code-stubs-ia32.h 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_IA32_CODE_STUBS_IA32_H_
#define V8_IA32_CODE_STUBS_IA32_H_

31 32
#include "macro-assembler.h"
#include "code-stubs.h"
33 34 35 36 37 38 39 40 41 42
#include "ic-inl.h"

namespace v8 {
namespace internal {


// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
 public:
43 44 45 46
  enum ArgumentType {
    TAGGED = 0,
    UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits
  };
47

48 49 50
  explicit TranscendentalCacheStub(TranscendentalCache::Type type,
                                   ArgumentType argument_type)
      : type_(type), argument_type_(argument_type) {}
51 52 53
  void Generate(MacroAssembler* masm);
 private:
  TranscendentalCache::Type type_;
54
  ArgumentType argument_type_;
55

56 57
  Major MajorKey() { return TranscendentalCache; }
  int MinorKey() { return type_ | argument_type_; }
58 59 60 61 62
  Runtime::FunctionId RuntimeFunction();
  void GenerateOperation(MacroAssembler* masm);
};


63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class ToBooleanStub: public CodeStub {
 public:
  ToBooleanStub() { }

  void Generate(MacroAssembler* masm);

 private:
  Major MajorKey() { return ToBoolean; }
  int MinorKey() { return 0; }
};


// Flag that indicates how to generate code for the stub GenericBinaryOpStub.
enum GenericBinaryFlags {
  NO_GENERIC_BINARY_FLAGS = 0,
  NO_SMI_CODE_IN_STUB = 1 << 0  // Omit smi code in stub.
};


class GenericBinaryOpStub: public CodeStub {
 public:
  GenericBinaryOpStub(Token::Value op,
                      OverwriteMode mode,
                      GenericBinaryFlags flags,
                      TypeInfo operands_type)
      : op_(op),
        mode_(mode),
        flags_(flags),
        args_in_registers_(false),
        args_reversed_(false),
        static_operands_type_(operands_type),
94
        runtime_operands_type_(BinaryOpIC::UNINIT_OR_SMI),
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        name_(NULL) {
    if (static_operands_type_.IsSmi()) {
      mode_ = NO_OVERWRITE;
    }
    use_sse3_ = CpuFeatures::IsSupported(SSE3);
    ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
  }

  GenericBinaryOpStub(int key, BinaryOpIC::TypeInfo runtime_operands_type)
      : op_(OpBits::decode(key)),
        mode_(ModeBits::decode(key)),
        flags_(FlagBits::decode(key)),
        args_in_registers_(ArgsInRegistersBits::decode(key)),
        args_reversed_(ArgsReversedBits::decode(key)),
        use_sse3_(SSE3Bits::decode(key)),
        static_operands_type_(TypeInfo::ExpandedRepresentation(
            StaticTypeInfoBits::decode(key))),
        runtime_operands_type_(runtime_operands_type),
        name_(NULL) {
  }

  // Generate code to call the stub with the supplied arguments. This will add
  // code at the call site to prepare arguments either in registers or on the
  // stack together with the actual call.
  void GenerateCall(MacroAssembler* masm, Register left, Register right);
  void GenerateCall(MacroAssembler* masm, Register left, Smi* right);
  void GenerateCall(MacroAssembler* masm, Smi* left, Register right);

123 124 125 126 127
  bool ArgsInRegistersSupported() {
    return op_ == Token::ADD || op_ == Token::SUB
        || op_ == Token::MUL || op_ == Token::DIV;
  }

128 129 130 131 132
  void SetArgsInRegisters() {
    ASSERT(ArgsInRegistersSupported());
    args_in_registers_ = true;
  }

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
 private:
  Token::Value op_;
  OverwriteMode mode_;
  GenericBinaryFlags flags_;
  bool args_in_registers_;  // Arguments passed in registers not on the stack.
  bool args_reversed_;  // Left and right argument are swapped.
  bool use_sse3_;

  // Number type information of operands, determined by code generator.
  TypeInfo static_operands_type_;

  // Operand type information determined at runtime.
  BinaryOpIC::TypeInfo runtime_operands_type_;

  char* name_;

  const char* GetName();

#ifdef DEBUG
  void Print() {
    PrintF("GenericBinaryOpStub %d (op %s), "
           "(mode %d, flags %d, registers %d, reversed %d, type_info %s)\n",
           MinorKey(),
           Token::String(op_),
           static_cast<int>(mode_),
           static_cast<int>(flags_),
           static_cast<int>(args_in_registers_),
           static_cast<int>(args_reversed_),
           static_operands_type_.ToString());
  }
#endif

  // Minor key encoding in 18 bits RRNNNFRASOOOOOOOMM.
  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
  class OpBits: public BitField<Token::Value, 2, 7> {};
  class SSE3Bits: public BitField<bool, 9, 1> {};
  class ArgsInRegistersBits: public BitField<bool, 10, 1> {};
  class ArgsReversedBits: public BitField<bool, 11, 1> {};
  class FlagBits: public BitField<GenericBinaryFlags, 12, 1> {};
  class StaticTypeInfoBits: public BitField<int, 13, 3> {};
173
  class RuntimeTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 16, 3> {};
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

  Major MajorKey() { return GenericBinaryOp; }
  int MinorKey() {
    // Encode the parameters in a unique 18 bit value.
    return OpBits::encode(op_)
           | ModeBits::encode(mode_)
           | FlagBits::encode(flags_)
           | SSE3Bits::encode(use_sse3_)
           | ArgsInRegistersBits::encode(args_in_registers_)
           | ArgsReversedBits::encode(args_reversed_)
           | StaticTypeInfoBits::encode(
                 static_operands_type_.ThreeBitRepresentation())
           | RuntimeTypeInfoBits::encode(runtime_operands_type_);
  }

  void Generate(MacroAssembler* masm);
  void GenerateSmiCode(MacroAssembler* masm, Label* slow);
  void GenerateLoadArguments(MacroAssembler* masm);
  void GenerateReturn(MacroAssembler* masm);
  void GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure);
  void GenerateRegisterArgsPush(MacroAssembler* masm);
  void GenerateTypeTransition(MacroAssembler* masm);

  bool IsOperationCommutative() {
    return (op_ == Token::ADD) || (op_ == Token::MUL);
  }

  void SetArgsReversed() { args_reversed_ = true; }
  bool HasSmiCodeInStub() { return (flags_ & NO_SMI_CODE_IN_STUB) == 0; }
  bool HasArgsInRegisters() { return args_in_registers_; }
  bool HasArgsReversed() { return args_reversed_; }

  bool ShouldGenerateSmiCode() {
    return HasSmiCodeInStub() &&
        runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
        runtime_operands_type_ != BinaryOpIC::STRINGS;
  }

  bool ShouldGenerateFPCode() {
    return runtime_operands_type_ != BinaryOpIC::STRINGS;
  }

  virtual int GetCodeKind() { return Code::BINARY_OP_IC; }

  virtual InlineCacheState GetICState() {
    return BinaryOpIC::ToState(runtime_operands_type_);
  }
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  virtual void FinishCode(Code* code) {
    code->set_binary_op_type(runtime_operands_type_);
  }

  friend class CodeGenerator;
};


class TypeRecordingBinaryOpStub: public CodeStub {
 public:
  TypeRecordingBinaryOpStub(Token::Value op, OverwriteMode mode)
      : op_(op),
        mode_(mode),
        operands_type_(TRBinaryOpIC::UNINITIALIZED),
        result_type_(TRBinaryOpIC::UNINITIALIZED),
        name_(NULL) {
    use_sse3_ = CpuFeatures::IsSupported(SSE3);
    ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
  }

242 243
  TypeRecordingBinaryOpStub(
      int key,
244 245 246 247 248 249 250
      TRBinaryOpIC::TypeInfo operands_type,
      TRBinaryOpIC::TypeInfo result_type = TRBinaryOpIC::UNINITIALIZED)
      : op_(OpBits::decode(key)),
        mode_(ModeBits::decode(key)),
        use_sse3_(SSE3Bits::decode(key)),
        operands_type_(operands_type),
        result_type_(result_type),
251
        name_(NULL) { }
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

 private:
  enum SmiCodeGenerateHeapNumberResults {
    ALLOW_HEAPNUMBER_RESULTS,
    NO_HEAPNUMBER_RESULTS
  };

  Token::Value op_;
  OverwriteMode mode_;
  bool use_sse3_;

  // Operand type information determined at runtime.
  TRBinaryOpIC::TypeInfo operands_type_;
  TRBinaryOpIC::TypeInfo result_type_;

  char* name_;

  const char* GetName();

#ifdef DEBUG
  void Print() {
    PrintF("TypeRecordingBinaryOpStub %d (op %s), "
           "(mode %d, runtime_type_info %s)\n",
           MinorKey(),
           Token::String(op_),
           static_cast<int>(mode_),
           TRBinaryOpIC::GetName(operands_type_));
  }
#endif

  // Minor key encoding in 16 bits RRRTTTSOOOOOOOMM.
  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
  class OpBits: public BitField<Token::Value, 2, 7> {};
  class SSE3Bits: public BitField<bool, 9, 1> {};
  class OperandTypeInfoBits: public BitField<TRBinaryOpIC::TypeInfo, 10, 3> {};
  class ResultTypeInfoBits: public BitField<TRBinaryOpIC::TypeInfo, 13, 3> {};

  Major MajorKey() { return TypeRecordingBinaryOp; }
  int MinorKey() {
    return OpBits::encode(op_)
           | ModeBits::encode(mode_)
           | SSE3Bits::encode(use_sse3_)
           | OperandTypeInfoBits::encode(operands_type_)
           | ResultTypeInfoBits::encode(result_type_);
  }

  void Generate(MacroAssembler* masm);
  void GenerateGeneric(MacroAssembler* masm);
  void GenerateSmiCode(MacroAssembler* masm,
                       Label* slow,
                       SmiCodeGenerateHeapNumberResults heapnumber_results);
  void GenerateLoadArguments(MacroAssembler* masm);
  void GenerateReturn(MacroAssembler* masm);
  void GenerateUninitializedStub(MacroAssembler* masm);
  void GenerateSmiStub(MacroAssembler* masm);
  void GenerateInt32Stub(MacroAssembler* masm);
  void GenerateHeapNumberStub(MacroAssembler* masm);
  void GenerateStringStub(MacroAssembler* masm);
  void GenerateGenericStub(MacroAssembler* masm);

  void GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure);
  void GenerateRegisterArgsPush(MacroAssembler* masm);
  void GenerateTypeTransition(MacroAssembler* masm);
  void GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm);

  virtual int GetCodeKind() { return Code::TYPE_RECORDING_BINARY_OP_IC; }

  virtual InlineCacheState GetICState() {
    return TRBinaryOpIC::ToState(operands_type_);
  }

  virtual void FinishCode(Code* code) {
    code->set_type_recording_binary_op_type(operands_type_);
    code->set_type_recording_binary_op_result_type(result_type_);
  }

328
  friend class CodeGenerator;
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
};


class StringHelper : public AllStatic {
 public:
  // Generate code for copying characters using a simple loop. This should only
  // be used in places where the number of characters is small and the
  // additional setup and checking in GenerateCopyCharactersREP adds too much
  // overhead. Copying of overlapping regions is not supported.
  static void GenerateCopyCharacters(MacroAssembler* masm,
                                     Register dest,
                                     Register src,
                                     Register count,
                                     Register scratch,
                                     bool ascii);

  // Generate code for copying characters using the rep movs instruction.
  // Copies ecx characters from esi to edi. Copying of overlapping regions is
  // not supported.
  static void GenerateCopyCharactersREP(MacroAssembler* masm,
                                        Register dest,     // Must be edi.
                                        Register src,      // Must be esi.
                                        Register count,    // Must be ecx.
                                        Register scratch,  // Neither of above.
                                        bool ascii);

355 356 357 358 359 360 361 362
  // Probe the symbol table for a two character string. If the string
  // requires non-standard hashing a jump to the label not_probed is
  // performed and registers c1 and c2 are preserved. In all other
  // cases they are clobbered. If the string is not found by probing a
  // jump to the label not_found is performed. This jump does not
  // guarantee that the string is not in the symbol table. If the
  // string is found the code falls through with the string in
  // register eax.
363 364 365 366 367 368
  static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
                                                   Register c1,
                                                   Register c2,
                                                   Register scratch1,
                                                   Register scratch2,
                                                   Register scratch3,
369
                                                   Label* not_probed,
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
                                                   Label* not_found);

  // Generate string hash.
  static void GenerateHashInit(MacroAssembler* masm,
                               Register hash,
                               Register character,
                               Register scratch);
  static void GenerateHashAddCharacter(MacroAssembler* masm,
                                       Register hash,
                                       Register character,
                                       Register scratch);
  static void GenerateHashGetHash(MacroAssembler* masm,
                                  Register hash,
                                  Register scratch);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};


// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
  NO_STRING_ADD_FLAGS = 0,
393 394 395 396 397 398 399
  // Omit left string check in stub (left is definitely a string).
  NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0,
  // Omit right string check in stub (right is definitely a string).
  NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1,
  // Omit both string checks in stub.
  NO_STRING_CHECK_IN_STUB =
      NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB
400 401 402 403 404
};


class StringAddStub: public CodeStub {
 public:
405
  explicit StringAddStub(StringAddFlags flags) : flags_(flags) {}
406 407 408

 private:
  Major MajorKey() { return StringAdd; }
409
  int MinorKey() { return flags_; }
410 411 412

  void Generate(MacroAssembler* masm);

413 414 415 416 417 418 419 420 421
  void GenerateConvertArgument(MacroAssembler* masm,
                               int stack_offset,
                               Register arg,
                               Register scratch1,
                               Register scratch2,
                               Register scratch3,
                               Label* slow);

  const StringAddFlags flags_;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
};


class SubStringStub: public CodeStub {
 public:
  SubStringStub() {}

 private:
  Major MajorKey() { return SubString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};


class StringCompareStub: public CodeStub {
 public:
  explicit StringCompareStub() {
  }

  // Compare two flat ascii strings and returns result in eax after popping two
  // arguments from the stack.
  static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
                                              Register left,
                                              Register right,
                                              Register scratch1,
                                              Register scratch2,
                                              Register scratch3);

 private:
  Major MajorKey() { return StringCompare; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);
};


class NumberToStringStub: public CodeStub {
 public:
  NumberToStringStub() { }

  // Generate code to do a lookup in the number string cache. If the number in
  // the register object is found in the cache the generated code falls through
  // with the result in the result register. The object and the result register
  // can be the same. If the number is not found in the cache the code jumps to
  // the label not_found with only the content of register object unchanged.
  static void GenerateLookupNumberStringCache(MacroAssembler* masm,
                                              Register object,
                                              Register result,
                                              Register scratch1,
                                              Register scratch2,
                                              bool object_is_smi,
                                              Label* not_found);

 private:
  Major MajorKey() { return NumberToString; }
  int MinorKey() { return 0; }

  void Generate(MacroAssembler* masm);

  const char* GetName() { return "NumberToStringStub"; }

#ifdef DEBUG
  void Print() {
    PrintF("NumberToStringStub\n");
  }
#endif
};


} }  // namespace v8::internal

#endif  // V8_IA32_CODE_STUBS_IA32_H_