1107 1108
  Handle<Code> code =
      Factory::CodeBuilder(masm->isolate(), desc, Code::STUB).Build();
1109
#ifdef DEBUG
1110
  StdoutStream os;
1111
  code->Print(os);
1112
#endif
1113
  return GeneratedCode<F4>::FromCode(*code);
1114 1115 1116 1117 1118 1119 1120 1121
}

TEST(macro_float_minmax_f32) {
  // Test the Float32Min and Float32Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1122
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
  MacroAssembler* masm = &assembler;

  struct Inputs {
    float src1_;
    float src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    float min_abc_;
    float min_aab_;
    float min_aba_;
    float max_abc_;
    float max_aab_;
    float max_aba_;
  };

1141 1142
  GeneratedCode<F4> f =
      GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>(masm);
1143 1144 1145 1146 1147

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1148
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  float nan_a = std::numeric_limits<float>::quiet_NaN();
  float nan_b = std::numeric_limits<float>::quiet_NaN();

  CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
  CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
  CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
  CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
  CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);

  CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
  CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
  CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
  CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);

  CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

template <typename T, typename Inputs, typename Results>
1184
static GeneratedCode<F4> GenerateMacroFloat64MinMax(MacroAssembler* masm) {
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
  T a = T::from_code(4);  // f4
  T b = T::from_code(6);  // f6
  T c = T::from_code(8);  // f8

  Label ool_min_abc, ool_min_aab, ool_min_aba;
  Label ool_max_abc, ool_max_aab, ool_max_aba;

  Label done_min_abc, done_min_aab, done_min_aba;
  Label done_max_abc, done_max_aab, done_max_aba;

#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
1196 1197
  __ Ldc1(x, MemOperand(a0, offsetof(Inputs, src1_)));          \
  __ Ldc1(y, MemOperand(a0, offsetof(Inputs, src2_)));          \
1198 1199
  __ fminmax(res, x, y, &ool);                                  \
  __ bind(&done);                                               \
1200
  __ Sdc1(a, MemOperand(a1, offsetof(Results, res_field)))
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

  // a = min(b, c);
  FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
  // a = min(a, b);
  FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
  // a = min(b, a);
  FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);

  // a = max(b, c);
  FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
  // a = max(a, b);
  FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
  // a = max(b, a);
  FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);

#undef FLOAT_MIN_MAX

  __ jr(ra);
  __ nop();

  // Generate out-of-line cases.
  __ bind(&ool_min_abc);
  __ Float64MinOutOfLine(a, b, c);
1224
  __ Branch(&done_min_abc);
1225 1226 1227

  __ bind(&ool_min_aab);
  __ Float64MinOutOfLine(a, a, b);
1228
  __ Branch(&done_min_aab);
1229 1230 1231

  __ bind(&ool_min_aba);
  __ Float64MinOutOfLine(a, b, a);
1232
  __ Branch(&done_min_aba);
1233 1234 1235

  __ bind(&ool_max_abc);
  __ Float64MaxOutOfLine(a, b, c);
1236
  __ Branch(&done_max_abc);
1237 1238 1239

  __ bind(&ool_max_aab);
  __ Float64MaxOutOfLine(a, a, b);
1240
  __ Branch(&done_max_aab);
1241 1242 1243

  __ bind(&ool_max_aba);
  __ Float64MaxOutOfLine(a, b, a);
1244
  __ Branch(&done_max_aba);
1245 1246

  CodeDesc desc;
1247
  masm->GetCode(masm->isolate(), &desc);
1248
  Handle<Code> code =
1249
      Factory::CodeBuilder(masm->isolate(), desc, Code::STUB).Build();
1250
#ifdef DEBUG
1251
  StdoutStream os;
1252
  code->Print(os);
1253
#endif
1254
  return GeneratedCode<F4>::FromCode(*code);
1255 1256 1257 1258 1259 1260 1261 1262
}

TEST(macro_float_minmax_f64) {
  // Test the Float64Min and Float64Max macros.
  CcTest::InitializeVM();
  Isolate* isolate = CcTest::i_isolate();
  HandleScope scope(isolate);

1263
  MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
  MacroAssembler* masm = &assembler;

  struct Inputs {
    double src1_;
    double src2_;
  };

  struct Results {
    // Check all register aliasing possibilities in order to exercise all
    // code-paths in the macro assembler.
    double min_abc_;
    double min_aab_;
    double min_aba_;
    double max_abc_;
    double max_aab_;
    double max_aba_;
  };

1282 1283
  GeneratedCode<F4> f =
      GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>(masm);
1284 1285 1286 1287 1288

#define CHECK_MINMAX(src1, src2, min, max)                                   \
  do {                                                                       \
    Inputs inputs = {src1, src2};                                            \
    Results results;                                                         \
1289
    f.Call(&inputs, &results, 0, 0, 0);                                      \
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \
    CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \
    /* Use a bit_cast to correctly identify -0.0 and NaNs. */                \
  } while (0)

  double nan_a = std::numeric_limits<double>::quiet_NaN();
  double nan_b = std::numeric_limits<double>::quiet_NaN();

  CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
  CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
  CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
  CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
  CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
  CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
  CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
  CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);

  CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
  CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
  CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
  CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);

  CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
  CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
  CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
  CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);

#undef CHECK_MINMAX
}

1324
#undef __
1325 1326 1327

}  // namespace internal
}  // namespace v8