assembler-ppc.cc 66.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.

#include "src/v8.h"

#if V8_TARGET_ARCH_PPC

#include "src/base/bits.h"
#include "src/base/cpu.h"
#include "src/macro-assembler.h"
#include "src/ppc/assembler-ppc-inl.h"

namespace v8 {
namespace internal {

// Get the CPU features enabled by the build.
static unsigned CpuFeaturesImpliedByCompiler() {
  unsigned answer = 0;
  return answer;
}


void CpuFeatures::ProbeImpl(bool cross_compile) {
  supported_ |= CpuFeaturesImpliedByCompiler();
  cache_line_size_ = 128;

  // Only use statically determined features for cross compile (snapshot).
  if (cross_compile) return;

// Detect whether frim instruction is supported (POWER5+)
// For now we will just check for processors we know do not
// support it
#ifndef USE_SIMULATOR
  // Probe for additional features at runtime.
  base::CPU cpu;
#if V8_TARGET_ARCH_PPC64
  if (cpu.part() == base::CPU::PPC_POWER8) {
    supported_ |= (1u << FPR_GPR_MOV);
  }
#endif
  if (cpu.part() == base::CPU::PPC_POWER6 ||
      cpu.part() == base::CPU::PPC_POWER7 ||
      cpu.part() == base::CPU::PPC_POWER8) {
    supported_ |= (1u << LWSYNC);
  }
79 80 81 82
  if (cpu.part() == base::CPU::PPC_POWER7 ||
      cpu.part() == base::CPU::PPC_POWER8) {
    supported_ |= (1u << ISELECT);
  }
83 84 85 86 87 88 89 90 91 92 93 94
#if V8_OS_LINUX
  if (!(cpu.part() == base::CPU::PPC_G5 || cpu.part() == base::CPU::PPC_G4)) {
    // Assume support
    supported_ |= (1u << FPU);
  }
#elif V8_OS_AIX
  // Assume support FP support and default cache line size
  supported_ |= (1u << FPU);
#endif
#else  // Simulator
  supported_ |= (1u << FPU);
  supported_ |= (1u << LWSYNC);
95
  supported_ |= (1u << ISELECT);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#if V8_TARGET_ARCH_PPC64
  supported_ |= (1u << FPR_GPR_MOV);
#endif
#endif
}


void CpuFeatures::PrintTarget() {
  const char* ppc_arch = NULL;

#if V8_TARGET_ARCH_PPC64
  ppc_arch = "ppc64";
#else
  ppc_arch = "ppc";
#endif

  printf("target %s\n", ppc_arch);
}


void CpuFeatures::PrintFeatures() {
  printf("FPU=%d\n", CpuFeatures::IsSupported(FPU));
}


Register ToRegister(int num) {
  DCHECK(num >= 0 && num < kNumRegisters);
  const Register kRegisters[] = {r0,  sp,  r2,  r3,  r4,  r5,  r6,  r7,
                                 r8,  r9,  r10, r11, ip,  r13, r14, r15,
                                 r16, r17, r18, r19, r20, r21, r22, r23,
                                 r24, r25, r26, r27, r28, r29, r30, fp};
  return kRegisters[num];
}


const char* DoubleRegister::AllocationIndexToString(int index) {
  DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
  const char* const names[] = {
      "d1",  "d2",  "d3",  "d4",  "d5",  "d6",  "d7",  "d8",  "d9",  "d10",
      "d11", "d12", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22",
      "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
  return names[index];
}


// -----------------------------------------------------------------------------
// Implementation of RelocInfo

144 145
const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE |
                                  1 << RelocInfo::INTERNAL_REFERENCE_ENCODED;
146 147 148 149 150


bool RelocInfo::IsCodedSpecially() {
  // The deserializer needs to know whether a pointer is specially
  // coded.  Being specially coded on PPC means that it is a lis/ori
151 152
  // instruction sequence or is a constant pool entry, and these are
  // always the case inside code objects.
153 154 155 156 157
  return true;
}


bool RelocInfo::IsInConstantPool() {
158 159 160 161
  if (FLAG_enable_embedded_constant_pool) {
    Address constant_pool = host_->constant_pool();
    return (constant_pool && Assembler::IsConstantPoolLoadStart(pc_));
  }
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  return false;
}


// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand
// See assembler-ppc-inl.h for inlined constructors

Operand::Operand(Handle<Object> handle) {
  AllowDeferredHandleDereference using_raw_address;
  rm_ = no_reg;
  // Verify all Objects referred by code are NOT in new space.
  Object* obj = *handle;
  if (obj->IsHeapObject()) {
    DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
    imm_ = reinterpret_cast<intptr_t>(handle.location());
    rmode_ = RelocInfo::EMBEDDED_OBJECT;
  } else {
    // no relocation needed
    imm_ = reinterpret_cast<intptr_t>(obj);
    rmode_ = kRelocInfo_NONEPTR;
  }
}


MemOperand::MemOperand(Register rn, int32_t offset) {
  ra_ = rn;
  rb_ = no_reg;
  offset_ = offset;
}


MemOperand::MemOperand(Register ra, Register rb) {
  ra_ = ra;
  rb_ = rb;
  offset_ = 0;
}


// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.


Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    : AssemblerBase(isolate, buffer, buffer_size),
      recorded_ast_id_(TypeFeedbackId::None()),
208
      constant_pool_builder_(kLoadPtrMaxReachBits, kLoadDoubleMaxReachBits),
209 210 211 212 213
      positions_recorder_(this) {
  reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);

  no_trampoline_pool_before_ = 0;
  trampoline_pool_blocked_nesting_ = 0;
214
  constant_pool_entry_sharing_blocked_nesting_ = 0;
215
  next_trampoline_check_ = kMaxInt;
216 217
  internal_trampoline_exception_ = false;
  last_bound_pos_ = 0;
218
  optimizable_cmpi_pos_ = -1;
219
  trampoline_emitted_ = FLAG_force_long_branches;
220
  tracked_branch_count_ = 0;
221
  ClearRecordedAstId();
222
  relocations_.reserve(128);
223 224 225 226
}


void Assembler::GetCode(CodeDesc* desc) {
227 228 229
  // Emit constant pool if necessary.
  int constant_pool_offset = EmitConstantPool();

230
  EmitRelocations();
231

232 233 234 235 236
  // Set up code descriptor.
  desc->buffer = buffer_;
  desc->buffer_size = buffer_size_;
  desc->instr_size = pc_offset();
  desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
237 238
  desc->constant_pool_size =
      (constant_pool_offset ? desc->instr_size - constant_pool_offset : 0);
239 240 241 242 243 244
  desc->origin = this;
}


void Assembler::Align(int m) {
  DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
245 246
  DCHECK((pc_offset() & (kInstrSize - 1)) == 0);
  while ((pc_offset() & (m - 1)) != 0) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    nop();
  }
}


void Assembler::CodeTargetAlign() { Align(8); }


Condition Assembler::GetCondition(Instr instr) {
  switch (instr & kCondMask) {
    case BT:
      return eq;
    case BF:
      return ne;
    default:
      UNIMPLEMENTED();
  }
  return al;
}


bool Assembler::IsLis(Instr instr) {
  return ((instr & kOpcodeMask) == ADDIS) && GetRA(instr).is(r0);
}


bool Assembler::IsLi(Instr instr) {
  return ((instr & kOpcodeMask) == ADDI) && GetRA(instr).is(r0);
}


bool Assembler::IsAddic(Instr instr) { return (instr & kOpcodeMask) == ADDIC; }


bool Assembler::IsOri(Instr instr) { return (instr & kOpcodeMask) == ORI; }


bool Assembler::IsBranch(Instr instr) { return ((instr & kOpcodeMask) == BCX); }


Register Assembler::GetRA(Instr instr) {
  Register reg;
  reg.code_ = Instruction::RAValue(instr);
  return reg;
}


Register Assembler::GetRB(Instr instr) {
  Register reg;
  reg.code_ = Instruction::RBValue(instr);
  return reg;
}


#if V8_TARGET_ARCH_PPC64
// This code assumes a FIXED_SEQUENCE for 64bit loads (lis/ori)
bool Assembler::Is64BitLoadIntoR12(Instr instr1, Instr instr2, Instr instr3,
                                   Instr instr4, Instr instr5) {
  // Check the instructions are indeed a five part load (into r12)
  // 3d800000       lis     r12, 0
  // 618c0000       ori     r12, r12, 0
  // 798c07c6       rldicr  r12, r12, 32, 31
  // 658c00c3       oris    r12, r12, 195
  // 618ccd40       ori     r12, r12, 52544
  return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c) &&
          (instr3 == 0x798c07c6) && ((instr4 >> 16) == 0x658c) &&
          ((instr5 >> 16) == 0x618c));
}
#else
// This code assumes a FIXED_SEQUENCE for 32bit loads (lis/ori)
bool Assembler::Is32BitLoadIntoR12(Instr instr1, Instr instr2) {
  // Check the instruction is indeed a two part load (into r12)
  // 3d802553       lis     r12, 9555
  // 618c5000       ori   r12, r12, 20480
  return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c));
}
#endif


bool Assembler::IsCmpRegister(Instr instr) {
  return (((instr & kOpcodeMask) == EXT2) &&
          ((instr & kExt2OpcodeMask) == CMP));
}


bool Assembler::IsRlwinm(Instr instr) {
  return ((instr & kOpcodeMask) == RLWINMX);
}


337 338 339
bool Assembler::IsAndi(Instr instr) { return ((instr & kOpcodeMask) == ANDIx); }


340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#if V8_TARGET_ARCH_PPC64
bool Assembler::IsRldicl(Instr instr) {
  return (((instr & kOpcodeMask) == EXT5) &&
          ((instr & kExt5OpcodeMask) == RLDICL));
}
#endif


bool Assembler::IsCmpImmediate(Instr instr) {
  return ((instr & kOpcodeMask) == CMPI);
}


bool Assembler::IsCrSet(Instr instr) {
  return (((instr & kOpcodeMask) == EXT1) &&
          ((instr & kExt1OpcodeMask) == CREQV));
}


Register Assembler::GetCmpImmediateRegister(Instr instr) {
  DCHECK(IsCmpImmediate(instr));
  return GetRA(instr);
}


int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
  DCHECK(IsCmpImmediate(instr));
  return instr & kOff16Mask;
}


// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.


// The link chain is terminated by a negative code position (must be aligned)
const int kEndOfChain = -4;


386 387 388
// Dummy opcodes for unbound label mov instructions or jump table entries.
enum {
  kUnboundMovLabelOffsetOpcode = 0 << 26,
389 390 391
  kUnboundAddLabelOffsetOpcode = 1 << 26,
  kUnboundMovLabelAddrOpcode = 2 << 26,
  kUnboundJumpTableEntryOpcode = 3 << 26
392 393 394
};


395 396 397 398
int Assembler::target_at(int pos) {
  Instr instr = instr_at(pos);
  // check which type of branch this is 16 or 26 bit offset
  int opcode = instr & kOpcodeMask;
399 400 401 402 403 404 405 406 407 408 409
  int link;
  switch (opcode) {
    case BX:
      link = SIGN_EXT_IMM26(instr & kImm26Mask);
      link &= ~(kAAMask | kLKMask);  // discard AA|LK bits if present
      break;
    case BCX:
      link = SIGN_EXT_IMM16((instr & kImm16Mask));
      link &= ~(kAAMask | kLKMask);  // discard AA|LK bits if present
      break;
    case kUnboundMovLabelOffsetOpcode:
410
    case kUnboundAddLabelOffsetOpcode:
411 412 413 414 415 416 417 418
    case kUnboundMovLabelAddrOpcode:
    case kUnboundJumpTableEntryOpcode:
      link = SIGN_EXT_IMM26(instr & kImm26Mask);
      link <<= 2;
      break;
    default:
      DCHECK(false);
      return -1;
419 420
  }

421 422
  if (link == 0) return kEndOfChain;
  return pos + link;
423 424 425
}


426
void Assembler::target_at_put(int pos, int target_pos, bool* is_branch) {
427 428 429
  Instr instr = instr_at(pos);
  int opcode = instr & kOpcodeMask;

430 431 432 433
  if (is_branch != nullptr) {
    *is_branch = (opcode == BX || opcode == BCX);
  }

434 435 436
  switch (opcode) {
    case BX: {
      int imm26 = target_pos - pos;
437
      CHECK(is_int26(imm26) && (imm26 & (kAAMask | kLKMask)) == 0);
438 439 440 441 442 443 444 445 446
      if (imm26 == kInstrSize && !(instr & kLKMask)) {
        // Branch to next instr without link.
        instr = ORI;  // nop: ori, 0,0,0
      } else {
        instr &= ((~kImm26Mask) | kAAMask | kLKMask);
        instr |= (imm26 & kImm26Mask);
      }
      instr_at_put(pos, instr);
      break;
447
    }
448 449
    case BCX: {
      int imm16 = target_pos - pos;
450
      CHECK(is_int16(imm16) && (imm16 & (kAAMask | kLKMask)) == 0);
451 452 453 454 455 456 457 458 459
      if (imm16 == kInstrSize && !(instr & kLKMask)) {
        // Branch to next instr without link.
        instr = ORI;  // nop: ori, 0,0,0
      } else {
        instr &= ((~kImm16Mask) | kAAMask | kLKMask);
        instr |= (imm16 & kImm16Mask);
      }
      instr_at_put(pos, instr);
      break;
460
    }
461 462 463 464 465 466 467 468 469 470
    case kUnboundMovLabelOffsetOpcode: {
      // Load the position of the label relative to the generated code object
      // pointer in a register.
      Register dst = Register::from_code(instr_at(pos + kInstrSize));
      int32_t offset = target_pos + (Code::kHeaderSize - kHeapObjectTag);
      CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos), 2,
                          CodePatcher::DONT_FLUSH);
      patcher.masm()->bitwise_mov32(dst, offset);
      break;
    }
471 472 473 474 475 476 477 478 479 480 481
    case kUnboundAddLabelOffsetOpcode: {
      // dst = base + position + immediate
      Instr operands = instr_at(pos + kInstrSize);
      Register dst = Register::from_code((operands >> 21) & 0x1f);
      Register base = Register::from_code((operands >> 16) & 0x1f);
      int32_t offset = target_pos + SIGN_EXT_IMM16(operands & kImm16Mask);
      CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos), 2,
                          CodePatcher::DONT_FLUSH);
      patcher.masm()->bitwise_add32(dst, base, offset);
      break;
    }
482 483 484 485
    case kUnboundMovLabelAddrOpcode: {
      // Load the address of the label in a register.
      Register dst = Register::from_code(instr_at(pos + kInstrSize));
      CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
486 487
                          kMovInstructionsNoConstantPool,
                          CodePatcher::DONT_FLUSH);
488 489
      // Keep internal references relative until EmitRelocations.
      patcher.masm()->bitwise_mov(dst, target_pos);
490 491 492 493 494
      break;
    }
    case kUnboundJumpTableEntryOpcode: {
      CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
                          kPointerSize / kInstrSize, CodePatcher::DONT_FLUSH);
495
      // Keep internal references relative until EmitRelocations.
496
      patcher.masm()->dp(target_pos);
497 498 499 500 501
      break;
    }
    default:
      DCHECK(false);
      break;
502 503 504 505 506 507 508 509 510
  }
}


int Assembler::max_reach_from(int pos) {
  Instr instr = instr_at(pos);
  int opcode = instr & kOpcodeMask;

  // check which type of branch this is 16 or 26 bit offset
511 512 513 514 515 516
  switch (opcode) {
    case BX:
      return 26;
    case BCX:
      return 16;
    case kUnboundMovLabelOffsetOpcode:
517
    case kUnboundAddLabelOffsetOpcode:
518 519 520
    case kUnboundMovLabelAddrOpcode:
    case kUnboundJumpTableEntryOpcode:
      return 0;  // no limit on reach
521 522 523 524 525 526 527 528 529 530
  }

  DCHECK(false);
  return 0;
}


void Assembler::bind_to(Label* L, int pos) {
  DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
  int32_t trampoline_pos = kInvalidSlotPos;
531
  bool is_branch = false;
532 533 534 535 536
  while (L->is_linked()) {
    int fixup_pos = L->pos();
    int32_t offset = pos - fixup_pos;
    int maxReach = max_reach_from(fixup_pos);
    next(L);  // call next before overwriting link with target at fixup_pos
537
    if (maxReach && is_intn(offset, maxReach) == false) {
538 539 540 541 542 543 544
      if (trampoline_pos == kInvalidSlotPos) {
        trampoline_pos = get_trampoline_entry();
        CHECK(trampoline_pos != kInvalidSlotPos);
        target_at_put(trampoline_pos, pos);
      }
      target_at_put(fixup_pos, trampoline_pos);
    } else {
545
      target_at_put(fixup_pos, pos, &is_branch);
546 547 548 549
    }
  }
  L->bind_to(pos);

550 551 552 553
  if (!trampoline_emitted_ && is_branch) {
    UntrackBranch();
  }

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
  // Keep track of the last bound label so we don't eliminate any instructions
  // before a bound label.
  if (pos > last_bound_pos_) last_bound_pos_ = pos;
}


void Assembler::bind(Label* L) {
  DCHECK(!L->is_bound());  // label can only be bound once
  bind_to(L, pc_offset());
}


void Assembler::next(Label* L) {
  DCHECK(L->is_linked());
  int link = target_at(L->pos());
  if (link == kEndOfChain) {
    L->Unuse();
  } else {
    DCHECK(link >= 0);
    L->link_to(link);
  }
}


bool Assembler::is_near(Label* L, Condition cond) {
  DCHECK(L->is_bound());
  if (L->is_bound() == false) return false;

  int maxReach = ((cond == al) ? 26 : 16);
  int offset = L->pos() - pc_offset();

  return is_intn(offset, maxReach);
}


void Assembler::a_form(Instr instr, DoubleRegister frt, DoubleRegister fra,
                       DoubleRegister frb, RCBit r) {
  emit(instr | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 | r);
}


void Assembler::d_form(Instr instr, Register rt, Register ra,
                       const intptr_t val, bool signed_disp) {
  if (signed_disp) {
    if (!is_int16(val)) {
      PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR "\n", val, val);
    }
601
    CHECK(is_int16(val));
602 603 604 605 606 607
  } else {
    if (!is_uint16(val)) {
      PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR
             ", is_unsigned_imm16(val)=%d, kImm16Mask=0x%x\n",
             val, val, is_uint16(val), kImm16Mask);
    }
608
    CHECK(is_uint16(val));
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
  }
  emit(instr | rt.code() * B21 | ra.code() * B16 | (kImm16Mask & val));
}


void Assembler::x_form(Instr instr, Register ra, Register rs, Register rb,
                       RCBit r) {
  emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | r);
}


void Assembler::xo_form(Instr instr, Register rt, Register ra, Register rb,
                        OEBit o, RCBit r) {
  emit(instr | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | o | r);
}


void Assembler::md_form(Instr instr, Register ra, Register rs, int shift,
                        int maskbit, RCBit r) {
  int sh0_4 = shift & 0x1f;
  int sh5 = (shift >> 5) & 0x1;
  int m0_4 = maskbit & 0x1f;
  int m5 = (maskbit >> 5) & 0x1;

  emit(instr | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 | m0_4 * B6 |
       m5 * B5 | sh5 * B1 | r);
}


void Assembler::mds_form(Instr instr, Register ra, Register rs, Register rb,
                         int maskbit, RCBit r) {
  int m0_4 = maskbit & 0x1f;
  int m5 = (maskbit >> 5) & 0x1;

  emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | m0_4 * B6 |
       m5 * B5 | r);
}


// Returns the next free trampoline entry.
int32_t Assembler::get_trampoline_entry() {
  int32_t trampoline_entry = kInvalidSlotPos;

  if (!internal_trampoline_exception_) {
    trampoline_entry = trampoline_.take_slot();

    if (kInvalidSlotPos == trampoline_entry) {
      internal_trampoline_exception_ = true;
    }
  }
  return trampoline_entry;
}


663 664
int Assembler::link(Label* L) {
  int position;
665
  if (L->is_bound()) {
666
    position = L->pos();
667 668
  } else {
    if (L->is_linked()) {
669
      position = L->pos();  // L's link
670 671
    } else {
      // was: target_pos = kEndOfChain;
672
      // However, using self to mark the first reference
673 674
      // should avoid most instances of branch offset overflow.  See
      // target_at() for where this is converted back to kEndOfChain.
675
      position = pc_offset();
676 677 678 679
    }
    L->link_to(pc_offset());
  }

680
  return position;
681 682 683 684 685 686
}


// Branch instructions.


687
void Assembler::bclr(BOfield bo, int condition_bit, LKBit lk) {
688
  positions_recorder()->WriteRecordedPositions();
689
  emit(EXT1 | bo | condition_bit * B16 | BCLRX | lk);
690 691 692
}


693
void Assembler::bcctr(BOfield bo, int condition_bit, LKBit lk) {
694
  positions_recorder()->WriteRecordedPositions();
695
  emit(EXT1 | bo | condition_bit * B16 | BCCTRX | lk);
696 697 698 699
}


// Pseudo op - branch to link register
700
void Assembler::blr() { bclr(BA, 0, LeaveLK); }
701 702 703


// Pseudo op - branch to count register -- used for "jump"
704
void Assembler::bctr() { bcctr(BA, 0, LeaveLK); }
705 706


707
void Assembler::bctrl() { bcctr(BA, 0, SetLK); }
708 709 710 711 712 713


void Assembler::bc(int branch_offset, BOfield bo, int condition_bit, LKBit lk) {
  if (lk == SetLK) {
    positions_recorder()->WriteRecordedPositions();
  }
714 715 716
  int imm16 = branch_offset;
  CHECK(is_int16(imm16) && (imm16 & (kAAMask | kLKMask)) == 0);
  emit(BCX | bo | condition_bit * B16 | (imm16 & kImm16Mask) | lk);
717 718 719 720 721 722 723 724
}


void Assembler::b(int branch_offset, LKBit lk) {
  if (lk == SetLK) {
    positions_recorder()->WriteRecordedPositions();
  }
  int imm26 = branch_offset;
725
  CHECK(is_int26(imm26) && (imm26 & (kAAMask | kLKMask)) == 0);
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
  emit(BX | (imm26 & kImm26Mask) | lk);
}


void Assembler::xori(Register dst, Register src, const Operand& imm) {
  d_form(XORI, src, dst, imm.imm_, false);
}


void Assembler::xoris(Register ra, Register rs, const Operand& imm) {
  d_form(XORIS, rs, ra, imm.imm_, false);
}


void Assembler::xor_(Register dst, Register src1, Register src2, RCBit rc) {
  x_form(EXT2 | XORX, dst, src1, src2, rc);
}


void Assembler::cntlzw_(Register ra, Register rs, RCBit rc) {
  x_form(EXT2 | CNTLZWX, ra, rs, r0, rc);
}


void Assembler::and_(Register ra, Register rs, Register rb, RCBit rc) {
  x_form(EXT2 | ANDX, ra, rs, rb, rc);
}


void Assembler::rlwinm(Register ra, Register rs, int sh, int mb, int me,
                       RCBit rc) {
  sh &= 0x1f;
  mb &= 0x1f;
  me &= 0x1f;
  emit(RLWINMX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
       me << 1 | rc);
}


void Assembler::rlwnm(Register ra, Register rs, Register rb, int mb, int me,
                      RCBit rc) {
  mb &= 0x1f;
  me &= 0x1f;
  emit(RLWNMX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | mb * B6 |
       me << 1 | rc);
}


void Assembler::rlwimi(Register ra, Register rs, int sh, int mb, int me,
                       RCBit rc) {
  sh &= 0x1f;
  mb &= 0x1f;
  me &= 0x1f;
  emit(RLWIMIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
       me << 1 | rc);
}


void Assembler::slwi(Register dst, Register src, const Operand& val, RCBit rc) {
  DCHECK((32 > val.imm_) && (val.imm_ >= 0));
  rlwinm(dst, src, val.imm_, 0, 31 - val.imm_, rc);
}


void Assembler::srwi(Register dst, Register src, const Operand& val, RCBit rc) {
  DCHECK((32 > val.imm_) && (val.imm_ >= 0));
  rlwinm(dst, src, 32 - val.imm_, val.imm_, 31, rc);
}


void Assembler::clrrwi(Register dst, Register src, const Operand& val,
                       RCBit rc) {
  DCHECK((32 > val.imm_) && (val.imm_ >= 0));
  rlwinm(dst, src, 0, 0, 31 - val.imm_, rc);
}


void Assembler::clrlwi(Register dst, Register src, const Operand& val,
                       RCBit rc) {
  DCHECK((32 > val.imm_) && (val.imm_ >= 0));
  rlwinm(dst, src, 0, val.imm_, 31, rc);
}


void Assembler::srawi(Register ra, Register rs, int sh, RCBit r) {
  emit(EXT2 | SRAWIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | r);
}


void Assembler::srw(Register dst, Register src1, Register src2, RCBit r) {
  x_form(EXT2 | SRWX, dst, src1, src2, r);
}


void Assembler::slw(Register dst, Register src1, Register src2, RCBit r) {
  x_form(EXT2 | SLWX, dst, src1, src2, r);
}


void Assembler::sraw(Register ra, Register rs, Register rb, RCBit r) {
  x_form(EXT2 | SRAW, ra, rs, rb, r);
}


void Assembler::rotlw(Register ra, Register rs, Register rb, RCBit r) {
  rlwnm(ra, rs, rb, 0, 31, r);
}


void Assembler::rotlwi(Register ra, Register rs, int sh, RCBit r) {
  rlwinm(ra, rs, sh, 0, 31, r);
}


void Assembler::rotrwi(Register ra, Register rs, int sh, RCBit r) {
  rlwinm(ra, rs, 32 - sh, 0, 31, r);
}


void Assembler::subi(Register dst, Register src, const Operand& imm) {
  addi(dst, src, Operand(-(imm.imm_)));
}

void Assembler::addc(Register dst, Register src1, Register src2, OEBit o,
                     RCBit r) {
  xo_form(EXT2 | ADDCX, dst, src1, src2, o, r);
}


void Assembler::addze(Register dst, Register src1, OEBit o, RCBit r) {
  // a special xo_form
  emit(EXT2 | ADDZEX | dst.code() * B21 | src1.code() * B16 | o | r);
}


void Assembler::sub(Register dst, Register src1, Register src2, OEBit o,
                    RCBit r) {
  xo_form(EXT2 | SUBFX, dst, src2, src1, o, r);
}


void Assembler::subfc(Register dst, Register src1, Register src2, OEBit o,
                      RCBit r) {
  xo_form(EXT2 | SUBFCX, dst, src2, src1, o, r);
}


void Assembler::subfic(Register dst, Register src, const Operand& imm) {
  d_form(SUBFIC, dst, src, imm.imm_, true);
}


void Assembler::add(Register dst, Register src1, Register src2, OEBit o,
                    RCBit r) {
  xo_form(EXT2 | ADDX, dst, src1, src2, o, r);
}


// Multiply low word
void Assembler::mullw(Register dst, Register src1, Register src2, OEBit o,
                      RCBit r) {
  xo_form(EXT2 | MULLW, dst, src1, src2, o, r);
}


// Multiply hi word
892 893 894 895 896 897 898 899
void Assembler::mulhw(Register dst, Register src1, Register src2, RCBit r) {
  xo_form(EXT2 | MULHWX, dst, src1, src2, LeaveOE, r);
}


// Multiply hi word unsigned
void Assembler::mulhwu(Register dst, Register src1, Register src2, RCBit r) {
  xo_form(EXT2 | MULHWUX, dst, src1, src2, LeaveOE, r);
900 901 902 903 904 905 906 907 908 909
}


// Divide word
void Assembler::divw(Register dst, Register src1, Register src2, OEBit o,
                     RCBit r) {
  xo_form(EXT2 | DIVW, dst, src1, src2, o, r);
}


910 911 912 913 914 915 916
// Divide word unsigned
void Assembler::divwu(Register dst, Register src1, Register src2, OEBit o,
                      RCBit r) {
  xo_form(EXT2 | DIVWU, dst, src1, src2, o, r);
}


917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
void Assembler::addi(Register dst, Register src, const Operand& imm) {
  DCHECK(!src.is(r0));  // use li instead to show intent
  d_form(ADDI, dst, src, imm.imm_, true);
}


void Assembler::addis(Register dst, Register src, const Operand& imm) {
  DCHECK(!src.is(r0));  // use lis instead to show intent
  d_form(ADDIS, dst, src, imm.imm_, true);
}


void Assembler::addic(Register dst, Register src, const Operand& imm) {
  d_form(ADDIC, dst, src, imm.imm_, true);
}


void Assembler::andi(Register ra, Register rs, const Operand& imm) {
  d_form(ANDIx, rs, ra, imm.imm_, false);
}


void Assembler::andis(Register ra, Register rs, const Operand& imm) {
  d_form(ANDISx, rs, ra, imm.imm_, false);
}


void Assembler::nor(Register dst, Register src1, Register src2, RCBit r) {
  x_form(EXT2 | NORX, dst, src1, src2, r);
}


void Assembler::notx(Register dst, Register src, RCBit r) {
  x_form(EXT2 | NORX, dst, src, src, r);
}


void Assembler::ori(Register ra, Register rs, const Operand& imm) {
  d_form(ORI, rs, ra, imm.imm_, false);
}


void Assembler::oris(Register dst, Register src, const Operand& imm) {
  d_form(ORIS, src, dst, imm.imm_, false);
}


void Assembler::orx(Register dst, Register src1, Register src2, RCBit rc) {
  x_form(EXT2 | ORX, dst, src1, src2, rc);
}


969 970 971 972 973
void Assembler::orc(Register dst, Register src1, Register src2, RCBit rc) {
  x_form(EXT2 | ORC, dst, src1, src2, rc);
}


974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
void Assembler::cmpi(Register src1, const Operand& src2, CRegister cr) {
  intptr_t imm16 = src2.imm_;
#if V8_TARGET_ARCH_PPC64
  int L = 1;
#else
  int L = 0;
#endif
  DCHECK(is_int16(imm16));
  DCHECK(cr.code() >= 0 && cr.code() <= 7);
  imm16 &= kImm16Mask;
  emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
}


void Assembler::cmpli(Register src1, const Operand& src2, CRegister cr) {
  uintptr_t uimm16 = src2.imm_;
#if V8_TARGET_ARCH_PPC64
  int L = 1;
#else
  int L = 0;
#endif
  DCHECK(is_uint16(uimm16));
  DCHECK(cr.code() >= 0 && cr.code() <= 7);
  uimm16 &= kImm16Mask;
  emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
}


void Assembler::cmp(Register src1, Register src2, CRegister cr) {
#if V8_TARGET_ARCH_PPC64
  int L = 1;
#else
  int L = 0;
#endif
  DCHECK(cr.code() >= 0 && cr.code() <= 7);
  emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 |
       src2.code() * B11);
}


void Assembler::cmpl(Register src1, Register src2, CRegister cr) {
#if V8_TARGET_ARCH_PPC64
  int L = 1;
#else
  int L = 0;
#endif
  DCHECK(cr.code() >= 0 && cr.code() <= 7);
  emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 |
       src2.code() * B11);
}


void Assembler::cmpwi(Register src1, const Operand& src2, CRegister cr) {
  intptr_t imm16 = src2.imm_;
  int L = 0;
1029
  int pos = pc_offset();
1030 1031 1032
  DCHECK(is_int16(imm16));
  DCHECK(cr.code() >= 0 && cr.code() <= 7);
  imm16 &= kImm16Mask;
1033 1034 1035 1036 1037 1038 1039

  // For cmpwi against 0, save postition and cr for later examination
  // of potential optimization.
  if (imm16 == 0 && pos > 0 && last_bound_pos_ != pos) {
    optimizable_cmpi_pos_ = pos;
    cmpi_cr_ = cr;
  }
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
  emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
}


void Assembler::cmplwi(Register src1, const Operand& src2, CRegister cr) {
  uintptr_t uimm16 = src2.imm_;
  int L = 0;
  DCHECK(is_uint16(uimm16));
  DCHECK(cr.code() >= 0 && cr.code() <= 7);
  uimm16 &= kImm16Mask;
  emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
}


void Assembler::cmpw(Register src1, Register src2, CRegister cr) {
  int L = 0;
  DCHECK(cr.code() >= 0 && cr.code() <= 7);
  emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 |
       src2.code() * B11);
}


void Assembler::cmplw(Register src1, Register src2, CRegister cr) {
  int L = 0;
  DCHECK(cr.code() >= 0 && cr.code() <= 7);
  emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 |
       src2.code() * B11);
}


1070 1071 1072 1073 1074 1075
void Assembler::isel(Register rt, Register ra, Register rb, int cb) {
  emit(EXT2 | ISEL | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       cb * B6);
}


1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
// Pseudo op - load immediate
void Assembler::li(Register dst, const Operand& imm) {
  d_form(ADDI, dst, r0, imm.imm_, true);
}


void Assembler::lis(Register dst, const Operand& imm) {
  d_form(ADDIS, dst, r0, imm.imm_, true);
}


// Pseudo op - move register
void Assembler::mr(Register dst, Register src) {
  // actually or(dst, src, src)
  orx(dst, src, src);
}


void Assembler::lbz(Register dst, const MemOperand& src) {
  DCHECK(!src.ra_.is(r0));
  d_form(LBZ, dst, src.ra(), src.offset(), true);
}


void Assembler::lbzx(Register rt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LBZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::lbzux(Register rt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LBZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::lhz(Register dst, const MemOperand& src) {
  DCHECK(!src.ra_.is(r0));
  d_form(LHZ, dst, src.ra(), src.offset(), true);
}


void Assembler::lhzx(Register rt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LHZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::lhzux(Register rt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LHZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


1142 1143 1144 1145 1146 1147 1148 1149
void Assembler::lhax(Register rt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LHAX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11);
}


1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
void Assembler::lwz(Register dst, const MemOperand& src) {
  DCHECK(!src.ra_.is(r0));
  d_form(LWZ, dst, src.ra(), src.offset(), true);
}


void Assembler::lwzu(Register dst, const MemOperand& src) {
  DCHECK(!src.ra_.is(r0));
  d_form(LWZU, dst, src.ra(), src.offset(), true);
}


void Assembler::lwzx(Register rt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LWZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::lwzux(Register rt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LWZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


1180 1181 1182 1183 1184 1185
void Assembler::lha(Register dst, const MemOperand& src) {
  DCHECK(!src.ra_.is(r0));
  d_form(LHA, dst, src.ra(), src.offset(), true);
}


1186 1187 1188 1189
void Assembler::lwa(Register dst, const MemOperand& src) {
#if V8_TARGET_ARCH_PPC64
  int offset = src.offset();
  DCHECK(!src.ra_.is(r0));
1190
  CHECK(!(offset & 3) && is_int16(offset));
1191 1192 1193 1194 1195 1196 1197 1198
  offset = kImm16Mask & offset;
  emit(LD | dst.code() * B21 | src.ra().code() * B16 | offset | 2);
#else
  lwz(dst, src);
#endif
}


1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
void Assembler::lwax(Register rt, const MemOperand& src) {
#if V8_TARGET_ARCH_PPC64
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LWAX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11);
#else
  lwzx(rt, src);
#endif
}


1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
void Assembler::stb(Register dst, const MemOperand& src) {
  DCHECK(!src.ra_.is(r0));
  d_form(STB, dst, src.ra(), src.offset(), true);
}


void Assembler::stbx(Register rs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STBX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::stbux(Register rs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STBUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::sth(Register dst, const MemOperand& src) {
  DCHECK(!src.ra_.is(r0));
  d_form(STH, dst, src.ra(), src.offset(), true);
}


void Assembler::sthx(Register rs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STHX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::sthux(Register rs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STHUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::stw(Register dst, const MemOperand& src) {
  DCHECK(!src.ra_.is(r0));
  d_form(STW, dst, src.ra(), src.offset(), true);
}


void Assembler::stwu(Register dst, const MemOperand& src) {
  DCHECK(!src.ra_.is(r0));
  d_form(STWU, dst, src.ra(), src.offset(), true);
}


void Assembler::stwx(Register rs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STWX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::stwux(Register rs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STWUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::extsb(Register rs, Register ra, RCBit rc) {
  emit(EXT2 | EXTSB | ra.code() * B21 | rs.code() * B16 | rc);
}


void Assembler::extsh(Register rs, Register ra, RCBit rc) {
  emit(EXT2 | EXTSH | ra.code() * B21 | rs.code() * B16 | rc);
}


1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
void Assembler::extsw(Register rs, Register ra, RCBit rc) {
#if V8_TARGET_ARCH_PPC64
  emit(EXT2 | EXTSW | ra.code() * B21 | rs.code() * B16 | rc);
#else
  // nop on 32-bit
  DCHECK(rs.is(ra) && rc == LeaveRC);
#endif
}


1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
void Assembler::neg(Register rt, Register ra, OEBit o, RCBit r) {
  emit(EXT2 | NEGX | rt.code() * B21 | ra.code() * B16 | o | r);
}


void Assembler::andc(Register dst, Register src1, Register src2, RCBit rc) {
  x_form(EXT2 | ANDCX, dst, src1, src2, rc);
}


#if V8_TARGET_ARCH_PPC64
// 64bit specific instructions
void Assembler::ld(Register rd, const MemOperand& src) {
  int offset = src.offset();
  DCHECK(!src.ra_.is(r0));
1324
  CHECK(!(offset & 3) && is_int16(offset));
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
  offset = kImm16Mask & offset;
  emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset);
}


void Assembler::ldx(Register rd, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LDX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11);
}


void Assembler::ldu(Register rd, const MemOperand& src) {
  int offset = src.offset();
  DCHECK(!src.ra_.is(r0));
1341
  CHECK(!(offset & 3) && is_int16(offset));
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
  offset = kImm16Mask & offset;
  emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset | 1);
}


void Assembler::ldux(Register rd, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LDUX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11);
}


void Assembler::std(Register rs, const MemOperand& src) {
  int offset = src.offset();
  DCHECK(!src.ra_.is(r0));
1358
  CHECK(!(offset & 3) && is_int16(offset));
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
  offset = kImm16Mask & offset;
  emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset);
}


void Assembler::stdx(Register rs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STDX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11);
}


void Assembler::stdu(Register rs, const MemOperand& src) {
  int offset = src.offset();
  DCHECK(!src.ra_.is(r0));
1375
  CHECK(!(offset & 3) && is_int16(offset));
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
  offset = kImm16Mask & offset;
  emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset | 1);
}


void Assembler::stdux(Register rs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STDUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11);
}


void Assembler::rldic(Register ra, Register rs, int sh, int mb, RCBit r) {
  md_form(EXT5 | RLDIC, ra, rs, sh, mb, r);
}


void Assembler::rldicl(Register ra, Register rs, int sh, int mb, RCBit r) {
  md_form(EXT5 | RLDICL, ra, rs, sh, mb, r);
}


void Assembler::rldcl(Register ra, Register rs, Register rb, int mb, RCBit r) {
  mds_form(EXT5 | RLDCL, ra, rs, rb, mb, r);
}


void Assembler::rldicr(Register ra, Register rs, int sh, int me, RCBit r) {
  md_form(EXT5 | RLDICR, ra, rs, sh, me, r);
}


void Assembler::sldi(Register dst, Register src, const Operand& val, RCBit rc) {
  DCHECK((64 > val.imm_) && (val.imm_ >= 0));
  rldicr(dst, src, val.imm_, 63 - val.imm_, rc);
}


void Assembler::srdi(Register dst, Register src, const Operand& val, RCBit rc) {
  DCHECK((64 > val.imm_) && (val.imm_ >= 0));
  rldicl(dst, src, 64 - val.imm_, val.imm_, rc);
}


void Assembler::clrrdi(Register dst, Register src, const Operand& val,
                       RCBit rc) {
  DCHECK((64 > val.imm_) && (val.imm_ >= 0));
  rldicr(dst, src, 0, 63 - val.imm_, rc);
}


void Assembler::clrldi(Register dst, Register src, const Operand& val,
                       RCBit rc) {
  DCHECK((64 > val.imm_) && (val.imm_ >= 0));
  rldicl(dst, src, 0, val.imm_, rc);
}


void Assembler::rldimi(Register ra, Register rs, int sh, int mb, RCBit r) {
  md_form(EXT5 | RLDIMI, ra, rs, sh, mb, r);
}


void Assembler::sradi(Register ra, Register rs, int sh, RCBit r) {
  int sh0_4 = sh & 0x1f;
  int sh5 = (sh >> 5) & 0x1;

  emit(EXT2 | SRADIX | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 |
       sh5 * B1 | r);
}


void Assembler::srd(Register dst, Register src1, Register src2, RCBit r) {
  x_form(EXT2 | SRDX, dst, src1, src2, r);
}


void Assembler::sld(Register dst, Register src1, Register src2, RCBit r) {
  x_form(EXT2 | SLDX, dst, src1, src2, r);
}


void Assembler::srad(Register ra, Register rs, Register rb, RCBit r) {
  x_form(EXT2 | SRAD, ra, rs, rb, r);
}


void Assembler::rotld(Register ra, Register rs, Register rb, RCBit r) {
  rldcl(ra, rs, rb, 0, r);
}


void Assembler::rotldi(Register ra, Register rs, int sh, RCBit r) {
  rldicl(ra, rs, sh, 0, r);
}


void Assembler::rotrdi(Register ra, Register rs, int sh, RCBit r) {
  rldicl(ra, rs, 64 - sh, 0, r);
}


void Assembler::cntlzd_(Register ra, Register rs, RCBit rc) {
  x_form(EXT2 | CNTLZDX, ra, rs, r0, rc);
}


void Assembler::mulld(Register dst, Register src1, Register src2, OEBit o,
                      RCBit r) {
  xo_form(EXT2 | MULLD, dst, src1, src2, o, r);
}


void Assembler::divd(Register dst, Register src1, Register src2, OEBit o,
                     RCBit r) {
  xo_form(EXT2 | DIVD, dst, src1, src2, o, r);
}


1496 1497 1498
void Assembler::divdu(Register dst, Register src1, Register src2, OEBit o,
                      RCBit r) {
  xo_form(EXT2 | DIVDU, dst, src1, src2, o, r);
1499
}
1500
#endif
1501 1502 1503 1504 1505 1506


// Function descriptor for AIX.
// Code address skips the function descriptor "header".
// TOC and static chain are ignored and set to 0.
void Assembler::function_descriptor() {
1507
#if ABI_USES_FUNCTION_DESCRIPTORS
1508
  Label instructions;
1509
  DCHECK(pc_offset() == 0);
1510
  emit_label_addr(&instructions);
1511 1512
  dp(0);
  dp(0);
1513
  bind(&instructions);
1514
#endif
1515 1516 1517
}


1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
int Assembler::instructions_required_for_mov(Register dst,
                                             const Operand& src) const {
  bool canOptimize =
      !(src.must_output_reloc_info(this) || is_trampoline_pool_blocked());
  if (use_constant_pool_for_mov(dst, src, canOptimize)) {
    if (ConstantPoolAccessIsInOverflow()) {
      return kMovInstructionsConstantPool + 1;
    }
    return kMovInstructionsConstantPool;
  }
  DCHECK(!canOptimize);
  return kMovInstructionsNoConstantPool;
}


bool Assembler::use_constant_pool_for_mov(Register dst, const Operand& src,
                                          bool canOptimize) const {
  if (!FLAG_enable_embedded_constant_pool || !is_constant_pool_available()) {
    // If there is no constant pool available, we must use a mov
    // immediate sequence.
    return false;
  }

  intptr_t value = src.immediate();
#if V8_TARGET_ARCH_PPC64
  bool allowOverflow = !((canOptimize && is_int32(value)) || dst.is(r0));
#else
  bool allowOverflow = !(canOptimize || dst.is(r0));
#endif
  if (canOptimize && is_int16(value)) {
    // Prefer a single-instruction load-immediate.
    return false;
  }
  if (!allowOverflow && ConstantPoolAccessIsInOverflow()) {
    // Prefer non-relocatable two-instruction bitwise-mov32 over
    // overflow sequence.
    return false;
  }

  return true;
}


1561 1562
void Assembler::EnsureSpaceFor(int space_needed) {
  if (buffer_space() <= (kGap + space_needed)) {
1563
    GrowBuffer(space_needed);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
  }
}


bool Operand::must_output_reloc_info(const Assembler* assembler) const {
  if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
    if (assembler != NULL && assembler->predictable_code_size()) return true;
    return assembler->serializer_enabled();
  } else if (RelocInfo::IsNone(rmode_)) {
    return false;
  }
  return true;
}


// Primarily used for loading constants
// This should really move to be in macro-assembler as it
// is really a pseudo instruction
// Some usages of this intend for a FIXED_SEQUENCE to be used
// Todo - break this dependency so we can optimize mov() in general
// and only use the generic version when we require a fixed sequence
void Assembler::mov(Register dst, const Operand& src) {
  intptr_t value = src.immediate();
1587
  bool relocatable = src.must_output_reloc_info(this);
1588 1589
  bool canOptimize;

1590 1591
  canOptimize =
      !(relocatable || (is_trampoline_pool_blocked() && !is_int16(value)));
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
  if (use_constant_pool_for_mov(dst, src, canOptimize)) {
    DCHECK(is_constant_pool_available());
    if (relocatable) {
      RecordRelocInfo(src.rmode_);
    }
    ConstantPoolEntry::Access access = ConstantPoolAddEntry(src.rmode_, value);
#if V8_TARGET_ARCH_PPC64
    if (access == ConstantPoolEntry::OVERFLOWED) {
      addis(dst, kConstantPoolRegister, Operand::Zero());
      ld(dst, MemOperand(dst, 0));
    } else {
      ld(dst, MemOperand(kConstantPoolRegister, 0));
    }
#else
    if (access == ConstantPoolEntry::OVERFLOWED) {
      addis(dst, kConstantPoolRegister, Operand::Zero());
      lwz(dst, MemOperand(dst, 0));
    } else {
      lwz(dst, MemOperand(kConstantPoolRegister, 0));
    }
#endif
    return;
  }

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
  if (canOptimize) {
    if (is_int16(value)) {
      li(dst, Operand(value));
    } else {
      uint16_t u16;
#if V8_TARGET_ARCH_PPC64
      if (is_int32(value)) {
#endif
        lis(dst, Operand(value >> 16));
#if V8_TARGET_ARCH_PPC64
      } else {
        if (is_int48(value)) {
          li(dst, Operand(value >> 32));
        } else {
          lis(dst, Operand(value >> 48));
          u16 = ((value >> 32) & 0xffff);
          if (u16) {
            ori(dst, dst, Operand(u16));
          }
        }
        sldi(dst, dst, Operand(32));
        u16 = ((value >> 16) & 0xffff);
        if (u16) {
          oris(dst, dst, Operand(u16));
        }
      }
#endif
      u16 = (value & 0xffff);
      if (u16) {
        ori(dst, dst, Operand(u16));
      }
    }
    return;
  }

  DCHECK(!canOptimize);
1653 1654
  if (relocatable) {
    RecordRelocInfo(src.rmode_);
1655
  }
1656 1657
  bitwise_mov(dst, value);
}
1658

1659 1660

void Assembler::bitwise_mov(Register dst, intptr_t value) {
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    BlockTrampolinePoolScope block_trampoline_pool(this);
#if V8_TARGET_ARCH_PPC64
    int32_t hi_32 = static_cast<int32_t>(value >> 32);
    int32_t lo_32 = static_cast<int32_t>(value);
    int hi_word = static_cast<int>(hi_32 >> 16);
    int lo_word = static_cast<int>(hi_32 & 0xffff);
    lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
    ori(dst, dst, Operand(lo_word));
    sldi(dst, dst, Operand(32));
    hi_word = static_cast<int>(((lo_32 >> 16) & 0xffff));
    lo_word = static_cast<int>(lo_32 & 0xffff);
    oris(dst, dst, Operand(hi_word));
    ori(dst, dst, Operand(lo_word));
#else
    int hi_word = static_cast<int>(value >> 16);
    int lo_word = static_cast<int>(value & 0xffff);
    lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
    ori(dst, dst, Operand(lo_word));
#endif
1680 1681 1682 1683 1684 1685 1686 1687 1688
}


void Assembler::bitwise_mov32(Register dst, int32_t value) {
  BlockTrampolinePoolScope block_trampoline_pool(this);
  int hi_word = static_cast<int>(value >> 16);
  int lo_word = static_cast<int>(value & 0xffff);
  lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
  ori(dst, dst, Operand(lo_word));
1689 1690 1691
}


1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
void Assembler::bitwise_add32(Register dst, Register src, int32_t value) {
  BlockTrampolinePoolScope block_trampoline_pool(this);
  if (is_int16(value)) {
    addi(dst, src, Operand(value));
    nop();
  } else {
    int hi_word = static_cast<int>(value >> 16);
    int lo_word = static_cast<int>(value & 0xffff);
    if (lo_word & 0x8000) hi_word++;
    addis(dst, src, Operand(SIGN_EXT_IMM16(hi_word)));
    addic(dst, dst, Operand(SIGN_EXT_IMM16(lo_word)));
  }
}


1707
void Assembler::mov_label_offset(Register dst, Label* label) {
1708
  int position = link(label);
1709
  if (label->is_bound()) {
1710 1711
    // Load the position of the label relative to the generated code object.
    mov(dst, Operand(position + Code::kHeaderSize - kHeapObjectTag));
1712
  } else {
1713 1714 1715 1716 1717 1718 1719
    // Encode internal reference to unbound label. We use a dummy opcode
    // such that it won't collide with any opcode that might appear in the
    // label's chain.  Encode the destination register in the 2nd instruction.
    int link = position - pc_offset();
    DCHECK_EQ(0, link & 3);
    link >>= 2;
    DCHECK(is_int26(link));
1720 1721 1722 1723 1724 1725

    // When the label is bound, these instructions will be patched
    // with a 2 instruction mov sequence that will load the
    // destination register with the position of the label from the
    // beginning of the code.
    //
1726 1727 1728 1729 1730 1731 1732 1733
    // target_at extracts the link and target_at_put patches the instructions.
    BlockTrampolinePoolScope block_trampoline_pool(this);
    emit(kUnboundMovLabelOffsetOpcode | (link & kImm26Mask));
    emit(dst.code());
  }
}


1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
void Assembler::add_label_offset(Register dst, Register base, Label* label,
                                 int delta) {
  int position = link(label);
  if (label->is_bound()) {
    // dst = base + position + delta
    position += delta;
    bitwise_add32(dst, base, position);
  } else {
    // Encode internal reference to unbound label. We use a dummy opcode
    // such that it won't collide with any opcode that might appear in the
    // label's chain.  Encode the operands in the 2nd instruction.
    int link = position - pc_offset();
    DCHECK_EQ(0, link & 3);
    link >>= 2;
    DCHECK(is_int26(link));
    DCHECK(is_int16(delta));

    BlockTrampolinePoolScope block_trampoline_pool(this);
    emit(kUnboundAddLabelOffsetOpcode | (link & kImm26Mask));
    emit(dst.code() * B21 | base.code() * B16 | (delta & kImm16Mask));
  }
}


1758 1759 1760 1761 1762
void Assembler::mov_label_addr(Register dst, Label* label) {
  CheckBuffer();
  RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
  int position = link(label);
  if (label->is_bound()) {
1763 1764
    // Keep internal references relative until EmitRelocations.
    bitwise_mov(dst, position);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
  } else {
    // Encode internal reference to unbound label. We use a dummy opcode
    // such that it won't collide with any opcode that might appear in the
    // label's chain.  Encode the destination register in the 2nd instruction.
    int link = position - pc_offset();
    DCHECK_EQ(0, link & 3);
    link >>= 2;
    DCHECK(is_int26(link));

    // When the label is bound, these instructions will be patched
    // with a multi-instruction mov sequence that will load the
    // destination register with the address of the label.
    //
    // target_at extracts the link and target_at_put patches the instructions.
    BlockTrampolinePoolScope block_trampoline_pool(this);
    emit(kUnboundMovLabelAddrOpcode | (link & kImm26Mask));
    emit(dst.code());
1782 1783
    DCHECK(kMovInstructionsNoConstantPool >= 2);
    for (int i = 0; i < kMovInstructionsNoConstantPool - 2; i++) nop();
1784 1785 1786 1787 1788 1789 1790 1791 1792
  }
}


void Assembler::emit_label_addr(Label* label) {
  CheckBuffer();
  RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
  int position = link(label);
  if (label->is_bound()) {
1793
    // Keep internal references relative until EmitRelocations.
1794
    dp(position);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
  } else {
    // Encode internal reference to unbound label. We use a dummy opcode
    // such that it won't collide with any opcode that might appear in the
    // label's chain.
    int link = position - pc_offset();
    DCHECK_EQ(0, link & 3);
    link >>= 2;
    DCHECK(is_int26(link));

    // When the label is bound, the instruction(s) will be patched
    // as a jump table entry containing the label address.  target_at extracts
    // the link and target_at_put patches the instruction(s).
1807
    BlockTrampolinePoolScope block_trampoline_pool(this);
1808 1809
    emit(kUnboundJumpTableEntryOpcode | (link & kImm26Mask));
#if V8_TARGET_ARCH_PPC64
1810
    nop();
1811
#endif
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
  }
}


// Special register instructions
void Assembler::crxor(int bt, int ba, int bb) {
  emit(EXT1 | CRXOR | bt * B21 | ba * B16 | bb * B11);
}


void Assembler::creqv(int bt, int ba, int bb) {
  emit(EXT1 | CREQV | bt * B21 | ba * B16 | bb * B11);
}


void Assembler::mflr(Register dst) {
  emit(EXT2 | MFSPR | dst.code() * B21 | 256 << 11);  // Ignore RC bit
}


void Assembler::mtlr(Register src) {
  emit(EXT2 | MTSPR | src.code() * B21 | 256 << 11);  // Ignore RC bit
}


void Assembler::mtctr(Register src) {
  emit(EXT2 | MTSPR | src.code() * B21 | 288 << 11);  // Ignore RC bit
}


void Assembler::mtxer(Register src) {
  emit(EXT2 | MTSPR | src.code() * B21 | 32 << 11);
}


void Assembler::mcrfs(int bf, int bfa) {
  emit(EXT4 | MCRFS | bf * B23 | bfa * B18);
}


void Assembler::mfcr(Register dst) { emit(EXT2 | MFCR | dst.code() * B21); }


#if V8_TARGET_ARCH_PPC64
void Assembler::mffprd(Register dst, DoubleRegister src) {
  emit(EXT2 | MFVSRD | src.code() * B21 | dst.code() * B16);
}


void Assembler::mffprwz(Register dst, DoubleRegister src) {
  emit(EXT2 | MFVSRWZ | src.code() * B21 | dst.code() * B16);
}


void Assembler::mtfprd(DoubleRegister dst, Register src) {
  emit(EXT2 | MTVSRD | dst.code() * B21 | src.code() * B16);
}


void Assembler::mtfprwz(DoubleRegister dst, Register src) {
  emit(EXT2 | MTVSRWZ | dst.code() * B21 | src.code() * B16);
}


void Assembler::mtfprwa(DoubleRegister dst, Register src) {
  emit(EXT2 | MTVSRWA | dst.code() * B21 | src.code() * B16);
}
#endif


// Exception-generating instructions and debugging support.
// Stops with a non-negative code less than kNumOfWatchedStops support
// enabling/disabling and a counter feature. See simulator-ppc.h .
void Assembler::stop(const char* msg, Condition cond, int32_t code,
                     CRegister cr) {
  if (cond != al) {
    Label skip;
    b(NegateCondition(cond), &skip, cr);
    bkpt(0);
    bind(&skip);
  } else {
    bkpt(0);
  }
}


void Assembler::bkpt(uint32_t imm16) { emit(0x7d821008); }


void Assembler::dcbf(Register ra, Register rb) {
  emit(EXT2 | DCBF | ra.code() * B16 | rb.code() * B11);
}


void Assembler::sync() { emit(EXT2 | SYNC); }


void Assembler::lwsync() { emit(EXT2 | SYNC | 1 * B21); }


void Assembler::icbi(Register ra, Register rb) {
  emit(EXT2 | ICBI | ra.code() * B16 | rb.code() * B11);
}


void Assembler::isync() { emit(EXT1 | ISYNC); }


// Floating point support

void Assembler::lfd(const DoubleRegister frt, const MemOperand& src) {
  int offset = src.offset();
  Register ra = src.ra();
1925
  DCHECK(!ra.is(r0));
1926
  CHECK(is_int16(offset));
1927 1928 1929 1930 1931 1932 1933 1934 1935
  int imm16 = offset & kImm16Mask;
  // could be x_form instruction with some casting magic
  emit(LFD | frt.code() * B21 | ra.code() * B16 | imm16);
}


void Assembler::lfdu(const DoubleRegister frt, const MemOperand& src) {
  int offset = src.offset();
  Register ra = src.ra();
1936
  DCHECK(!ra.is(r0));
1937
  CHECK(is_int16(offset));
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
  int imm16 = offset & kImm16Mask;
  // could be x_form instruction with some casting magic
  emit(LFDU | frt.code() * B21 | ra.code() * B16 | imm16);
}


void Assembler::lfdx(const DoubleRegister frt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LFDX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::lfdux(const DoubleRegister frt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LFDUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::lfs(const DoubleRegister frt, const MemOperand& src) {
  int offset = src.offset();
  Register ra = src.ra();
1965
  CHECK(is_int16(offset));
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
  DCHECK(!ra.is(r0));
  int imm16 = offset & kImm16Mask;
  // could be x_form instruction with some casting magic
  emit(LFS | frt.code() * B21 | ra.code() * B16 | imm16);
}


void Assembler::lfsu(const DoubleRegister frt, const MemOperand& src) {
  int offset = src.offset();
  Register ra = src.ra();
1976
  CHECK(is_int16(offset));
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
  DCHECK(!ra.is(r0));
  int imm16 = offset & kImm16Mask;
  // could be x_form instruction with some casting magic
  emit(LFSU | frt.code() * B21 | ra.code() * B16 | imm16);
}


void Assembler::lfsx(const DoubleRegister frt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LFSX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::lfsux(const DoubleRegister frt, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | LFSUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::stfd(const DoubleRegister frs, const MemOperand& src) {
  int offset = src.offset();
  Register ra = src.ra();
2005
  CHECK(is_int16(offset));
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
  DCHECK(!ra.is(r0));
  int imm16 = offset & kImm16Mask;
  // could be x_form instruction with some casting magic
  emit(STFD | frs.code() * B21 | ra.code() * B16 | imm16);
}


void Assembler::stfdu(const DoubleRegister frs, const MemOperand& src) {
  int offset = src.offset();
  Register ra = src.ra();
2016
  CHECK(is_int16(offset));
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
  DCHECK(!ra.is(r0));
  int imm16 = offset & kImm16Mask;
  // could be x_form instruction with some casting magic
  emit(STFDU | frs.code() * B21 | ra.code() * B16 | imm16);
}


void Assembler::stfdx(const DoubleRegister frs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STFDX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::stfdux(const DoubleRegister frs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STFDUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::stfs(const DoubleRegister frs, const MemOperand& src) {
  int offset = src.offset();
  Register ra = src.ra();
2045
  CHECK(is_int16(offset));
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
  DCHECK(!ra.is(r0));
  int imm16 = offset & kImm16Mask;
  // could be x_form instruction with some casting magic
  emit(STFS | frs.code() * B21 | ra.code() * B16 | imm16);
}


void Assembler::stfsu(const DoubleRegister frs, const MemOperand& src) {
  int offset = src.offset();
  Register ra = src.ra();
2056
  CHECK(is_int16(offset));
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
  DCHECK(!ra.is(r0));
  int imm16 = offset & kImm16Mask;
  // could be x_form instruction with some casting magic
  emit(STFSU | frs.code() * B21 | ra.code() * B16 | imm16);
}


void Assembler::stfsx(const DoubleRegister frs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STFSX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::stfsux(const DoubleRegister frs, const MemOperand& src) {
  Register ra = src.ra();
  Register rb = src.rb();
  DCHECK(!ra.is(r0));
  emit(EXT2 | STFSUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
       LeaveRC);
}


void Assembler::fsub(const DoubleRegister frt, const DoubleRegister fra,
                     const DoubleRegister frb, RCBit rc) {
  a_form(EXT4 | FSUB, frt, fra, frb, rc);
}


void Assembler::fadd(const DoubleRegister frt, const DoubleRegister fra,
                     const DoubleRegister frb, RCBit rc) {
  a_form(EXT4 | FADD, frt, fra, frb, rc);
}


void Assembler::fmul(const DoubleRegister frt, const DoubleRegister fra,
                     const DoubleRegister frc, RCBit rc) {
  emit(EXT4 | FMUL | frt.code() * B21 | fra.code() * B16 | frc.code() * B6 |
       rc);
}


void Assembler::fdiv(const DoubleRegister frt, const DoubleRegister fra,
                     const DoubleRegister frb, RCBit rc) {
  a_form(EXT4 | FDIV, frt, fra, frb, rc);
}


void Assembler::fcmpu(const DoubleRegister fra, const DoubleRegister frb,
                      CRegister cr) {
  DCHECK(cr.code() >= 0 && cr.code() <= 7);
  emit(EXT4 | FCMPU | cr.code() * B23 | fra.code() * B16 | frb.code() * B11);
}


void Assembler::fmr(const DoubleRegister frt, const DoubleRegister frb,
                    RCBit rc) {
  emit(EXT4 | FMR | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::fctiwz(const DoubleRegister frt, const DoubleRegister frb) {
  emit(EXT4 | FCTIWZ | frt.code() * B21 | frb.code() * B11);
}


void Assembler::fctiw(const DoubleRegister frt, const DoubleRegister frb) {
  emit(EXT4 | FCTIW | frt.code() * B21 | frb.code() * B11);
}


2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
void Assembler::frin(const DoubleRegister frt, const DoubleRegister frb,
                     RCBit rc) {
  emit(EXT4 | FRIN | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::friz(const DoubleRegister frt, const DoubleRegister frb,
                     RCBit rc) {
  emit(EXT4 | FRIZ | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::frip(const DoubleRegister frt, const DoubleRegister frb,
                     RCBit rc) {
  emit(EXT4 | FRIP | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::frim(const DoubleRegister frt, const DoubleRegister frb,
                     RCBit rc) {
  emit(EXT4 | FRIM | frt.code() * B21 | frb.code() * B11 | rc);
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
}


void Assembler::frsp(const DoubleRegister frt, const DoubleRegister frb,
                     RCBit rc) {
  emit(EXT4 | FRSP | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::fcfid(const DoubleRegister frt, const DoubleRegister frb,
                      RCBit rc) {
  emit(EXT4 | FCFID | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::fctid(const DoubleRegister frt, const DoubleRegister frb,
                      RCBit rc) {
  emit(EXT4 | FCTID | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::fctidz(const DoubleRegister frt, const DoubleRegister frb,
                       RCBit rc) {
  emit(EXT4 | FCTIDZ | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::fsel(const DoubleRegister frt, const DoubleRegister fra,
                     const DoubleRegister frc, const DoubleRegister frb,
                     RCBit rc) {
  emit(EXT4 | FSEL | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
       frc.code() * B6 | rc);
}


void Assembler::fneg(const DoubleRegister frt, const DoubleRegister frb,
                     RCBit rc) {
  emit(EXT4 | FNEG | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::mtfsfi(int bf, int immediate, RCBit rc) {
  emit(EXT4 | MTFSFI | bf * B23 | immediate * B12 | rc);
}


void Assembler::mffs(const DoubleRegister frt, RCBit rc) {
  emit(EXT4 | MFFS | frt.code() * B21 | rc);
}


void Assembler::mtfsf(const DoubleRegister frb, bool L, int FLM, bool W,
                      RCBit rc) {
  emit(EXT4 | MTFSF | frb.code() * B11 | W * B16 | FLM * B17 | L * B25 | rc);
}


void Assembler::fsqrt(const DoubleRegister frt, const DoubleRegister frb,
                      RCBit rc) {
  emit(EXT4 | FSQRT | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::fabs(const DoubleRegister frt, const DoubleRegister frb,
                     RCBit rc) {
  emit(EXT4 | FABS | frt.code() * B21 | frb.code() * B11 | rc);
}


void Assembler::fmadd(const DoubleRegister frt, const DoubleRegister fra,
                      const DoubleRegister frc, const DoubleRegister frb,
                      RCBit rc) {
  emit(EXT4 | FMADD | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
       frc.code() * B6 | rc);
}


void Assembler::fmsub(const DoubleRegister frt, const DoubleRegister fra,
                      const DoubleRegister frc, const DoubleRegister frb,
                      RCBit rc) {
  emit(EXT4 | FMSUB | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
       frc.code() * B6 | rc);
}


// Pseudo instructions.
void Assembler::nop(int type) {
  Register reg = r0;
  switch (type) {
    case NON_MARKING_NOP:
      reg = r0;
      break;
    case GROUP_ENDING_NOP:
      reg = r2;
      break;
    case DEBUG_BREAK_NOP:
      reg = r3;
      break;
    default:
      UNIMPLEMENTED();
  }

  ori(reg, reg, Operand::Zero());
}


bool Assembler::IsNop(Instr instr, int type) {
  int reg = 0;
  switch (type) {
    case NON_MARKING_NOP:
      reg = 0;
      break;
    case GROUP_ENDING_NOP:
      reg = 2;
      break;
    case DEBUG_BREAK_NOP:
      reg = 3;
      break;
    default:
      UNIMPLEMENTED();
  }
  return instr == (ORI | reg * B21 | reg * B16);
}


2276
void Assembler::GrowBuffer(int needed) {
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
  if (!own_buffer_) FATAL("external code buffer is too small");

  // Compute new buffer size.
  CodeDesc desc;  // the new buffer
  if (buffer_size_ < 4 * KB) {
    desc.buffer_size = 4 * KB;
  } else if (buffer_size_ < 1 * MB) {
    desc.buffer_size = 2 * buffer_size_;
  } else {
    desc.buffer_size = buffer_size_ + 1 * MB;
  }
2288 2289 2290 2291
  int space = buffer_space() + (desc.buffer_size - buffer_size_);
  if (space < needed) {
    desc.buffer_size += needed - space;
  }
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
  CHECK_GT(desc.buffer_size, 0);  // no overflow

  // Set up new buffer.
  desc.buffer = NewArray<byte>(desc.buffer_size);

  desc.instr_size = pc_offset();
  desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();

  // Copy the data.
  intptr_t pc_delta = desc.buffer - buffer_;
  intptr_t rc_delta =
      (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
  memmove(desc.buffer, buffer_, desc.instr_size);
  memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
          desc.reloc_size);

  // Switch buffers.
  DeleteArray(buffer_);
  buffer_ = desc.buffer;
  buffer_size_ = desc.buffer_size;
  pc_ += pc_delta;
  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
                               reloc_info_writer.last_pc() + pc_delta);

2316 2317 2318
  // Nothing else to do here since we keep all internal references and
  // deferred relocation entries relative to the buffer (until
  // EmitRelocations).
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
}


void Assembler::db(uint8_t data) {
  CheckBuffer();
  *reinterpret_cast<uint8_t*>(pc_) = data;
  pc_ += sizeof(uint8_t);
}


void Assembler::dd(uint32_t data) {
  CheckBuffer();
  *reinterpret_cast<uint32_t*>(pc_) = data;
  pc_ += sizeof(uint32_t);
}


2336
void Assembler::dq(uint64_t value) {
2337
  CheckBuffer();
2338 2339
  *reinterpret_cast<uint64_t*>(pc_) = value;
  pc_ += sizeof(uint64_t);
2340 2341 2342
}


2343
void Assembler::dp(uintptr_t data) {
2344
  CheckBuffer();
2345 2346
  *reinterpret_cast<uintptr_t*>(pc_) = data;
  pc_ += sizeof(uintptr_t);
2347 2348 2349
}


2350
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2351 2352 2353 2354 2355
  if (RelocInfo::IsNone(rmode) ||
      // Don't record external references unless the heap will be serialized.
      (rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() &&
       !emit_debug_code())) {
    return;
2356
  }
2357 2358 2359
  if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
    data = RecordedAstId().ToInt();
    ClearRecordedAstId();
2360
  }
2361 2362
  DeferredRelocInfo rinfo(pc_offset(), rmode, data);
  relocations_.push_back(rinfo);
2363 2364 2365 2366 2367 2368 2369 2370 2371
}


void Assembler::EmitRelocations() {
  EnsureSpaceFor(relocations_.size() * kMaxRelocSize);

  for (std::vector<DeferredRelocInfo>::iterator it = relocations_.begin();
       it != relocations_.end(); it++) {
    RelocInfo::Mode rmode = it->rmode();
2372 2373 2374
    Address pc = buffer_ + it->position();
    Code* code = NULL;
    RelocInfo rinfo(pc, rmode, it->data(), code);
2375 2376

    // Fix up internal references now that they are guaranteed to be bound.
2377 2378 2379 2380 2381 2382 2383 2384
    if (RelocInfo::IsInternalReference(rmode)) {
      // Jump table entry
      intptr_t pos = reinterpret_cast<intptr_t>(Memory::Address_at(pc));
      Memory::Address_at(pc) = buffer_ + pos;
    } else if (RelocInfo::IsInternalReferenceEncoded(rmode)) {
      // mov sequence
      intptr_t pos = reinterpret_cast<intptr_t>(target_address_at(pc, code));
      set_target_address_at(pc, code, buffer_ + pos, SKIP_ICACHE_FLUSH);
2385
    }
2386 2387

    reloc_info_writer.Write(&rinfo);
2388
  }
2389 2390

  reloc_info_writer.Finish();
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
}


void Assembler::BlockTrampolinePoolFor(int instructions) {
  BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
}


void Assembler::CheckTrampolinePool() {
  // Some small sequences of instructions must not be broken up by the
  // insertion of a trampoline pool; such sequences are protected by setting
  // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
  // which are both checked here. Also, recursive calls to CheckTrampolinePool
  // are blocked by trampoline_pool_blocked_nesting_.
2405 2406 2407
  if (trampoline_pool_blocked_nesting_ > 0) return;
  if (pc_offset() < no_trampoline_pool_before_) {
    next_trampoline_check_ = no_trampoline_pool_before_;
2408 2409 2410 2411
    return;
  }

  DCHECK(!trampoline_emitted_);
2412 2413 2414 2415 2416 2417 2418
  if (tracked_branch_count_ > 0) {
    int size = tracked_branch_count_ * kInstrSize;

    // As we are only going to emit trampoline once, we need to prevent any
    // further emission.
    trampoline_emitted_ = true;
    next_trampoline_check_ = kMaxInt;
2419

2420 2421 2422 2423
    // First we emit jump, then we emit trampoline pool.
    b(size + kInstrSize, LeaveLK);
    for (int i = size; i > 0; i -= kInstrSize) {
      b(i, LeaveLK);
2424
    }
2425 2426

    trampoline_ = Trampoline(pc_offset() - size, tracked_branch_count_);
2427 2428 2429 2430
  }
}


2431 2432
}  // namespace internal
}  // namespace v8
2433 2434

#endif  // V8_TARGET_ARCH_PPC