conversions.cc 43.2 KB
Newer Older
1
// Copyright 2011 the V8 project authors. All rights reserved.
2 3
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
4

5 6
#include "src/conversions.h"

7
#include <limits.h>
8
#include <stdarg.h>
9
#include <cmath>
10

11
#include "src/allocation.h"
12
#include "src/assert-scope.h"
13
#include "src/char-predicates-inl.h"
14
#include "src/codegen.h"
15 16
#include "src/dtoa.h"
#include "src/factory.h"
marja's avatar
marja committed
17
#include "src/handles.h"
18
#include "src/objects-inl.h"
19
#include "src/objects/bigint.h"
20
#include "src/strtod.h"
21
#include "src/unicode-cache-inl.h"
22
#include "src/utils.h"
23

24
#if defined(_STLP_VENDOR_CSTD)
25
// STLPort doesn't import fpclassify into the std namespace.
26 27 28
#define FPCLASSIFY_NAMESPACE
#else
#define FPCLASSIFY_NAMESPACE std
29 30
#endif

31 32
namespace v8 {
namespace internal {
33

34 35
namespace {

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
inline double JunkStringValue() {
  return bit_cast<double, uint64_t>(kQuietNaNMask);
}

inline double SignedZero(bool negative) {
  return negative ? uint64_to_double(Double::kSignMask) : 0.0;
}

inline bool isDigit(int x, int radix) {
  return (x >= '0' && x <= '9' && x < '0' + radix) ||
         (radix > 10 && x >= 'a' && x < 'a' + radix - 10) ||
         (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
}

inline bool isBinaryDigit(int x) { return x == '0' || x == '1'; }

template <class Iterator, class EndMark>
bool SubStringEquals(Iterator* current, EndMark end, const char* substring) {
  DCHECK(**current == *substring);
  for (substring++; *substring != '\0'; substring++) {
    ++*current;
    if (*current == end || **current != *substring) return false;
  }
  ++*current;
  return true;
}

// Returns true if a nonspace character has been found and false if the
// end was been reached before finding a nonspace character.
template <class Iterator, class EndMark>
inline bool AdvanceToNonspace(UnicodeCache* unicode_cache, Iterator* current,
                              EndMark end) {
  while (*current != end) {
    if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
    ++*current;
  }
  return false;
}

// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
template <int radix_log_2, class Iterator, class EndMark>
double InternalStringToIntDouble(UnicodeCache* unicode_cache, Iterator current,
                                 EndMark end, bool negative,
                                 bool allow_trailing_junk) {
  DCHECK(current != end);

  // Skip leading 0s.
  while (*current == '0') {
    ++current;
    if (current == end) return SignedZero(negative);
  }

  int64_t number = 0;
  int exponent = 0;
  const int radix = (1 << radix_log_2);

  int lim_0 = '0' + (radix < 10 ? radix : 10);
  int lim_a = 'a' + (radix - 10);
  int lim_A = 'A' + (radix - 10);

  do {
    int digit;
    if (*current >= '0' && *current < lim_0) {
      digit = static_cast<char>(*current) - '0';
    } else if (*current >= 'a' && *current < lim_a) {
      digit = static_cast<char>(*current) - 'a' + 10;
    } else if (*current >= 'A' && *current < lim_A) {
      digit = static_cast<char>(*current) - 'A' + 10;
    } else {
      if (allow_trailing_junk ||
          !AdvanceToNonspace(unicode_cache, &current, end)) {
        break;
      } else {
        return JunkStringValue();
      }
    }

    number = number * radix + digit;
    int overflow = static_cast<int>(number >> 53);
    if (overflow != 0) {
      // Overflow occurred. Need to determine which direction to round the
      // result.
      int overflow_bits_count = 1;
      while (overflow > 1) {
        overflow_bits_count++;
        overflow >>= 1;
      }

      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
      number >>= overflow_bits_count;
      exponent = overflow_bits_count;

      bool zero_tail = true;
      while (true) {
        ++current;
        if (current == end || !isDigit(*current, radix)) break;
        zero_tail = zero_tail && *current == '0';
        exponent += radix_log_2;
      }

      if (!allow_trailing_junk &&
          AdvanceToNonspace(unicode_cache, &current, end)) {
        return JunkStringValue();
      }

      int middle_value = (1 << (overflow_bits_count - 1));
      if (dropped_bits > middle_value) {
        number++;  // Rounding up.
      } else if (dropped_bits == middle_value) {
        // Rounding to even to consistency with decimals: half-way case rounds
        // up if significant part is odd and down otherwise.
        if ((number & 1) != 0 || !zero_tail) {
          number++;  // Rounding up.
        }
      }

      // Rounding up may cause overflow.
      if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
        exponent++;
        number >>= 1;
      }
      break;
    }
    ++current;
  } while (current != end);

  DCHECK(number < ((int64_t)1 << 53));
  DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);

  if (exponent == 0) {
    if (negative) {
      if (number == 0) return -0.0;
      number = -number;
    }
    return static_cast<double>(number);
  }

  DCHECK(number != 0);
  return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
}

// ES6 18.2.5 parseInt(string, radix) (with NumberParseIntHelper subclass);
// https://tc39.github.io/proposal-bigint/#sec-bigint-parseint-string-radix
// (with BigIntParseIntHelper subclass).
class StringToIntHelper {
182
 public:
183 184 185 186
  StringToIntHelper(Isolate* isolate, Handle<String> subject, int radix)
      : isolate_(isolate), subject_(subject), radix_(radix) {
    DCHECK(subject->IsFlat());
  }
187 188 189 190 191

  // Used for parsing BigInt literals, where the input is a Zone-allocated
  // buffer of one-byte digits, along with an optional radix prefix.
  StringToIntHelper(Isolate* isolate, const uint8_t* subject, int length)
      : isolate_(isolate), raw_one_byte_subject_(subject), length_(length) {}
192
  virtual ~StringToIntHelper() {}
193

194 195 196 197
 protected:
  // Subclasses must implement these:
  virtual void AllocateResult() = 0;
  virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) = 0;
198

199 200 201 202 203 204
  // Subclasses must call this to do all the work.
  void ParseInt();

  // Subclasses may override this.
  virtual void HandleSpecialCases() {}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  bool IsOneByte() const {
    return raw_one_byte_subject_ != nullptr ||
           subject_->IsOneByteRepresentationUnderneath();
  }

  Vector<const uint8_t> GetOneByteVector() {
    if (raw_one_byte_subject_ != nullptr) {
      return Vector<const uint8_t>(raw_one_byte_subject_, length_);
    }
    return subject_->GetFlatContent().ToOneByteVector();
  }

  Vector<const uc16> GetTwoByteVector() {
    return subject_->GetFlatContent().ToUC16Vector();
  }

221 222 223 224 225 226 227 228 229 230
  // Subclasses get access to internal state:
  enum State { kRunning, kError, kJunk, kZero, kDone };

  Isolate* isolate() { return isolate_; }
  int radix() { return radix_; }
  int cursor() { return cursor_; }
  int length() { return length_; }
  bool negative() { return negative_; }
  State state() { return state_; }
  void set_state(State state) { state_ = state; }
231

232 233 234 235 236 237 238 239
  bool AllowOctalRadixPrefix() const {
    return raw_one_byte_subject_ != nullptr;
  }

  bool AllowBinaryRadixPrefix() const {
    return raw_one_byte_subject_ != nullptr;
  }

240
 private:
241 242 243 244 245 246 247
  template <class Char>
  void DetectRadixInternal(Char current, int length);
  template <class Char>
  void ParseInternal(Char start);

  Isolate* isolate_;
  Handle<String> subject_;
248 249
  const uint8_t* raw_one_byte_subject_ = nullptr;
  int radix_ = 0;
250 251 252 253 254
  int cursor_ = 0;
  int length_ = 0;
  bool negative_ = false;
  bool leading_zero_ = false;
  State state_ = kRunning;
255 256
};

257 258 259
void StringToIntHelper::ParseInt() {
  {
    DisallowHeapAllocation no_gc;
260 261
    if (IsOneByte()) {
      Vector<const uint8_t> vector = GetOneByteVector();
262 263
      DetectRadixInternal(vector.start(), vector.length());
    } else {
264
      Vector<const uc16> vector = GetTwoByteVector();
265 266 267 268 269 270 271 272 273
      DetectRadixInternal(vector.start(), vector.length());
    }
  }
  if (state_ != kRunning) return;
  AllocateResult();
  HandleSpecialCases();
  if (state_ != kRunning) return;
  {
    DisallowHeapAllocation no_gc;
274 275
    if (IsOneByte()) {
      Vector<const uint8_t> vector = GetOneByteVector();
276 277 278
      DCHECK_EQ(length_, vector.length());
      ParseInternal(vector.start());
    } else {
279
      Vector<const uc16> vector = GetTwoByteVector();
280 281 282 283 284 285 286 287 288 289 290 291 292
      DCHECK_EQ(length_, vector.length());
      ParseInternal(vector.start());
    }
  }
  DCHECK(state_ != kRunning);
}

template <class Char>
void StringToIntHelper::DetectRadixInternal(Char current, int length) {
  Char start = current;
  length_ = length;
  Char end = start + length;
  UnicodeCache* unicode_cache = isolate_->unicode_cache();
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  if (!AdvanceToNonspace(unicode_cache, &current, end)) {
    return set_state(kJunk);
  }

  if (*current == '+') {
    // Ignore leading sign; skip following spaces.
    ++current;
    if (current == end) {
      return set_state(kJunk);
    }
  } else if (*current == '-') {
    ++current;
    if (current == end) {
      return set_state(kJunk);
    }
    negative_ = true;
  }

  if (radix_ == 0) {
    // Radix detection.
    radix_ = 10;
    if (*current == '0') {
      ++current;
      if (current == end) return set_state(kZero);
      if (*current == 'x' || *current == 'X') {
        radix_ = 16;
        ++current;
        if (current == end) return set_state(kJunk);
322 323 324 325 326 327 328 329 330 331
      } else if (AllowOctalRadixPrefix() &&
                 (*current == 'o' || *current == 'O')) {
        radix_ = 8;
        ++current;
        DCHECK(current != end);
      } else if (AllowBinaryRadixPrefix() &&
                 (*current == 'b' || *current == 'B')) {
        radix_ = 2;
        ++current;
        DCHECK(current != end);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
      } else {
        leading_zero_ = true;
      }
    }
  } else if (radix_ == 16) {
    if (*current == '0') {
      // Allow "0x" prefix.
      ++current;
      if (current == end) return set_state(kZero);
      if (*current == 'x' || *current == 'X') {
        ++current;
        if (current == end) return set_state(kJunk);
      } else {
        leading_zero_ = true;
      }
    }
  }
  // Skip leading zeros.
  while (*current == '0') {
    leading_zero_ = true;
    ++current;
    if (current == end) return set_state(kZero);
  }

  if (!leading_zero_ && !isDigit(*current, radix_)) {
    return set_state(kJunk);
  }

  DCHECK(radix_ >= 2 && radix_ <= 36);
  STATIC_ASSERT(String::kMaxLength <= INT_MAX);
  cursor_ = static_cast<int>(current - start);
363 364
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
template <class Char>
void StringToIntHelper::ParseInternal(Char start) {
  Char current = start + cursor_;
  Char end = start + length_;

  // The following code causes accumulating rounding error for numbers greater
  // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
  // 16, or 32, then mathInt may be an implementation-dependent approximation to
  // the mathematical integer value" (15.1.2.2).

  int lim_0 = '0' + (radix_ < 10 ? radix_ : 10);
  int lim_a = 'a' + (radix_ - 10);
  int lim_A = 'A' + (radix_ - 10);

  // NOTE: The code for computing the value may seem a bit complex at
  // first glance. It is structured to use 32-bit multiply-and-add
  // loops as long as possible to avoid losing precision.

  bool done = false;
  do {
    // Parse the longest part of the string starting at {current}
    // possible while keeping the multiplier, and thus the part
    // itself, within 32 bits.
    uint32_t part = 0, multiplier = 1;
    while (true) {
      uint32_t d;
      if (*current >= '0' && *current < lim_0) {
        d = *current - '0';
      } else if (*current >= 'a' && *current < lim_a) {
        d = *current - 'a' + 10;
      } else if (*current >= 'A' && *current < lim_A) {
        d = *current - 'A' + 10;
      } else {
        done = true;
        break;
      }

      // Update the value of the part as long as the multiplier fits
      // in 32 bits. When we can't guarantee that the next iteration
      // will not overflow the multiplier, we stop parsing the part
      // by leaving the loop.
      const uint32_t kMaximumMultiplier = 0xffffffffU / 36;
      uint32_t m = multiplier * static_cast<uint32_t>(radix_);
      if (m > kMaximumMultiplier) break;
      part = part * radix_ + d;
      multiplier = m;
      DCHECK(multiplier > part);

      ++current;
      if (current == end) {
        done = true;
        break;
      }
    }

    // Update the value and skip the part in the string.
    ResultMultiplyAdd(multiplier, part);
  } while (!done);

  return set_state(kDone);
425 426
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
class NumberParseIntHelper : public StringToIntHelper {
 public:
  NumberParseIntHelper(Isolate* isolate, Handle<String> string, int radix)
      : StringToIntHelper(isolate, string, radix) {}

  double GetResult() {
    ParseInt();
    switch (state()) {
      case kJunk:
        return JunkStringValue();
      case kZero:
        return SignedZero(negative());
      case kDone:
        return negative() ? -result_ : result_;
      case kError:
      case kRunning:
        break;
    }
    UNREACHABLE();
  }
447

448 449 450 451 452 453 454 455 456 457 458
 protected:
  virtual void AllocateResult() {}
  virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) {
    result_ = result_ * multiplier + part;
  }

 private:
  virtual void HandleSpecialCases() {
    bool is_power_of_two = base::bits::IsPowerOfTwo(radix());
    if (!is_power_of_two && radix() != 10) return;
    DisallowHeapAllocation no_gc;
459 460
    if (IsOneByte()) {
      Vector<const uint8_t> vector = GetOneByteVector();
461 462 463 464
      DCHECK_EQ(length(), vector.length());
      result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.start())
                                : HandleBaseTenCase(vector.start());
    } else {
465
      Vector<const uc16> vector = GetTwoByteVector();
466 467 468 469 470
      DCHECK_EQ(length(), vector.length());
      result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.start())
                                : HandleBaseTenCase(vector.start());
    }
    set_state(kDone);
471
  }
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

  template <class Char>
  double HandlePowerOfTwoCase(Char start) {
    Char current = start + cursor();
    Char end = start + length();
    UnicodeCache* unicode_cache = isolate()->unicode_cache();
    const bool allow_trailing_junk = true;
    // GetResult() will take care of the sign bit, so ignore it for now.
    const bool negative = false;
    switch (radix()) {
      case 2:
        return InternalStringToIntDouble<1>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);
      case 4:
        return InternalStringToIntDouble<2>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);
      case 8:
        return InternalStringToIntDouble<3>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);

      case 16:
        return InternalStringToIntDouble<4>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);

      case 32:
        return InternalStringToIntDouble<5>(unicode_cache, current, end,
                                            negative, allow_trailing_junk);
      default:
        UNREACHABLE();
    }
  }

  template <class Char>
  double HandleBaseTenCase(Char start) {
    // Parsing with strtod.
    Char current = start + cursor();
    Char end = start + length();
    const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
    // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
    // end.
    const int kBufferSize = kMaxSignificantDigits + 2;
    char buffer[kBufferSize];
    int buffer_pos = 0;
    while (*current >= '0' && *current <= '9') {
      if (buffer_pos <= kMaxSignificantDigits) {
        // If the number has more than kMaxSignificantDigits it will be parsed
        // as infinity.
        DCHECK(buffer_pos < kBufferSize);
        buffer[buffer_pos++] = static_cast<char>(*current);
      }
      ++current;
      if (current == end) break;
    }

    SLOW_DCHECK(buffer_pos < kBufferSize);
    buffer[buffer_pos] = '\0';
    Vector<const char> buffer_vector(buffer, buffer_pos);
    return Strtod(buffer_vector, 0);
  }

  double result_ = 0;
};

// Converts a string to a double value. Assumes the Iterator supports
// the following operations:
// 1. current == end (other ops are not allowed), current != end.
// 2. *current - gets the current character in the sequence.
// 3. ++current (advances the position).
template <class Iterator, class EndMark>
double InternalStringToDouble(UnicodeCache* unicode_cache, Iterator current,
                              EndMark end, int flags, double empty_string_val) {
  // To make sure that iterator dereferencing is valid the following
  // convention is used:
  // 1. Each '++current' statement is followed by check for equality to 'end'.
  // 2. If AdvanceToNonspace returned false then current == end.
  // 3. If 'current' becomes be equal to 'end' the function returns or goes to
  // 'parsing_done'.
  // 4. 'current' is not dereferenced after the 'parsing_done' label.
  // 5. Code before 'parsing_done' may rely on 'current != end'.
  if (!AdvanceToNonspace(unicode_cache, &current, end)) {
    return empty_string_val;
  }

  const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;

  // Maximum number of significant digits in decimal representation.
  // The longest possible double in decimal representation is
  // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
  // (768 digits). If we parse a number whose first digits are equal to a
  // mean of 2 adjacent doubles (that could have up to 769 digits) the result
  // must be rounded to the bigger one unless the tail consists of zeros, so
  // we don't need to preserve all the digits.
  const int kMaxSignificantDigits = 772;

  // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
  const int kBufferSize = kMaxSignificantDigits + 10;
  char buffer[kBufferSize];  // NOLINT: size is known at compile time.
  int buffer_pos = 0;

  // Exponent will be adjusted if insignificant digits of the integer part
  // or insignificant leading zeros of the fractional part are dropped.
  int exponent = 0;
  int significant_digits = 0;
  int insignificant_digits = 0;
  bool nonzero_digit_dropped = false;

  enum Sign { NONE, NEGATIVE, POSITIVE };

  Sign sign = NONE;

  if (*current == '+') {
    // Ignore leading sign.
    ++current;
    if (current == end) return JunkStringValue();
    sign = POSITIVE;
  } else if (*current == '-') {
    ++current;
    if (current == end) return JunkStringValue();
    sign = NEGATIVE;
  }

  static const char kInfinityString[] = "Infinity";
  if (*current == kInfinityString[0]) {
    if (!SubStringEquals(&current, end, kInfinityString)) {
      return JunkStringValue();
    }

    if (!allow_trailing_junk &&
        AdvanceToNonspace(unicode_cache, &current, end)) {
      return JunkStringValue();
    }

    DCHECK(buffer_pos == 0);
    return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
  }

  bool leading_zero = false;
  if (*current == '0') {
    ++current;
    if (current == end) return SignedZero(sign == NEGATIVE);

    leading_zero = true;

    // It could be hexadecimal value.
    if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
      ++current;
      if (current == end || !isDigit(*current, 16) || sign != NONE) {
        return JunkStringValue();  // "0x".
      }

      return InternalStringToIntDouble<4>(unicode_cache, current, end, false,
                                          allow_trailing_junk);

      // It could be an explicit octal value.
    } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
      ++current;
      if (current == end || !isDigit(*current, 8) || sign != NONE) {
        return JunkStringValue();  // "0o".
      }

      return InternalStringToIntDouble<3>(unicode_cache, current, end, false,
                                          allow_trailing_junk);

      // It could be a binary value.
    } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
      ++current;
      if (current == end || !isBinaryDigit(*current) || sign != NONE) {
        return JunkStringValue();  // "0b".
      }

      return InternalStringToIntDouble<1>(unicode_cache, current, end, false,
                                          allow_trailing_junk);
    }

    // Ignore leading zeros in the integer part.
    while (*current == '0') {
      ++current;
      if (current == end) return SignedZero(sign == NEGATIVE);
    }
  }

  bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;

  // Copy significant digits of the integer part (if any) to the buffer.
  while (*current >= '0' && *current <= '9') {
    if (significant_digits < kMaxSignificantDigits) {
      DCHECK(buffer_pos < kBufferSize);
      buffer[buffer_pos++] = static_cast<char>(*current);
      significant_digits++;
      // Will later check if it's an octal in the buffer.
    } else {
      insignificant_digits++;  // Move the digit into the exponential part.
      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
    }
    octal = octal && *current < '8';
    ++current;
    if (current == end) goto parsing_done;
  }

  if (significant_digits == 0) {
    octal = false;
  }

  if (*current == '.') {
    if (octal && !allow_trailing_junk) return JunkStringValue();
    if (octal) goto parsing_done;

    ++current;
    if (current == end) {
      if (significant_digits == 0 && !leading_zero) {
        return JunkStringValue();
      } else {
        goto parsing_done;
      }
    }

    if (significant_digits == 0) {
      // octal = false;
      // Integer part consists of 0 or is absent. Significant digits start after
      // leading zeros (if any).
      while (*current == '0') {
        ++current;
        if (current == end) return SignedZero(sign == NEGATIVE);
        exponent--;  // Move this 0 into the exponent.
      }
    }

    // There is a fractional part.  We don't emit a '.', but adjust the exponent
    // instead.
    while (*current >= '0' && *current <= '9') {
      if (significant_digits < kMaxSignificantDigits) {
        DCHECK(buffer_pos < kBufferSize);
        buffer[buffer_pos++] = static_cast<char>(*current);
        significant_digits++;
        exponent--;
      } else {
        // Ignore insignificant digits in the fractional part.
        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
      }
      ++current;
      if (current == end) goto parsing_done;
    }
  }

  if (!leading_zero && exponent == 0 && significant_digits == 0) {
    // If leading_zeros is true then the string contains zeros.
    // If exponent < 0 then string was [+-]\.0*...
    // If significant_digits != 0 the string is not equal to 0.
    // Otherwise there are no digits in the string.
    return JunkStringValue();
  }

  // Parse exponential part.
  if (*current == 'e' || *current == 'E') {
    if (octal) return JunkStringValue();
    ++current;
    if (current == end) {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
        return JunkStringValue();
      }
    }
    char sign = '+';
    if (*current == '+' || *current == '-') {
      sign = static_cast<char>(*current);
      ++current;
      if (current == end) {
        if (allow_trailing_junk) {
          goto parsing_done;
        } else {
          return JunkStringValue();
        }
      }
    }

    if (current == end || *current < '0' || *current > '9') {
      if (allow_trailing_junk) {
        goto parsing_done;
      } else {
        return JunkStringValue();
      }
    }

    const int max_exponent = INT_MAX / 2;
    DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
    int num = 0;
    do {
      // Check overflow.
      int digit = *current - '0';
      if (num >= max_exponent / 10 &&
          !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
        num = max_exponent;
      } else {
        num = num * 10 + digit;
      }
      ++current;
    } while (current != end && *current >= '0' && *current <= '9');

    exponent += (sign == '-' ? -num : num);
  }

  if (!allow_trailing_junk && AdvanceToNonspace(unicode_cache, &current, end)) {
    return JunkStringValue();
  }

parsing_done:
  exponent += insignificant_digits;

  if (octal) {
    return InternalStringToIntDouble<3>(unicode_cache, buffer,
                                        buffer + buffer_pos, sign == NEGATIVE,
                                        allow_trailing_junk);
  }

  if (nonzero_digit_dropped) {
    buffer[buffer_pos++] = '1';
    exponent--;
  }

  SLOW_DCHECK(buffer_pos < kBufferSize);
  buffer[buffer_pos] = '\0';

  double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
  return (sign == NEGATIVE) ? -converted : converted;
797 798
}

799
}  // namespace
800

801 802
double StringToDouble(UnicodeCache* unicode_cache,
                      const char* str, int flags, double empty_string_val) {
803 804 805 806 807
  // We cast to const uint8_t* here to avoid instantiating the
  // InternalStringToDouble() template for const char* as well.
  const uint8_t* start = reinterpret_cast<const uint8_t*>(str);
  const uint8_t* end = start + StrLength(str);
  return InternalStringToDouble(unicode_cache, start, end, flags,
808
                                empty_string_val);
809 810 811
}


812
double StringToDouble(UnicodeCache* unicode_cache,
813
                      Vector<const uint8_t> str,
814 815
                      int flags,
                      double empty_string_val) {
816 817 818 819 820
  // We cast to const uint8_t* here to avoid instantiating the
  // InternalStringToDouble() template for const char* as well.
  const uint8_t* start = reinterpret_cast<const uint8_t*>(str.start());
  const uint8_t* end = start + str.length();
  return InternalStringToDouble(unicode_cache, start, end, flags,
821
                                empty_string_val);
822 823
}

824

825 826 827 828 829 830 831 832 833
double StringToDouble(UnicodeCache* unicode_cache,
                      Vector<const uc16> str,
                      int flags,
                      double empty_string_val) {
  const uc16* end = str.start() + str.length();
  return InternalStringToDouble(unicode_cache, str.start(), end, flags,
                                empty_string_val);
}

834 835 836
double StringToInt(Isolate* isolate, Handle<String> string, int radix) {
  NumberParseIntHelper helper(isolate, string, radix);
  return helper.GetResult();
837 838
}

839 840
class BigIntParseIntHelper : public StringToIntHelper {
 public:
841
  // Used for BigInt.parseInt API, where the input is a Heap-allocated String.
842 843 844
  BigIntParseIntHelper(Isolate* isolate, Handle<String> string, int radix)
      : StringToIntHelper(isolate, string, radix) {}

845 846 847 848 849
  // Used for parsing BigInt literals, where the input is a buffer of
  // one-byte ASCII digits, along with an optional radix prefix.
  BigIntParseIntHelper(Isolate* isolate, const uint8_t* string, int length)
      : StringToIntHelper(isolate, string, length) {}

850 851 852 853 854 855 856 857
  MaybeHandle<BigInt> GetResult() {
    ParseInt();
    switch (state()) {
      case kJunk:
        THROW_NEW_ERROR(isolate(),
                        NewSyntaxError(MessageTemplate::kBigIntInvalidString),
                        BigInt);
      case kZero:
858
        return isolate()->factory()->NewBigIntFromInt(0);
859 860 861 862 863 864 865 866 867 868 869
      case kError:
        return MaybeHandle<BigInt>();
      case kDone:
        result_->set_sign(negative());
        result_->RightTrim();
        return result_;
      case kRunning:
        break;
    }
    UNREACHABLE();
  }
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
 protected:
  virtual void AllocateResult() {
    // We have to allocate a BigInt that's big enough to fit the result.
    // Conseratively assume that all remaining digits are significant.
    // Optimization opportunity: Would it makes sense to scan for trailing
    // junk before allocating the result?
    int charcount = length() - cursor();
    MaybeHandle<BigInt> maybe =
        BigInt::AllocateFor(isolate(), radix(), charcount);
    if (!maybe.ToHandle(&result_)) {
      set_state(kError);
    }
  }

  virtual void ResultMultiplyAdd(uint32_t multiplier, uint32_t part) {
    result_->InplaceMultiplyAdd(static_cast<uintptr_t>(multiplier),
                                static_cast<uintptr_t>(part));
  }

 private:
  Handle<BigInt> result_;
};

MaybeHandle<BigInt> StringToBigInt(Isolate* isolate, Handle<String> string,
                                   int radix) {
  BigIntParseIntHelper helper(isolate, string, radix);
  return helper.GetResult();
}
899

900 901 902 903 904 905
MaybeHandle<BigInt> StringToBigInt(Isolate* isolate, const char* string) {
  BigIntParseIntHelper helper(isolate, reinterpret_cast<const uint8_t*>(string),
                              static_cast<int>(strlen(string)));
  return helper.GetResult();
}

906
const char* DoubleToCString(double v, Vector<char> buffer) {
907
  switch (FPCLASSIFY_NAMESPACE::fpclassify(v)) {
908 909 910
    case FP_NAN: return "NaN";
    case FP_INFINITE: return (v < 0.0 ? "-Infinity" : "Infinity");
    case FP_ZERO: return "0";
911
    default: {
912
      SimpleStringBuilder builder(buffer.start(), buffer.length());
913 914
      int decimal_point;
      int sign;
915
      const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1;
916
      char decimal_rep[kV8DtoaBufferCapacity];
917
      int length;
918

919 920 921
      DoubleToAscii(v, DTOA_SHORTEST, 0,
                    Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                    &sign, &length, &decimal_point);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

      if (sign) builder.AddCharacter('-');

      if (length <= decimal_point && decimal_point <= 21) {
        // ECMA-262 section 9.8.1 step 6.
        builder.AddString(decimal_rep);
        builder.AddPadding('0', decimal_point - length);

      } else if (0 < decimal_point && decimal_point <= 21) {
        // ECMA-262 section 9.8.1 step 7.
        builder.AddSubstring(decimal_rep, decimal_point);
        builder.AddCharacter('.');
        builder.AddString(decimal_rep + decimal_point);

      } else if (decimal_point <= 0 && decimal_point > -6) {
        // ECMA-262 section 9.8.1 step 8.
        builder.AddString("0.");
        builder.AddPadding('0', -decimal_point);
        builder.AddString(decimal_rep);

      } else {
        // ECMA-262 section 9.8.1 step 9 and 10 combined.
        builder.AddCharacter(decimal_rep[0]);
        if (length != 1) {
          builder.AddCharacter('.');
          builder.AddString(decimal_rep + 1);
        }
        builder.AddCharacter('e');
        builder.AddCharacter((decimal_point >= 0) ? '+' : '-');
        int exponent = decimal_point - 1;
        if (exponent < 0) exponent = -exponent;
953
        builder.AddDecimalInteger(exponent);
954
      }
955
      return builder.Finalize();
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
    }
  }
}


const char* IntToCString(int n, Vector<char> buffer) {
  bool negative = false;
  if (n < 0) {
    // We must not negate the most negative int.
    if (n == kMinInt) return DoubleToCString(n, buffer);
    negative = true;
    n = -n;
  }
  // Build the string backwards from the least significant digit.
  int i = buffer.length();
  buffer[--i] = '\0';
  do {
    buffer[--i] = '0' + (n % 10);
    n /= 10;
  } while (n);
  if (negative) buffer[--i] = '-';
  return buffer.start() + i;
}


char* DoubleToFixedCString(double value, int f) {
982
  const int kMaxDigitsBeforePoint = 21;
983
  const double kFirstNonFixed = 1e21;
984
  DCHECK(f >= 0);
985
  DCHECK(f <= kMaxFractionDigits);
986 987 988 989 990 991 992 993

  bool negative = false;
  double abs_value = value;
  if (value < 0) {
    abs_value = -value;
    negative = true;
  }

994 995 996
  // If abs_value has more than kMaxDigitsBeforePoint digits before the point
  // use the non-fixed conversion routine.
  if (abs_value >= kFirstNonFixed) {
997
    char arr[kMaxFractionDigits];
998
    Vector<char> buffer(arr, arraysize(arr));
999 1000 1001 1002 1003 1004
    return StrDup(DoubleToCString(value, buffer));
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
1005
  // Add space for the '\0' byte.
1006
  const int kDecimalRepCapacity =
1007
      kMaxDigitsBeforePoint + kMaxFractionDigits + 1;
1008 1009
  char decimal_rep[kDecimalRepCapacity];
  int decimal_rep_length;
1010 1011 1012
  DoubleToAscii(value, DTOA_FIXED, f,
                Vector<char>(decimal_rep, kDecimalRepCapacity),
                &sign, &decimal_rep_length, &decimal_point);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

  // Create a representation that is padded with zeros if needed.
  int zero_prefix_length = 0;
  int zero_postfix_length = 0;

  if (decimal_point <= 0) {
    zero_prefix_length = -decimal_point + 1;
    decimal_point = 1;
  }

  if (zero_prefix_length + decimal_rep_length < decimal_point + f) {
    zero_postfix_length = decimal_point + f - decimal_rep_length -
                          zero_prefix_length;
  }

  unsigned rep_length =
      zero_prefix_length + decimal_rep_length + zero_postfix_length;
1030
  SimpleStringBuilder rep_builder(rep_length + 1);
1031 1032 1033 1034 1035 1036 1037 1038
  rep_builder.AddPadding('0', zero_prefix_length);
  rep_builder.AddString(decimal_rep);
  rep_builder.AddPadding('0', zero_postfix_length);
  char* rep = rep_builder.Finalize();

  // Create the result string by appending a minus and putting in a
  // decimal point if needed.
  unsigned result_size = decimal_point + f + 2;
1039
  SimpleStringBuilder builder(result_size + 1);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
  if (negative) builder.AddCharacter('-');
  builder.AddSubstring(rep, decimal_point);
  if (f > 0) {
    builder.AddCharacter('.');
    builder.AddSubstring(rep + decimal_point, f);
  }
  DeleteArray(rep);
  return builder.Finalize();
}


static char* CreateExponentialRepresentation(char* decimal_rep,
                                             int exponent,
                                             bool negative,
                                             int significant_digits) {
  bool negative_exponent = false;
  if (exponent < 0) {
    negative_exponent = true;
    exponent = -exponent;
  }

  // Leave room in the result for appending a minus, for a period, the
  // letter 'e', a minus or a plus depending on the exponent, and a
  // three digit exponent.
  unsigned result_size = significant_digits + 7;
1065
  SimpleStringBuilder builder(result_size + 1);
1066 1067 1068 1069 1070 1071

  if (negative) builder.AddCharacter('-');
  builder.AddCharacter(decimal_rep[0]);
  if (significant_digits != 1) {
    builder.AddCharacter('.');
    builder.AddString(decimal_rep + 1);
1072 1073
    int rep_length = StrLength(decimal_rep);
    builder.AddPadding('0', significant_digits - rep_length);
1074 1075 1076 1077
  }

  builder.AddCharacter('e');
  builder.AddCharacter(negative_exponent ? '-' : '+');
1078
  builder.AddDecimalInteger(exponent);
1079 1080 1081 1082 1083 1084
  return builder.Finalize();
}


char* DoubleToExponentialCString(double value, int f) {
  // f might be -1 to signal that f was undefined in JavaScript.
1085
  DCHECK(f >= -1 && f <= kMaxFractionDigits);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

  bool negative = false;
  if (value < 0) {
    value = -value;
    negative = true;
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
1096 1097 1098
  // f corresponds to the digits after the point. There is always one digit
  // before the point. The number of requested_digits equals hence f + 1.
  // And we have to add one character for the null-terminator.
1099
  const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1 + 1;
1100 1101
  // Make sure that the buffer is big enough, even if we fall back to the
  // shortest representation (which happens when f equals -1).
1102
  DCHECK(kBase10MaximalLength <= kMaxFractionDigits + 1);
1103
  char decimal_rep[kV8DtoaBufferCapacity];
1104 1105
  int decimal_rep_length;

1106
  if (f == -1) {
1107 1108 1109 1110
    DoubleToAscii(value, DTOA_SHORTEST, 0,
                  Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                  &sign, &decimal_rep_length, &decimal_point);
    f = decimal_rep_length - 1;
1111
  } else {
1112 1113 1114
    DoubleToAscii(value, DTOA_PRECISION, f + 1,
                  Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                  &sign, &decimal_rep_length, &decimal_point);
1115
  }
1116 1117
  DCHECK(decimal_rep_length > 0);
  DCHECK(decimal_rep_length <= f + 1);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

  int exponent = decimal_point - 1;
  char* result =
      CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1);

  return result;
}


char* DoubleToPrecisionCString(double value, int p) {
1128
  const int kMinimalDigits = 1;
1129
  DCHECK(p >= kMinimalDigits && p <= kMaxFractionDigits);
1130
  USE(kMinimalDigits);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

  bool negative = false;
  if (value < 0) {
    value = -value;
    negative = true;
  }

  // Find a sufficiently precise decimal representation of n.
  int decimal_point;
  int sign;
1141
  // Add one for the terminating null character.
1142
  const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1;
1143
  char decimal_rep[kV8DtoaBufferCapacity];
1144 1145
  int decimal_rep_length;

1146 1147 1148
  DoubleToAscii(value, DTOA_PRECISION, p,
                Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
                &sign, &decimal_rep_length, &decimal_point);
1149
  DCHECK(decimal_rep_length <= p);
1150 1151 1152

  int exponent = decimal_point - 1;

1153
  char* result = nullptr;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

  if (exponent < -6 || exponent >= p) {
    result =
        CreateExponentialRepresentation(decimal_rep, exponent, negative, p);
  } else {
    // Use fixed notation.
    //
    // Leave room in the result for appending a minus, a period and in
    // the case where decimal_point is not positive for a zero in
    // front of the period.
    unsigned result_size = (decimal_point <= 0)
        ? -decimal_point + p + 3
        : p + 2;
1167
    SimpleStringBuilder builder(result_size + 1);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
    if (negative) builder.AddCharacter('-');
    if (decimal_point <= 0) {
      builder.AddString("0.");
      builder.AddPadding('0', -decimal_point);
      builder.AddString(decimal_rep);
      builder.AddPadding('0', p - decimal_rep_length);
    } else {
      const int m = Min(decimal_rep_length, decimal_point);
      builder.AddSubstring(decimal_rep, m);
      builder.AddPadding('0', decimal_point - decimal_rep_length);
      if (decimal_point < p) {
        builder.AddCharacter('.');
        const int extra = negative ? 2 : 1;
        if (decimal_rep_length > decimal_point) {
1182
          const int len = StrLength(decimal_rep + decimal_point);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
          const int n = Min(len, p - (builder.position() - extra));
          builder.AddSubstring(decimal_rep + decimal_point, n);
        }
        builder.AddPadding('0', extra + (p - builder.position()));
      }
    }
    result = builder.Finalize();
  }

  return result;
}

char* DoubleToRadixCString(double value, int radix) {
1196
  DCHECK(radix >= 2 && radix <= 36);
1197 1198
  DCHECK(std::isfinite(value));
  DCHECK_NE(0.0, value);
1199 1200 1201
  // Character array used for conversion.
  static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";

1202 1203
  // Temporary buffer for the result. We start with the decimal point in the
  // middle and write to the left for the integer part and to the right for the
1204 1205 1206 1207
  // fractional part. 1024 characters for the exponent and 52 for the mantissa
  // either way, with additional space for sign, decimal point and string
  // termination should be sufficient.
  static const int kBufferSize = 2200;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
  char buffer[kBufferSize];
  int integer_cursor = kBufferSize / 2;
  int fraction_cursor = integer_cursor;

  bool negative = value < 0;
  if (negative) value = -value;

  // Split the value into an integer part and a fractional part.
  double integer = std::floor(value);
  double fraction = value - integer;
  // We only compute fractional digits up to the input double's precision.
  double delta = 0.5 * (Double(value).NextDouble() - value);
1220 1221
  delta = std::max(Double(0.0).NextDouble(), delta);
  DCHECK_GT(delta, 0.0);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
  if (fraction > delta) {
    // Insert decimal point.
    buffer[fraction_cursor++] = '.';
    do {
      // Shift up by one digit.
      fraction *= radix;
      delta *= radix;
      // Write digit.
      int digit = static_cast<int>(fraction);
      buffer[fraction_cursor++] = chars[digit];
      // Calculate remainder.
      fraction -= digit;
      // Round to even.
      if (fraction > 0.5 || (fraction == 0.5 && (digit & 1))) {
        if (fraction + delta > 1) {
          // We need to back trace already written digits in case of carry-over.
          while (true) {
            fraction_cursor--;
            if (fraction_cursor == kBufferSize / 2) {
              CHECK_EQ('.', buffer[fraction_cursor]);
              // Carry over to the integer part.
              integer += 1;
              break;
            }
            char c = buffer[fraction_cursor];
            // Reconstruct digit.
            int digit = c > '9' ? (c - 'a' + 10) : (c - '0');
            if (digit + 1 < radix) {
              buffer[fraction_cursor++] = chars[digit + 1];
              break;
            }
          }
          break;
        }
      }
    } while (fraction > delta);
  }
1259

1260 1261 1262 1263 1264
  // Compute integer digits. Fill unrepresented digits with zero.
  while (Double(integer / radix).Exponent() > 0) {
    integer /= radix;
    buffer[--integer_cursor] = '0';
  }
1265
  do {
1266 1267 1268
    double remainder = modulo(integer, radix);
    buffer[--integer_cursor] = chars[static_cast<int>(remainder)];
    integer = (integer - remainder) / radix;
1269 1270 1271 1272 1273
  } while (integer > 0);

  // Add sign and terminate string.
  if (negative) buffer[--integer_cursor] = '-';
  buffer[fraction_cursor++] = '\0';
1274 1275
  DCHECK_LT(fraction_cursor, kBufferSize);
  DCHECK_LE(0, integer_cursor);
1276 1277 1278 1279
  // Allocate new string as return value.
  char* result = NewArray<char>(fraction_cursor - integer_cursor);
  memcpy(result, buffer + integer_cursor, fraction_cursor - integer_cursor);
  return result;
1280 1281
}

1282

1283
// ES6 18.2.4 parseFloat(string)
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
double StringToDouble(UnicodeCache* unicode_cache, Handle<String> string,
                      int flags, double empty_string_val) {
  Handle<String> flattened = String::Flatten(string);
  {
    DisallowHeapAllocation no_gc;
    String::FlatContent flat = flattened->GetFlatContent();
    DCHECK(flat.IsFlat());
    if (flat.IsOneByte()) {
      return StringToDouble(unicode_cache, flat.ToOneByteVector(), flags,
                            empty_string_val);
    } else {
      return StringToDouble(unicode_cache, flat.ToUC16Vector(), flags,
                            empty_string_val);
    }
1298 1299 1300 1301
  }
}


dcarney's avatar
dcarney committed
1302 1303 1304 1305 1306
bool IsSpecialIndex(UnicodeCache* unicode_cache, String* string) {
  // Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX
  const int kBufferSize = 24;
  const int length = string->length();
  if (length == 0 || length > kBufferSize) return false;
1307
  uint16_t buffer[kBufferSize];
dcarney's avatar
dcarney committed
1308 1309 1310
  String::WriteToFlat(string, buffer, 0, length);
  // If the first char is not a digit or a '-' or we can't match 'NaN' or
  // '(-)Infinity', bailout immediately.
1311
  int offset = 0;
dcarney's avatar
dcarney committed
1312 1313 1314 1315 1316 1317 1318 1319 1320
  if (!IsDecimalDigit(buffer[0])) {
    if (buffer[0] == '-') {
      if (length == 1) return false;  // Just '-' is bad.
      if (!IsDecimalDigit(buffer[1])) {
        if (buffer[1] == 'I' && length == 9) {
          // Allow matching of '-Infinity' below.
        } else {
          return false;
        }
1321
      }
dcarney's avatar
dcarney committed
1322 1323 1324 1325 1326 1327 1328 1329
      offset++;
    } else if (buffer[0] == 'I' && length == 8) {
      // Allow matching of 'Infinity' below.
    } else if (buffer[0] == 'N' && length == 3) {
      // Match NaN.
      return buffer[1] == 'a' && buffer[2] == 'N';
    } else {
      return false;
1330 1331
    }
  }
dcarney's avatar
dcarney committed
1332 1333 1334 1335 1336 1337 1338
  // Expected fast path: key is an integer.
  static const int kRepresentableIntegerLength = 15;  // (-)XXXXXXXXXXXXXXX
  if (length - offset <= kRepresentableIntegerLength) {
    const int initial_offset = offset;
    bool matches = true;
    for (; offset < length; offset++) {
      matches &= IsDecimalDigit(buffer[offset]);
1339
    }
dcarney's avatar
dcarney committed
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
    if (matches) {
      // Match 0 and -0.
      if (buffer[initial_offset] == '0') return initial_offset == length - 1;
      return true;
    }
  }
  // Slow path: test DoubleToString(StringToDouble(string)) == string.
  Vector<const uint16_t> vector(buffer, length);
  double d = StringToDouble(unicode_cache, vector, NO_FLAGS);
  if (std::isnan(d)) return false;
  // Compute reverse string.
  char reverse_buffer[kBufferSize + 1];  // Result will be /0 terminated.
  Vector<char> reverse_vector(reverse_buffer, arraysize(reverse_buffer));
  const char* reverse_string = DoubleToCString(d, reverse_vector);
  for (int i = 0; i < length; ++i) {
    if (static_cast<uint16_t>(reverse_string[i]) != buffer[i]) return false;
1356 1357 1358
  }
  return true;
}
1359 1360
}  // namespace internal
}  // namespace v8